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A BOUNDARY ELEMENT ALGORITHM
FOR PLATE PROBLEMS

J. A. Costa Jr. — Membro da ABCM
PUC/RJ — Departamento de Engenharia Mecanica

ABSTRACT

In this paper the Boundary Element Method is used to analyse plate
problems such as: plate bending, plate on elastic foundations,
buckling and vibration of plates. The direct method is used to
obtain the integral formulation of the various problems in a general
form. The computer algorithm developed to implement the formulation
is capable of solving a variety of physical problems. Some examples
are presented to illustrate the applicability of the algorithm.

RESUMO

Neste trabalho o Método dos Elementos de Contorno € usado para ana-
lisar problemas de placas tais como: flexdo simples, flexdo sobre
fundagdo elastica, flambagem e vibracao de placas. O método direto
€ usado para obter a formulagdo integral dos varios problemas emuma
forma geral. O algoritmo desenvolvido para implementar a formula-
¢do, é capaz de resolver uma variedade de problemas fisicos. Varios
exemplos sdo apresentados para ilustrar a sua aplicabilidade.

INTRODUCTION

The Boundary Element Method has recently become a powerful
technique for solving different types of engineering problems. Its
main advantage is that it reduces the dimensionality of a given problem.
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Recent developments of the method for plate problems
employing the direct method are described in references [1,2,4,5,6{
7., 9,12,19]. '

In this paper, separate formulations(4,5,7,9]proposed by the
present author are presented together in an integrated form, The
general form,which is described briefly here, is part of a computer
algorithm developed to solve varicus plate problems numericdlly.
Numerical examples for a number of plate problems are obtained by
the code and the results are presented here. They are compared with
analytical and numerical solutions obtained independently by other
authors.

PRELIMINARY CONSIDERATIONS AND BASIC EQUATIONS
The governing differential equations of plate problems
developed in accordance with the classical thin plate theory, are

defined as follows.

Plate Bending
The differential equation for a plate of constant thickness
and subjected to a distributed load q(X;,X,} is

DV'w = g for w in @ (1)

where V" denotes the biharmonic operator in cartesian coordinates
X, and X,, w is thé displacement in the domain 2 bounded by the
curve [ .

D =Eh*/12(1-v?)) is the flexural rigidity, E and v are
Young's Modulus and Poisson's Ratio respectively, and h is the plate
thickness.

Plate Bending on Elastic Foundations
In the case of plates on elastic foundations, the load

distribution of g(X,,X,) in equation (1) is assumed to be divided
into two parts:

i.e. q4=q, +aq, (2)

g, is a given external load acting on the plate and g, is the



Rev. BrMec. Rio de Janeiro, V.1X, n9 3 — 1987 159

reaction of the foundation due to the deflection of the plate. It is
possible to assume the following relationship (Winkler's Foundation)

- -K w (3}
where K is the foundation modulus. Substituting equation (3) into
equation (1), the differential equation (1) assumes the form

N —
T'w + kew =5 (4)

where Ae is the parameter defined as l; = K/D.

Vibration

The governing differential equation for the free vibration
of a homogeneous ‘isotropic, linear elastic plate of uniform
thickness is

32
D‘?"w+pa—g;—=0 for w in & (5)

where p is the mass per unit area and t is the time.
Assuming a harmonic vibration, it is possible to write
w{xl,kz,E} = w(X,,X,)sinwt (6)

where w is the natural frequency of the plate.

Substituting equation (6) into equation (5) gives

Viw - l;w =0 for w in @ (7)
where A is the frequency parameter defined as X; = w?p/D.

Buckling

The governing differential equation for the buckiling of an
elastic plate subjected to the action of in-plane boundary forces
.le, Nxz and leﬁ is

. 2 3w
DV'w - P, ] Ny, . =—— | =0 (8)

where P, is a multiplying factor for the buckling load.
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FUNDAMENTAL SOLUTIONS
The basic fundamental solutions for plate problems should
satisfy the following differential equations[3]

L(u) = 6(X, -X, , X, -X,) /D (9)
and
i) e i By w Xy § Ky = Ra) 1D (10)
ang

where L is the differential equation governing the plate problems,
¥,, X, are the coordinates of the internal point and &(X,,X;) is the
two-dimensional Dirac Delta function §(X;) 6(X,) which is written as
§(X,,X,) for conciseness. In equation (10), n, represents an
arbitrary but known direction.

The Fourier technique can be used to solve egquation (9) which
represents the fundamental solution obtained when aunit concentrated
force is applied at an internal point within a plate.

From the theory of generalized functions, it is known that if
u 1ls a solution of Lu=46 (where L is a differential operator with
constant coefficients), its derivative 2u/3a is a solution of Lu =
= 36/3a [10]. Consequently, from this and the solution of equation
(9) it is possible to obtain the fundamental solution of equation (10).

The generalised delta function § has derivatives of all
orders [13], and consequently it is possible to define another
solution which satisfies the following equation

3?

L - —— g
(u) FRTN (6(X, =X,

) » (X, ,X,)) /D formk=1,2 (11)
The same considerations used to obtain the solution of equation (10}
can be employed to find the solution of equation (11)}. The solutions
of the previously mentioned equations for various differential

operators related to plate problems are provided within Appendix 1.

INTEGRAL EQUATIONS

The plate equations (1),(4),(7) and (8) with their respective
fundamental sdlutions which are provided within Appendix 1, can now
be reduced to integral equations.
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Multiplying these equations and their associated fundamental
solutions by up{a =0,1,2, and p=1,2,3,...5,6) and w respectively,
and then subsequently subtrating and integrating over the domain @,
yields

b f W% 7'w - w9 u¥)dn -J% = f -2 £%(5(,))an
b B p

Q
for a=0,1,2 and p=1,2,3,4,5,6 (12)*
where,
0 1 3 z a!
£°{) =1, £ ()=771() and £ ) = m——— ()
an, I X
and
[ o
fq u_ 40 , for p=1,2
Q P
0 - for p=3,4
J% are equal to+4 f w A u® an , for p=5
Q R '

2 2
3w o
N -—---]u dg , for p=6
./s; i,§=1[xi,j AKXy P

\

The eguations provided above (12), can be reduced to another
type of integrals by using the Rayleigh Green identity, which for a

region with M corners [1,5,15] gives,

D./;;(v T'w - w ¥ v)dn =-/T-|:Vnivlw - Hn(\-’) %E-Fg—:' Mn[W) -

) _
-v vn[w}] ar - ‘i“ (w [:Mt(v]) - v(|: M, tw)) (13)

m

* Note: Formula (12) represents three separate equations (a =0,1,2)
which are needed for each plate problem p.
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where at a regular point,

2 7
- = — = 37w
M_(w) = -D|—vzw-+(l—v) Y cos(n,x,) cos(n,x,) ——
X g, D=1 o L' axgdxg,
2 2
L =i i 3w
M, (w) = D|—(1-v). 3 {=1)" cos(n,x.} cos(n,x e
t TiT=1 J 3-L axJBxL
V. (W) = <D == T'w + > M_(w) (14)
n a an 3t t :

n and t represent the normal and tangent .to the boundary
respectively, v is a function with a sufficient degree of continuity.
The definition of I: at a point s is:

|2 M (s) = M (s +0) - M (s-0) (15)

Hence, using relation (13) to express the first term in egquation
{12) and consequently estimating some of its results under the
condition of a point on a smooth boundary, it is possible to obtain
the following:

et (w(g)) = 3° ‘fr[‘*'n‘“g“-'e” [w(8) - Bw(£)]
o oW 3 a
= M (up(E,8)) 5 + o= (up(E,8) )M, (8)

M
o : * a
ul(£,0) vnie]]dr+mz1[w(8} - B (0)] (] mdul e, 00)

o 1+
us(€,0) (]2 M (8))
for @«=0,1,2 and p=1,2,3...6 (16)%*

c =1 r8=0, EEQ

where ¢ and £ are equal to {(c=1/2 , A&

1.0 EET

** Note: Subscripts and superscripts appearing more than once

designate variables in the respective eguations,
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and £ = (X,,X;), 8=(X,,X,) in equations (16) represent the source
and field points respectively.

Finally, when p=1,2 the domain integrals J of equation(16)
can be transferred to the boundary in order to preserve the reduced

dimensionality characteristics of the Boundary Element Method [4,8].

NUMERICAL IMPLEMENTATION

The integral equation (16), can be reduced to a system of
algebraic equations by discretizing the boundary and domain (if it
is required) using boundary element and internal cells, respectively.
Following the procedure employed previously in [5,7], the boundary
can be approximated by N boundary constant elements and the domain
by M cells. The integrals can be performed using Gaussian quadrature
formulae for the case of a non-singular integral and a combination
of semi-analytical and analytical for the singular situation.
Moreover, the twist moment M, (8) can be expressed in terms of the
normal slope 3w/3n [5]. After which, it is possible to express the
algebraic equations as described within the following matrices

M u 12 i

11 12 1
Hp Hp w Sp Cp v, Bp Pp
21 2 21 2 2 2
Hp Hp = | % % + | Bp Pp [ amn
aw
21 Lz ey L1 L2 M | 4 'l
_Hp Hp_ an _GP Gp_ n | _BP_ Dp ‘

The subscripts p(1,2,3,4,5,6) indicate that the problem is
being treated by the algebraic form of equations (16), from which
the matrices are assembled. [H] is a (2N+iM) x 2N matrix whose
coefficients originate from the integrals and corner contributions
related to the displacement and normal slope (densities) of the
algebraic eguations created by the discretization of equations (16).
[G] is a (2N+iM) x 2N matrix whose coefficients develop from the
integrals related to the shear force and moment densities of the
algebraic equations resulting from the discretization of equation;
(16). [B] is a (2N+iM) x iM matrix whose coefficients result from

the domain integrals and the internal densities after discretization
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of equations (16). [D] is a iMx 1 celumn vector of the imternal

densities and results fromthe discretization of eguations (le).

were: RkL=0 , i=20 for p=1,2,3,4
p=3 , 1=1 for p=>5
=5, 1=13 for p=6

At a regular point on the boundary the known densities

(w, 3w/dn, Mp(w), V (w)) are:

Clamped boundary: w and %% F

Simply supported beoundary: w and Mo

Free boundary:-vn and Moo

Mixed boundary: combination of the above three.

Taking into account the boundary conditions cutlined above,
it is possible to express the system (17) for each particular plate

problem as follows:

Plate Bending p = 1,2

(A )y (X) = (Bl (18)

and
¥} = (aplgp (X} + (Bglgp (19)

Vibration and Buckling

For the case p = 3,4

and for p = 5,6

-1 2 . .
[(ag1gr 1A171 Bl gr- (Bylgq] (7} = i 21)

where Xp are the eigenvalues for the referred plate problem p, {x}
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is the column vector of the unknown boundary densities and {¥}
represents the vector of the unknown densities.

Finally, a boundary element computer program for analysing
the problems discussed within this paper has been developed. The
computer code for the algorithm is written in conversational mode
capable of accommodating plates with various loading and boundary
conditions. The flow chart, which expresses the logic of the
computer program coded in FORTRAN, is presented in Appendix 2.

EXAMPLES

Example 1

This example consists of a circular plate with clamped edges
subjected to a uniformly distributed load. The cases studied here
are: plate bending and plate on elastic foundation. The following

data were used:

Radius of plate = a = 10 in

Uniform pressure load = q = 1000 psi

Flexural rigidity of plate = D = 10% in.1lb

Modulus of foundation = K = 0, and K = 2x 10" 1b/in?
Poisson's ratio = 0.30

Results for the centre deflection and bending moments computed by
BEM using constant boundary discretizations are presented in Table 1.
These results are compared against analytical solutions obtained by
NG reference [14].

It is apparent from Table 1 that the BEM results agree closely
with those of NG [14]. It is also interesting to point out that tHe
accuracy of these results is obtained using small number of boundary
elements. It is interesting to point out that the BEM results for
the centre moment is slight greater that the analytical solution
for K=0. It is felt that more elegant numerical techniques would
eliminate this minor problem.

Example 2

This example studies the buckling dnd vibration of a square
plate with two opposite sides simply supported and the other two edges
clamped. For the buckling case, the inplane loading considered is
Ny constant and le = Nxz = 0. The eigenvalues are

1,2
given by
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Natural vibration: i, = w /v’D/pL;
Buckling: Ap = leﬂL"’/ﬂzD

where L is the side length of the square plate.

Table 1. Comparison of maximum deflection, maximum centre moment and
edge moments

Coefficient w for maximum deflection at centre

_wag _—
Yiax = 5 (10=7)

Moment coefficient ¢ and m

Centre moment Mp = ¢ ga’(10™?)

Edge moments My = -mga’(107°)
—— pDeflection |  centre Moment | Edge Moments
Modulus
: : Ref. Ref. Ref.
K-ib/in BEM NG[14] “~BEM NG[14] EEM NG(14)
1.5125%* B.025 12.10
0 1.5386%* 1.5625 8.169 8.125 12.31 12.500
1.5479%%* 8.220 12.39
0.4876* 2.049 5.99
2 x 10" 0.4936%* 0.4980 2.006 1.972 5.83 5.694
0.495 7Rk 7.990 5.76

Legend:
* %% &%+ : These results were obtained using 16, 24 and 32 total

number of boundary elements respectively.

The results obtained by BEM using different discretization
for the domain and boundary are presented in Table 2. It can be
seen from Table 2 that the results agree well with analytical
solutions. It is also interesting to point out that the BEM results
for buckliing and vibration (higher modes) are in better agreement
with the analytical solution (Table 2) than those obtained using FEM,
for the specific finite elements described in references [17,16].
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Table 2. Comparison of buckling and vibration eigenvalues
of a sguare plate with two opposite sides simply
supported and the other two edges clamped

NATURAL VIBRATION CASE
BEM SOLUTIONS
Eigeﬂfalues BE x CELLS Exact [16]| FEM [16]
Y 16 x24 | 16x32 | 28 x50
§ 30.6 30.3 30.0 29.0 28.1
iy 58.1 57.5 57.0 54.8 51.5
Ay 79.6 73.0 71.8 69.3 64.25
BUCKLING CASE, LOADING Ny  CONSTANT
) BEM SOLUTIONS
R gATERLEE BE x CELLS Exact [17]| FEM [17]
° 16 x24 | 16x32 | 28x50
Ay 12.97 12.77 12.56 12.28 13.370

CONCLUSIONS

- A powerful computer boundary element code has been developed
to analyse differént_plate problems. The results have been compared
against analytical solutions for a variety of plate problems with
different geometries, loading and boundary conditions. The tests
show that the algorithm is capable of providing accurate results.
The interactive version of the code developed for the research will
now he optimized and adapted to have graphic facilities. The
present algorithm automatically generates the boundary elements and

internal mesh reguired to run the plate problem.
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-

APPENDIX I — FUNDAMENTAL SOLUTIONS

Soluticn of egs. (9), (10)

Plate Problems OCperator L and (11) respectivaly
. o r’{4n r -0.5)
P=1 Plate bending up = oh
3
P=5 Vibration* and L=v" ul = - — u!)
P ang =]
’ 3 "
P=€ Buckling u? = ——— {ul)
P X Xy P
1
P=2 Plates on L=7"+2 ul = - > Kei()_ r)
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foundations .
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Xy, Xy P
P=3 Vibration L=v"-2 S J ry -
of plates ¥ P iy, °
- Ha[l )‘v r)]
1 d 0
u: o= - u
P in f )
P=4 Buckling L=" +h, V* ut = ?2 [K_ (A r) —= = inr]
of plates B4k
Lo .18 o
u an, (up)
where,

Kei is a Kelvin function of zero order

H,(z) is the Hankel function of the first kind

K.(2) is the modified Bessel function of the second kind

Af = N/D, N-= =Ny =Ny and Ny =0

* Vibration and Buckllnq fDrmulathﬂS using the static fundamental
solution of plate bending

r¥ o= (X, ~X3 1% ¢ (X, =X%,)°
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THE STATE OF THE ART IN ADVANCED HEAT-TRANSFER
A REVIEW OF TURBULENT BOUNDARY LAYER HEAT
TRANSFER

Robert J. Moffat — Member of ABCM
Thermosciences Division

Department of Mechanical Engineering
Stanford University

The development of the aircraft gas turbine, over the past 35 years, has
stimulated considerable research in turbulent boundary layer heat transfer.
The high-temperature gas turbine poses many challenging heat transfer problems
of a boundary layer nature. -Vanes, blades, combustion chamber liners, and
some Interior gas passages are exposed to gases at the maximum cycle tempera-
ture of the engine. As engine temperatures rose in the quest for higher &ffi-
ciency and power density, the problem of protecting the surfaces from thermal
damage became more difficult to solve. Thermal protection cam be achieved by
any of several approaches or combinations of approaches: insulating coatings,
such as ceramics; Internal cooling with liquid metals, pressurized water or
boiling water; intermal cooling with gases (air or steam); or boundary layer
thermal control (transpiration, slot cooling, or discrete-hole 1injection);
full- or partial-coverage. Whichever system is used, the temperature level
and heat load are affected by the behavior of the boundary layer on the sur-
face. Understanding the factors which affect boundary layer heat transfer is
crucial to any thermal design. Two different types of heat transfer calcula-
tions need to be done: design surveys and detailed analyses. ‘lhese require
different analytical methods and differeat types of data to support the meth-
ods. In both types of analysis, the target accuracy is high, at the moment
bevond the state of the heat transfer art. To fllustrate, in highly stressed
components, such as turbine blades, a difference of -25°F (14°C) can mean a
factor of two in blade life. This may correspond to a change of less than 5%
in the value of the boundary layer heat transfer. The current state of the
art does not allow calculations of that accuracy, except under laboratory con-—
ditions. The heat transfer coefficlents on engine structures have sometimes
been found to be as much as 50% different from the calculated values, even us~
ing the best current methods. Designers have been forced td use large safety

factors on cooling flows, with the attendant penalties on engine performance.
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This situation has led to continual efforts to improve the accuracy of predic-

tions, supported by extensive, practical, and careful research.

In the sections which follow, data will be presented which 1llustrate the
effects of severzl environmental parameters known to affect heat transfer.
Then some comments will be made concerning calculation procedures and some
physically based models presented which have been successful in calculating

heat transfer rates.

Most, but not all, of the data presented here came from heat transfer
research in the Thermosciences Division of Stanford University. This re—
search program began in 1958 and has been in continuous operation since then.
Twenty~two doctoral programs were completed during this period, ilovolving five
different research wind tunnels -~ all related to an organized study of bound-

ary layer heat transfer.

The preponderance of Stanford data does not reflect any disregard for the
significant contributions by other groups. In many cases, our programs were

started because of publication of a new result or a new theory from some other

group.

THE GOVERNING EQUATIONS

It will be convenient to sort the environmental effects into categories
and to discuss their effects in terms of the governing differential and inte-

gral equations of the boundary layer.

let us consider the baseline problem to be fully developed turbulent flow
along a smooth plate of uniform temperature and then look at the effects of
other factors. At least ten factors are presently recognized which may alter
the heat transfer coefficient from the baseline values: variable wall tempera-
‘ture, acceleration of the main stream, deceleration, free stream turbulence,
surface roughness, transgpiration through the surface, injection through slots
or holes, curvature of the surface, unsteadiness in the main-flow velocity or
direction, and secondary flows. The data which follow will illustrate the
first eight of these effects.
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Each data set to be shown consists of Stanton number versus x—Reynolds
number {or enthalpy thickness Reynolds number) and shows the main effect of
the parameter being studied. For purposes of prediction, however, such re-
sults are not enough. In the original research works, velocity and tempera-
ture distributions and turbulence quantities generally were measured, and from
each data set information has been extracted about the turbulent transport of
heat and momentum which was then incorporated into a two-dimensional boundary
layer predictor program. The Prandrl mixing-length model is one of the
closure methods ‘used for for calculating the distribution of mean velocity. A
turbulent Prandtl number function is used for calculating the -temperature
distribution. One widely used program, STAN5, was described by Crawford and
Kays (1976). Turbulence kinetic energy closures are also used. All such

programs depend on data as sources for their modeling constants.

The differential equations for conservation of x-momentum and mass in a
constant-properties, turbulent flow are shown below, to illustrate the way in

which the experimental data are used:

3y u @ au dp
Ues £ s — = +v) o = - E: 1
ax N T 3y (® Wy 8. ax =
au |, av
U, v 2
x T -0 @)

These equations can be solved 1f the coefficients and boundary conditions are

] rlE ) 1
provided: eys Vi GE U(X,o}’ U(X,A)’ L(o,y} The principal experimenta
input is in £, , the eddy diffusivity. The Prandtl mixing length model gives:

- 2 |8y
gy = ¥ l“l (3)
where
L = 0.41 % [l - expf- Y'/a™H (4)

The mixing-length region can be thought of as two sub-regions: a damped
mixing—length vegion, very near the wall, and an undamped outer region. There
is ample evidence that the cuter-region mixing length is relatively universal:
most of the variation in wmixing length occurs very near the wall. In the
work at Stanford, the damping parameter A+, introduced by wvan Driest, 1is

used as a variable, affected by tramspiration, pressure gradient, roughness,
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and curvature. This has allowed successful prediction of most of the cases

studied to date

The energy equation for a constant-properties flow alomg a flat surface

with no chemical reaction is:

8T , 8T _ @ 3T .
Umg * Vag ~ oy g * @ 5y 0 (5)
The principal experimental input 1s in the eddy diffusivity for heat,

Car This information can be approached via the turbulent Prandtl number:

E
g b ©
T

where the experimental task is to measure FPrp within the boundary layer
under the influence of the various parameters.

The general approach, at Stanford, has been to use data from equilibrium
boundary layer studies for developing the models for At and Pr.r and to
check the predictions against data from non-egquilibrium situations, as a test

of the generality of the prediction.

When one wishes to test variable velocity or wvariable transpiration, one
needs a scalar parameter related to "strength of acceleration™ (or decelera-
tien) or “strength of blowing.” The momentum integral equation provides
guidance, as secen below. Eqn. (7) Is the 2-D momentum integral equation for

constant-density flow along a flat surface:

Co oo C as, au_

i § 1
-+ - (1 +B,) = + 85, | @2+ H) — - )
A Z f ax 2 U, ax
The blowing parameter By appears naturally in Eqn. (7).

(8)

8
d ,.2 B.To B" 1 d



Rev. BrMec. Rio de Janeiro, V.1X, n® 3 — 1887 177

A mDew parameter appears, B = (Glfra)(dp{dx), which can be held con-
stant by properly adjusting the pressure gradient as the boundary layer thick-

Ness Erows.
A different rearrangement is:

dRe 8, C du

f,ao" _ v =
W T 2tT T ax G RD R am

w0
In Eqn. (10), if the acceleration parameter K = vaUi][dU_jdx] is held con-
stant, the boundary layer will reach an equilibriom state where

dReb, /(U dX/v) = 0.

The data for accelerating flows data shown in this collection were taken
with constant K. For decelerating flows, the value of B was held con-

stant. This was done by making the free stream velocity vary as:

U, = x® (m < D) (11)

Transpiration data will be presented mainly 4in terms of constant blowing
fraction, F = n"/G. While constant F does not result in an equilibrium
state, it has been verified experimentally that constant F and constant B
flows produce equivalent results when I[nterpreted in terms of local ‘state

descriptors; the path of approach to the state is of secondary importance.

EXPERIMENTAL APPARATUS

Five different research tunnels have been used in the course of the re-
search reported here, covering the 25 years from 1958 (Reynolds et al., 1958a)
to Puruhama, 1983. Reynolds' early work was done on a sharp-edged flat plate
suspended on the ceaterline of a large, open—throat wind tunnel. The test
plate was about 0.5 meter wide and 1 5 meter long, instrumented with heat flux
meters and surface temperature thermocouples. The plate was electrically
heated and the resulting heat flux measured using imbedded heat-flux trans-

ducers.

Moretti and Kays (1964) used an open—circuit ,wind tunnel, subsequently

modified by Moffat (1967) and in use since 1967. This apparatus is shown in
Fig. 5. It consists of a centrifugal blower followed by a heat exchanger for
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controlling free-stream temperature, a set of calming screens, a two—
dimensional contraction nozzle, and a test section. The upper surface of the
test section can be adjusted to accomplish either acceleration or deceleration
of the main stream. The lower surface consists of 24 individual calorimeter
sections arranged to form a smooth plate 2.4 m long and 0.5 m wide which is
uniformly porous (+ 6% over the center 0.2 m span). Each individual porous
element 1is instrumented to allow heat transfer rate to be determined by
energy—-balance means, based upon the measured electrical power and data con-
cerning the heat losses by various modes. Installation details for the porous
plates are shown in Fig. 8a. Transpiration flow, either blowing or suction,
can be adjusted individually to each of the 24 test plates. The surface 1is
made of sintered bronze powder and has been shown to be aercdynamically smooth
(1.e., no roughness effects) at least up to air speeds: of 38 m/s, above the
usual testing range. The main stream flow is of moderate turbulence (0.25 to
0.5%), and the flow is sufficiently two-dimensional on the test plate that the
momentum thickness is uniform within # 3% ot the mean value over the center
0.2 m width of the test plate. All of the Stanford data for smooth plates
(with and without transpiration) shown in this collection were taken with this

same apparatus.

Figure 6 shows a schematic of the test tunnel used for studies of
discrete-hole injection: normal, slant, and compound angle. Details of the
installation of a single test plate typical of the Discrete-Hole Rig or the
Curvature Rig are shown in Fig. 8b. The tunnel is closed-loop, driven by a
centrifugal blower using a water—to-air heat exchanger to provide temperature
stability. A three-dimensional nozzle, a calming section, and turbulence-
reducing screens are fitted to the upstream end of the test section. The
flow velocity is uniform within # 3/8% across the test duct. Boundary layer
momentum thicknesses are uniform within + 3% of the mean, in the center 0.2 m
span. The preplate and afterplate are parts of the maln tunnel and serve to
document both the approaching and departing flow field. The test section can
be exchanged for either normal-, slant-, or compound-angle injectionm. . When
compound-angle injection is used, secondary flow is controlled by synchro-
nized suction on one side-wall and blowing on the other. By this means, an
infinite-width test section 1s simulated. The tunnel 1is operated at a

slightly positive statiec pressure, to control leaks, and at ambient temper-
ature, to control the thermal boundary layer growth. This tunnel was used for
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all three studies of discrete-hole injection but has been disassembled and

rebuilt as the test rig for curvature effects.

Figure 7 shows a plan view schematic of the Qurvature Rig. It is a
closed-loop tunnel whose convex test surface is a segment of a clrcular arc.
The concave wall is set to a profile determined partly analytically and partly
by trial and error, to achieve a condition of uniform static pressure along
the convex working surface from the beginning of curvature to the end. Exper-
iments have shown that the static preseure is uniform, along the test sectionm,

to within 3% of the free-stream dynamic head.

Curvature induces secondary flows, which make accurate experiments diffi-
cult. A development program was conducted to reduce the secondary flows, with
good success. At present, the boundary layer flow on the curved test surface
does not show convergence worse than 2-1/2° at any location, in the worst flow
case. This was accomplished by installing axial fences along the curved sur—
face, 5 em from the side walls. These fences protrude beyond the boundary
layer, into the free stream, and isolate the side walls from the curved por-

tion of the test rig.

This apparatus has been used to evaluate the effects of curvature oo
shear stress, turbulence structure, and heat transfer rate. All Stanford data

pertaining to convex curvature have come from this piece of equipment.

The curved repion is formed of twelve individual calorimeter sections,
using the same design philosophy as used in the Discrete-Hole Rig, shown in
Fig. Bb. In the Curvature Rig, however, the entire curved surface was ma-

chined to a constant radius as a last fabrication step.

A third tunnel, of the same basic geometry as the discrete-hole test tun-—
nel, was built for studies of rough-wall behavior. The Roughness Rig was used
for the works of Healzer (1974) and Pimenta et al. (1979). 1Its surface con—
sists of a regular array of spherical elements, each 1.25 mm in diameter,
brazed together to form 24 segments of porous, rough, test wall. The porosity
and geometry are extremely uniform. The surface represents an idealized sand-
grain roughness on a permeable surface. The test surface is 2.4 m long and
0.5 m wide. The crests of the spheres forming the surface are all aligned on
the same plane. Transpiration flow is measured with hot-wire anemometer flow

meters installed into the header tubes, one flow meter for each plate segment.
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Throughout the Stanford program, velocities and turbulence quantities
have been measured using boundary layer pressure probes or hot-wire anemom—
eters. The objective has been to measure Stanton number within 0.0001 Stanton
number units over the entire range of conditlens. All of the test plates are
calerimetric in mature except the pre- and afterplates in the Discrete—Hole

Rig and the Curvature Rig; there, heat flux meters are used.

UNIFORM WALL TEMPERATURE

The baseline case for turbulent boundary layer heat' transfer is a smooth
plate of uniform temperature exposed to a steady two-dimensional flow of gas

at a temperature nearly equal to that of the surface.

Many early researchers studies this case. The earliest work in the
present program at Stanford was reported by Reynolds et al. (1958a). At
that time, variable properties effects were principally dealt with using
either a properties~ratio or a temperature ratio corrector based upon wall

and free stream values; hence the plotted data include the correction factor
(T"/T.,,)D"'o

Figure 9 shows the principal output data from this study. The recom-
mended correlation was

=0.4

T
St = 0.0296 Re;o‘z pi 40 (Tg) (12)

oo

The data shown agree with this correlation for free stream velocities be-
tween 43 and 127 fps, and values of x-Reynolds number between 9 X 10%  and
345 306,

Over the years since 1958, this correlation has stobd up well, and there

seems little reason to doubt it.
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VARIABIE WALL TEMPERATURE

If the temperature of a hot wall under a cold stream is increasing in the
flow direction, the heat transfer coefficient will be higher than would exist
on a wall of uniform temperature. Conversely, if the temperature of the wall
is decreasing in the flow direction, the heat transfer coefficient will be

lower.

Figure 10 illustrates the mechanism responsible for this result, when
there exists a small step, AT, in wall temperature. The effect of the step
in wall temperature {s much greater on 3T/3ylo than on (T,-Te); hence the
value of h increases. A gradual increase can be modeled as a sequence of
steps and results in an increase in h, while a gradual decrease in wall
temperature represents a sequence of steps down in temperature, and results in

low values of h.

For constant properties flow, with no buoyancy effects or chemical reac-
tion, the energy differential equation is linear in temperature- Hence,
arbitrary temperature boundary conditions can be treated by the method of
superposition, once the response of the boundary layer to a step in wall

temperature is known.

Reynolds et al. (1958b) presented a kernel function for superposition

treatment of variable wall temperature effects as:

-1
o (9710 /9

5t = |1 - (,_‘) (13)

Re

x

or
-0.4 _-1/9
St = 0.0296 Re 2% pr 0-4 Tv iow 2 s (14)
* x 1: x

The data which this analysis is intended to model are shown in Fig. 1l1. The
‘agreement is good except very near the step, say, for example, for a few (five
or six) boundary layer thicknesses. The data show that this kernel function
can be used for both thick and thin boundary layers, since boundary layer
thickness 1is properly accounted for by use of Sty Rey ° the Stanton number

expected for a uniform wall temperature at the same x-Reynolds number.
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Figure 12, taken from Whitten (1967), shows a comparison of measured and
predicted Stanton numbers for a rather complex situation. The free stream
velocity was held uniform, but the plate was subjected both to variable trans—
piration and to variable wall temperature. The transpiration varied linearly

with X according to

VD(X) &

] F(X) = 0.00005X (15)

oo

Simultaneously, the temperature of the wall followed the profile at the top of
the figure: wuniformly 50° F hotter than the gas from Rey = 0 ta Rey =
5.5 x 105, an abrupt step down to 23° F above gas temperature from Rey, =
5.5 x 10° to Rey =1 x 106, followed by a linear rise to about 65° F above
gas temperature. Measured values of Stanton number are shown by the squared
symbols, while the line through the squares represents the result of an integ-
ral analysis based upen the superposition kernel, and accounting for both the
effects of transpiration and variable wall temperature. The solid curve lab-
eled F =0 represents the Stanton number expectation for a uniform tempera-—

ture surface with no transpiration.

ACCELERATION EFFECTS

The Stanford work on acceleration effects began with Moretti and Kays
(1964), who reported substantial decreases in local Stanton number as a con-
sequence of acceleration of the main stream. Acceleration was measured in

terms of

b v e
2o 9

(16)

as suggested by examination of the momentum integral equation. The accelera-
tions examined consisted of some abrupt and some sustained accelerations. In
every case, the Stanton unumber decreased rapidly under acceleration. The

phenomenon was described as "re-laminarization”, in the literature of that
period, based upon the similarity to laminar behavior.

Subsequent work showed a complex interaction between acceleration, trans-

piration, and the initial conditions. Successful predictions were achieved
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with a finite-difference predictor program, however, by the expedient of

allowing the van Driest damping parameter, A%, to be a function of both p+
and v: . The form of this relationship is presented in the section on model-

ing .

The experiments which followed Moretti and Kays concentrated on flows
with constant K, as they represent potentially asymptotic (equilibrium)
boundary layers. Hydrodynamic investigations by Julien et al. (1969) showed
an asymptotic momentum thickness for each value of K. Following this lead,
flows were established for several different values of K, each with its
appropriate initial momentum thickness. By this means, a long run at equi-
librium was attained, and the self-preserving structure of the boundary layer
identified. Velocity and temperature profiles, and turbulence data, were

taken and used to develop the model functions for the predictor program.

Figure 13 shows the effects of moderate and strong acceleration on the
Stanton number for a smooth plate with no transpiration. Significant depres-
sion of the Stanton number was achieved, and the response {s orderly with in-
creasing K wvalue. The slope of the Stanton number curve approaches laminar
behavior (i.e., decreasing with Re:'s) for K values of 2.5 x 107%. This
corresponds to a slope of -1 for enthalpy thickness Reynolds number coordi-
nates, as in Fig. 13. This has been taken as the "relaminarization” wvalue
of K. The evidence is that turbulence still exists in the boundary layer,

however, in spite of the rapid drop in Stanton number.

It has been shown, by computer experiments, that this drop in Stanton

number can be predicted by letting a*,  the van Driest damping constant,
increase with acceleration, in effect thickening the laminar sublayer.

Figure 14 introduces transpiration to a boundary layer with moderate
acceleration, K = 0.77 x 1076, With no blowing, there 1is essentially no
effect on Stanton number, but with blowing at F = + 0.006, Stanton number is
increased (compared at constant enthalpy thickness Reynolds number). With
suction at F = - 0.002, Stanton number is decreased. These are opposite to

the separate effects: with no acceleration, blowing decreases Stanton number,

while suction increases it.

It appears that the two mechanisms, acceleration and blowing, act in

opposition to one another. One explanation might be that blowing tends to
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decrease the thickness of the sublayer, while acceleration tends to increase
ic.

Figure 15 shows the effect of initial couditions on the response of a
boundary layer to strong acceleration. The soiid line represents laminar

behavior.

DECELERATION

In contrast to the dramatic effecte of acceleration, deceleration causes
only small changes in the boundary layer behavior. Extensive tests have been
conducted with deceleration coupled with blowing and suction, by Blackwell
(1972) and Orlando (1974). Figure 16 shows data for a moderate deceleration
(m = - 0.15) with blowing up to F = + 0.004 and suction to - 0.004. The
solid lines are the correlations for constant-velocity flow, for the same
value of blowing. The data points for decelerating flows lie exactly along

the constant velocity correlation lines.

The conclusion one must draw from this is that there is.little or no
effect of a positive pressure gradient upon the thickness of the sublayer of
the boundary layer. In terms of the damping constant, this means that At s

relatively insensitive to positive values of the pressure gradient.

From the standpoint of integral solutions, deceleration has no signifi-

cant effect on the relationship between Stanton number and enthalpy thickness

Reynolds number.

FREE STREAM TURBULENCE

A representative collection of experiments on the effects of free stream
turbulence {s given by the works of Kestin (1966), Kearney et al. (1970),
Slanciauskaus and Pedesius (1977), Brown and Burton (1978), Bradshaw and
Simonich (1978), and Blair (1983).

Kestin reported no effect of turbulence level on a constant-velocity tur-
bulent boundary layer. Kearney et al. reported no effect on the constant-

velocity boundary layer and also no effect when a strong acceleration was
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applied to the flow (K = 2.5 x 107®) for a turbulence level of 4%. Slan-
ciauskaus and Pedesius found effects of 10%Z to 15% with turbulence intensities
up to 8%, but obtained a 20% increase when the turbulence intensity rose to
14%. Part of this Iincrease was attributed to changes in the main stream flow
as a consequence of the boundary layer growth. Brown and Burton confirmed
Kestin's results; but then, in 1978, Simonich and Bradshaw reported an in-
crease in Stanton number in response to free stream turbulence. This was

followed in 1983 by other work which also showed an increase.

Kestin concluded that the principal effect of inducing free stream tur-
bulence of 3.8%7 was to move the transition locarion upstream. He found no
effect on the fully developed turbulent layer. This study was confirmed by
Kearney et al. (1970), at Stanford. Their data are sghown 1in Fig. 17.
Kearney's test section consisted of a duct with a flat-plate floor and a top
wall which could be adjusted to produce either a uniform velocity flow or an
acceleration at constant K. A uniform velocity section followed the accel-
erating section. Data were taken in all threes sections of the plate, for a

low-velocity (6-18 M/s) flow in the tunnel.

Kearney's data for low (0.7%) and moderate (3.9Z) rturbulence show no
effect on Stanton number. The two data sets are well aligned with each other
and agree with the constant-velocity correlation in the approach section. The
STANS program was fitted with a turbulence kinetic energy closure and produced
results which matched the data: no effect on Stanton number for 4% turbulence.
Computer runs for 10%Z free stream turbulence, however, indicated a small in-

crease in Stanton number, about 5%.

Slanciauskaus and Pedesius tested over a wider range of turbulence levels
(1.1Z to 13.5Z) but tested only the constant-velocity case. Their data are
shown in Fig. 18. The effect of turbulence level is clearly discernible and
orderly, and suggests an effect approaching 20% on Stanton number. These were

the first data to suggest a significant effect due to turbulence.

Simonich and Bradshaw report larger effects, as shown in ‘Fig. 19. Their
data for heat transfer coefficient represent average values over a flat plate
of relatively large size, and it is possible rhat increasing the turbulence
caused a change in the location of the transiticon zone on the plate. One
would expect high turbulence levels to cause the transition location to move

upstream, raising the average heat coefficient on the plate by exposing more
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Transition on a rough plate, with blowing, 1s illustrated in Fig. 23.
Here, at a constant velocity of 9.8 M/s, Stanton number data were taken at
successively higher values of the blowing fraction, F = w"/G. The value of
the momentum thickness at transition is noted at the bottom of each tramsition
valley. The same value, about 400, obtains for rough surfaces with blowing,
as is used conventionally for smooth, impermeable surfaces. Thus, nelther
roughness nor transpiration affected the location of the transition, in these

coordinates.

Acceleration of the flow over a rough surface causes a different effect
than does acceleration over a smooth plate. Figure 24 shows data from Coleman
et al. (1976) for acceleration on a rough plate at comstant Kp = the accel-
eration parameter for rough surfaces. Since the fully rough boundary layer is
independent of velocity, it requires a different parameter to represent an

equilibrium state.

Coleman showed that the general form of this acceleration parameter

should be
P (18)

where L js a length scale of the surface roughness. Specifically, for the

deterministic surface he used:

B o B B (19)

where t, the length scale, was the radius of the spheres forming the sur-

face.

When a flow accelerates along the rough surface at constant K., Stanton
number increases, though not much. The increase is somewhat augmented by
blowing . Overall, the effects of acceleration and blowing on a rough wall are
much less important thap those effects on a smooth wall. This supports the
notion that both acceleration and transpiration act on the sublayer. Fully

rough turbulent boundary layers display fully turbulent characteristics as

near to the surface as measurements can be made, and act as though they have

no sublayer.
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SURFACE ROUGHNESS

Surface roughness increases both the friction factor and the Stanton
number on a surface with a turbulent boundary layer. Roughness is generally

appraised in terms of the roughness Reynolds number.

U_k
A T
Re, = — (L7)
g‘l’
where U, = friction velocity, —%—3 »
k., = equivalent sand-grain roughness of the surface,

8
v = LRkinematic viscosity.
When the roughness Reynolds number is less than 5, the flow is regarded

as smooth, when over 70, fully rough, and in between, transitionally rough.

Early work reported by Nikuradse (1950) showed the friction factor to be
independent of free stream velocity — a function of distance alone. It was
not surprising, therefore, that Moffat, Healzer, and Kays (1978) reported the
Stanton number to be Independent of velocity. Figure 21 shows Stanton number
data plotted as a function of the enthalpy thickness of the boundary layer,
made dimensionless by using the diameter of the particles forming their rough
surface. Healzer's surface was made up of spherical copper elements, brazed
together in a regular array toe form a porous surface with a deterministic
roughness: an idealized sand-grain surface. Friction factor tests showed this
surface to behave as a classical sand-grain surface, based upon Schlichting's

library of shapes tested (Schlichting, 1968).

If the Stanton number is a function of distance along the plate, it can
also be described as a function of enthalpy thickness alone —— independent of
velocity. The fully rough state is expected to have this property, and Fig.

21 {llustrates that the data behave as expected.

Less certain, however, is the effect of blowing. Blowing reduces the
surface shear stress, hence reduces the roughness Reynolds number, and might
be expected to produce a return to “smooth wall” behavior. Figure 22 shows
Stanton number data for a range of blowing values up to F = 0.008. The Stan-
ton number remains independent of velocity except, perhaps, for the runs at 32
fps (9.8 m/s), which deviate at high blowing. Thus a rough surface tends to
remain rough with blowing.
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Transition on a rough plate, with blowing, is {1llustrated in Fig. 23.
Here, at a constant velocity of 9.8 M/s, Stanton number data were taken at
successively higher values of the blowing fraction, F = E"XG. The wvalue of
the momentum thickness at transition is noted at the bottom of each transition
valley. The same value, about 400, obtains for rough surfaces with blowing,
as is used conventionally for smooth, impermeable surfaces. Thus, neither
roughness nor transpiration affected the location of the transition, in these

coordinates.

Acceleration of the flow over a rough surface causes a different effect
than does acceleration over a smooth plate. Figure 24 shows data from Coleman
et al. (1976) for acceleration on a rough plate at constant Kz, the accel-
eration parameter for rough surfaces. Since the fully rough boundary layer is
independent of velocity, it requires a different parameter to represent an

equilibrium state.

Coleman. showed that the general form of this acceleration parameter

should be

K = = = (18)

where L 1is a length scale of the surface roughness. Specifically, for the

deterministic surface he used:

x = L " (19)

where r, the length scale, was the radius of the spheres forming the sur-

face.

When a flow accelerates aleong the rough surface at constant K Stanton

number increases, though not much. The increase is somewhat aJ;manted by
blowing. Overall, the effects of acceleration and blowing on a rough wall are
much less important than those effects on a smooth wall. This supports the
notion that both acceleration and transpiration act on the sublayer. Fully
rough® turbulent boundary layers display fully turbulent characteristics as
near to the surface as measurements can be made, and act as though they have

no sublaver.
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Pimenta (1979) made an extensive study of the structure of turbulence in
a fully rough boundary layer flow, documenting the mixing length and turbulent
Prandtl number distribution.

TRANSPIRATION

Experiments describing the effects of transpiration on surface heat
transfer were first reported by Mickley, Ross, Squyers, and Stewart (1954).
These results were superseded by a second series of measurements In 1957
(Mickley and Davis, 1957), and followed by Kendall (1959), Favre et al.
(1966), and Torii, Nishiwaki, and Hirotu (1966), yho extended the range of
data and confirmed the trends reported by Mickley and Davis.

The Stanford program began in 1966 with a study of blowing and suction
through a smooth, uniformly porous plate, reported by Moffatr (1967). The data
are shown in Fig. 25 in terms of Stanton number versus x-Reynolds number for a

range of values of i"/G from -0.0076 to + 0.0096.

At /G of -0.0076, the boundary layer is in an asymptotic state due
to the strong suction. The boundary layer thickness does not increase in the
streamwise direction, and the Stanton number is both constant and numerically

equal to (- ;"/G).

The datra for u':"/[: = -0.0046 show the approach to asymptotic behavior.
For x-Reynolds numbers less than 105, the boundary layer is growing and the
Stanton number is decreasing until a condition is reached where Stanton number

and m"/G are equal. From that point on, an asymptotic state persists,

At high blowing, &"!G = +0.00955, the Stanton number decreases rapidly
towards zero and the boundary layer can be said to be "blown off” the surface.

Diffusive transport to the wall is essentially zero.

The effects of transpiration can be seen in a different light in Fig. 26,
which presents Stanton number as a function of m"/G for several different
Reynolds numbers. Figure 26 shows the limits of boundary layer behavior when
transpiration is present. Hote the approach to the suction asymptote, at
large suction rates, and the gradual approach to zero Stanton number at high

blowing .
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In many cases, x-Reynolds number is not an appropriate descriptor of
boundary layer condition. The preceding data for Stanton number are presented
in Fig. 27 in purely local coordinates: Stanton number versus enthalpy

thickness. For a constant properties flow,

P t-t
u o
B et Ol T O 20
AZ f P U (to - tw)dy 20
o

The enthalpy thickness, 4, has been found useful in correlating heat
transfer data under conditions of accelerating and decelerating flow, or when-

ever the boundary conditions change in the x—direction.

The cholce of constant m"/G along the surface was arbitrary. One could
equally well choose to test under conditions of a constant blowing parameter,

By, defined on the basis of the energy integral equation, shown below for a
two-dimensional, constant-properties, constant—velcoity flow on a flat plate

of uniform temperature.

a9
S5t + F - F (21)
becomes
as,
St(l + Bh) . Fx— (22)
where
A "
By = &st

Testing at constant Bh fixes the ratio between the rate at which energy
is diffused from the wall as heat transfer to the rate at which energy is car-
ried from the wall by the transpiration gas. When the ratio of these two 1is
fixed, the boundary layer behavior is different than when only one of the con-—
ditions is fixed.

Whitten (1967) conducted a series of tests with constant Bh along the
test plate and showed that the behavior of the boundary layer was essentially
the same, at a given point, regardless of whether that point had been reached
along a path of constant By, or constant F. This demonstration of purely
local behavior supports the integral approach to boundary layer approximation:
the upstream history evidently has only a secondary effect on behavior at a

point.
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It is desirable to have an estimator for the local effects of blowing.
Couette flow analysis predicts:
St - In(l + B)
~*£~x-- 23)

o e
x

where St 2 Stanton number with blowing.

In view of the number of assumptions required to arrive at Eqn. (23) from
a Couette flow analysis, it is a surprisingly accurate predictor. Figure 28
compares measured values of StlSto, at constant x-Reynolds number, to the
local value of f&n(l + B)/B. For all positive values of B, the agreement is

excellent.

Whitten (1967) used Eqn. (23) with the two—dimensional 4integral equation
to derive the equivalent form expressed in terms of the enthalpy thickness

Reynolds number, for smoothrsurface flows:

St

Stu Re

1.25 0.25
in(l + B) (1 +B)
[}-——i--{] (26)

Moffat et al. (1978) showed the local effects of blowing on a fully rough
boundary layer to be given by:

1.25

DISCRETE HOLE INJECTION

Discrete-hole injection and slot injection are alternatives to transpira-
tion. They are attractive from the standpoints of manufacturing and strength,

and offer flexibility in design which transpiration does not.

Injection rthrough large holes or slots opens up the possibility that the
injected fluid will be at a temperature different from the surface or the free
stream. The heat transfer problem thus becomes a three-temperature-potential
problem, with one degree of freedom not usually found in heat transfer prob-—
lems. This has been addressed by some workers in the field by assigning a
"surface effectiveness” to the Injection process and calculating the surface

temperature as a function of injection rate and injection temperature. This
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reduces the heat transfer problem to a two~potential problem. Typically, fol-
lowing the effectiveness approach, the heat transfer coefficient used in the
final calculation far downstream of injection is taken from standard correla-
tions with no injection, based on either x-Reynolds number or enthalpy thick-
ness Reynolds number. This method is surely adequate far downstream from the
Injection site, where the boundary layer has returned to normal hydrodynamics .
One must have some reservations, however, about whether or not this approach
is valid within a reglon of full-coverage film cooling, or even in the near-
downstream region, where the velocity and temperature distributions are far

from normal.

As a consequence of these reservations, the Stanford program has adopted
a different approach. The problem of calculating surface heat transfer rate
is postulated as a two-temperature-potential problem, with the heat transfer
coefficient containing both the effects of the fluid mechanics and the third
temperature potential. Actual gas temperature and actual wall temperature are

used for the driving potential for heat flow:

Q" = (T, =T, ..) (26)

where h = h (fluid mechanics, temperature level of injectionm).

The analytical basis for this approach was described by (hoe et al.
(1975). Briefly, the argument is as follows. Consider a surface with an
array of holes or slots injecting coolant at some fixed rate into a boundary
layer. Let all of the hydrodynamic conditions be independent of the tempera-
ture of the free stream, the wall surface, or the injection temperature. Now,
consider the energy equation applicable to this domain. For constant fluid
properties, the energy equatlon will be linear and superposition can be used.
Consider two basic data sets: one for the injected fluid at wall temperature
(6 = 1.0) and one for the injected fluid ‘at free-stream temperature (6 =
0.0). For each case, at every point on the surface, there will exist a cer-
tain heat transfer rate, and, for each case, a local Stanton number can be
defined. The Stanton numbers for 8 = 0 and 6 = 0.1 can be combined to
describe the Stanton number for any arbitrary value of 6, by the following

relationship:

Sty = St(°) + B{St(o) - Stu)} 27)
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where
t LT
f = '%EJ:_E_: (28)
0 =3
and
A
St(o) = wvalue of Stanton number when 6 = 0 .
St([) = value of Stanton number when 6 =1 .

In fact, the experimental values of ﬁ(o) exceed those of Stgjy so
that the equation is usually used as:

- - - 29
Sty St(o) B{St(o) St(l)} (29)

This process 1s illustrated in Fig. 29, which also shows the relationship
between the concept of the superposition approach and the concept of the adia-
batic wall effectiveness. The injection temperature which achieves an adia-

batic wall conditfon (St = 0) defines the effectiveness .

Regardless of which approach is wused, two pileces of information are
needed for each calculation: either h and 10 or h(l) and hegy. It can
be shown that hep)y from the superposition approach is the appropriate value
to use for h 1in the effectiveness approach, when calculating within the near

field of the jets.

Some questione arise when considering the use of low-temperature, low-
speed data in predicting performance in high-tedperature, high-speed flows.

First, what should be held constant in extrapolating to engine conditions:

[ R p vz Re
o0 00 _a or Jet ?
Pl © o u2 " Ve Rt 1ow

At present there is no definitive answer. Second, when considering a "set” of
data (1.e., one value of h and one value of n or one value of h(p) and
one of h(l})' how does one "hold constant” the hydrodynamics? Both methods
require that the two members of the set be appropriate for the same “predicted
case”, but the thermal- conditions for the two members are necessarily differ-
ent and will affect the hydrodynamics; thus they cannot be the same. Careful

experiments are required at scale and real conditions.
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The superposition approach defines an h value which is a function of
the injection rate and the injectant temperature, and two data sets are
needed, (St(l) and St(o}, to account for both thermal and fluid mechanic
effects. All of the Stanford data will be presented in this format.

Figures 30-32 show Stanton number data for three different injection
geometries: normal, 30° slant, and 30° slant with 45° yaw. Data are presented
for ©® =0 and O = 1.0 over a range of injection parameters including a
baseline with no injection. The injection parameter used is:

LU
= B2 (30)

The pitch-to-diameter ratio 1s 5 for all three figures, and the free-stream
velocity about 55 fps (l16.7 m/s). There is one difference in the test condi-~
tions which is relevant: the compound-angle injection data were taken with a
heated initial plate {i.e., thick thermal boundary layer), whereas the normal
and slant-injection data were taken with no upstream heating (i.e., a thin
thermal boundary layer). A thick thermal boundary layer responds differently
to injection than does a thin boundary layer, and the compound injection data
for 0 = 1.0 would be a few pergent higher (i.e., a few percent less favor-

able) had those tests been done with a thin thermal boundary layer.

The first data point (Jowest x—Reynolds number) in each set has no blow-
ing, and the open-circle data symbols represent the no-blowing behavior of the
test plate. Whenever the 6 = 1 data lie above the unblown data, the surface
heat transfer has been Increased even though wall-temperature fluid was injec-
ted. This increase represents one of the two effects of injection: increasing
the level of turbulent mixing within the boundary layer. If the injection
rate is too high, the early portions of the protected surface will actually
encounter an increase in heat transfer, even though the injected fluid is at

wall temperature, as a consequence of this increased mixing.

For each geometry there exists an optimum value of M for 8 = 1.0, in
the vicinity of M = 0.4 to M = 0.6, depending upon the geometry. If the

injection rate goes above the optimum, the Stanton number goes up.

Each data set presented here consists of twelve data points within the

full-coverage region, followed by six or more data points in the region down-
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stream of the full-coverage region--the recovery region. The recovery region

may be as important as the full-coverage region.

It can be seen from Figs. 30-32 that compound~angle injection reduces the
Stanton number to lower values than either slant or normal injectiom, but that

the recovery to flat-plate behavior is more rapid.

Figure 33 presents a direct comparison of slant-angle data (Crawford et
al., 1976) with compound angle (Kim, 1979). The thermal and hydrodynamic
entrance conditions of the test were substantially identical. The advantage
of compound-angle injection is found in the downstream portioan of the full-

coverage region and the early portion of the recovery region.

Figure 34 shows typical data for compound-angle .injection with P/D =
10.0 For a given amount of injected fluid, P/D = 10 offers much less ther-
mal protection. It appears that P/D = 10 increases the turbulent mixing

without providing a compensatory thermal benefit.

There are distinct problems involved in trying to model the heat transfer
distribution on a surface with a region of full-coverage film cooling followed
by a recovery region. The approach followed at Stanford has been to define
and measure the spanwise-averaged properties of the boundary layer and treat
the problem as pseudo-two-dimensional. This introduces some experimental
complexity, but has proven adequate for predicting most of the effects of
injection. The detalls of the model will be discussed in a later section,
along with an example of the agreement between predicted and measured Stanton

numbers .

SURFACE CURVATURE

Even though there were some warnings in the literature Iin the early
1930s, it was not until the work of Thomann (1958) that the boundary layer
heat-transfer community sat up and began to take notice of surface curvature -
as a significant variable. His results (Fig. 35) showed a 20% increase Iin
heat transfer for concave curvature and a comparable decrease for convex cur—
vature for supersonic flow. The increase for concave flows was attributed, in

part, to streamwlse vortices similar to the Taylor-Gortler vortices seen in
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concave laminar boundary layers. Mayle, Blair, and Kopper (1979) showed simi-

lar findings, In subsonic tests.

Simon et al. (1980) conducted an exhaustive study of strong curvature
(50_9g/r = 0.10) in combination with other effects: changes in Go_ggffs

changes in U free-stream acceleration changes in boundary layer maturity.

@y
They found that &, gg/r 1is not a strong factor in determining heat-transfer
behavior, for values between 0.02 and 0.10. This suggests that, once some
lower critical value i1s passed (perhaps 60.99/1: = 0.02), the boundary layer
no longer responds to further changes. The heat-transfer Stanton number was
only a weak function of free-stream velocity. A significant finciing was that,
when Stanton number was plotted against enthalpy-thickness Reynolds number
(R‘EAZ)' the data displayed a slope of =1 throughout the convexly curved
region. This has been taken to be the distinguishing signature of strong cur-
vature. Results from this study are shown in Figs. 36 and 37, which show the
same data in x-Reynolds, number and enthalpy-thickness Reynolds number. The
values of enthalpy-thickness Reynolds number were calculated from the Stanton

number data using the two-dimensional energy integral equation.

The strongest effect found was due to free-stream acceleration. Figures
38 and 39 show the combined effects of moderate acceleratiom with strong
curvature. These runs were conducted at constant K throughout the curved
region. The hydrodynamic boundary layers were at equilibrium thickness for
the proposed value of K ar the onset of curvature. 1t is noteworthy that
large effects were found even though the values of K used were not large
enough to have significantly affected a flat (i.e., uncurved) boundary layer.
Of particular interest is the effect shown in Fig. 39, where the slope is
-2 within the curve, for K = 1.25 x 10%. Acceleration at K = 3 x 107% 1is
known to result in a slope of -1 1in these coordinates, on a flat surface.
Emergence of the -2 slope suggests that curvature and acceleration act omn
different regions of the boundary layer, since theilr effects appear to be

additive.
Convex curvature was shown to retard, but not prevent, transition from a
laminar t& a turbulent boundary layer.

Figure 40 shows shear stress profiles from Gillis et al. (1980). Wall

shear drops immediately inside the curved region, and remains low throughout



Rev. BrMec. Rio de Janeiro, V.1X, n® 3 — 1987 197

the curve. The subsequent recovery region shows low shear stress (and heat

transfer) extending as far downstream as 20-50 boundary-layer thicknesses.

The recovery reglon is of importance in gas turbine heat transfer, be-
cause of the slow recovery. Slow recovery here means good thermal protection;

Stanton number is low and remains low in the recovery region for a long run.

FREE AND MIXED FREE AND FORCED CONVECTION

Experiments on high Grashof number, high temperature-difference, free
convection were reported by Siebers, Schwind, and Moffat (1983). These exper-
iment involved a large (3 m x 3 m), wvertical test plate operated at tem-
peratures up to 600°C in free convective and mixed convection ({i.e., with a

horizontal flow) up to 6 m/s.

Baseline tests in pure free and pure forced convection agreed with
accepted correlations within 2% over the range of existing correlations, and

mean velocity and mean temperature profiles also agreed with expectations.

Figure 41 shows free convection Nusselt numbers for Grashof number up
to 2 x 1012, the highest wvalue in the literature. Fiuid properties were
evaluated at “free stream” temperature, not at "film temperature” or any other
intermediate value. This collects the data very well, and only a very small
correction is needed, even for the very high-temperature data. In contrast,
had the data been reduced using fluid properties evaluated at the wall temper-

ature, a large correction would have been needed.

Figures 42, 43, and 44 show different aspects of the mixed convection
data. Figure 42 shows the average Nusselt number as a function of Reynolds
number and Grashof number. The average Nusselt number was calculated from 105
individual measurements, spread uniformly over the surface. However, transi-
tional and turbulent regions are all included in the average. ILines of con-
stant Gr/Re’ are shown demarcating the domains of pure free and pure forced
convection. If the ratio GrfRez is equal to or less than 0.7, the situa-
tion can be treated as pure forced convection, while for Grfﬂez > 10, pure
free convection correlations apply. Only between 0.7 and 10.0 is a "mixed-

convection” correlation necessary. In this region, one can calculate the
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average heat transfer by a combination of the appropriate expression for pure
free and pure forced convection given below:
3 i 3 1/3

hmixed = {hfree forced

(31)

The distribution of local h 1is illustrated in Figs. 43 and 44. Each
figure shows the distributfon of h for five different combinations of wall
temperature and free stream veloclity. Fach of the two asymprotic states has
ite characteristic distribution of h. Pure free convection shows uniform
h everywhere on the plate, while pure forced convection shows three regions:
laminar, transitional, and turbulent. There is, in both composites, a smooth

transition between distributions.

UNSTEADY EFFECTS

One characteristic of the flow field on turbine vanes and blades is a
periodic, unsteady component related to blade passing frequency. It has often

been suggested that this unsteady behavior will affect heat transfer.

The effect of pulsating flow on heat transfer In tubes was reviewed by
Yen (1977), who found, of 52 references, approximately 1/3 claiming an in-
crease in heat transfer coefficient, 1/3 claiming a decrease, and 1/3 report-
ing no effect. Yen's experiment consisted of pulsing a turbulent tube flow at
a frequency close to the bursting frequency predicted for the time-averaged
Reynolds number. A very small decrease in h was found-—-less than 11% in any

case.

Feller (1964) reported that 100 Hz pulsations in the flow velocity in-
creased the heat transfer coefficient on a flat plate, but only by causing the
laminar/turbulent transition zone to move upstream, exposing more of the plate
to turbulent flow. This effect is the same as Kestin reported for the effect

of free stream turbulence.

There 1s, at present, no clear evidence that periodic variation in the
free stream velocity alters the heat transfer except by relocating the transi-
tion Iine.



Rev. BrMec. Rio de Janeire, V | X, n® 3 — 1987 199

SECONDARY FLOWS

End-wall surfaces in vane and blade rows are subject to pressure gradients
normal to the main stream flow. This results in the bounding streamline for
the sublayer having a different direction than the free stream. There is, at

present, no systematic study of this problem.

The difficulties are well illustrated by the results reporied by Georgieu
et al. (1979). They show contours of constant "h" on the end wall of a
turbine cascade and discuss three correlation schemes: tracking a potential
streamline, defining a bulk average, and chordwise application of the energy
integral equation. None was successful within 50% in correlating the heat

transfer.

large lateral variations in heat transfer coefficient were reported,
about 1.6 to ! across the passage, with high values near the suction side and
low values near the pressure side. The distribution could be altered by free

stream turbulence and by boundary layer thickness.

MODELING

The final objective of heat transfer experiments is to develop the abil-
ity to predict. Accordingly, 1t is as important to extract the modeling

information as it is to measure heat transfer.

The principal tool for prediction, in the Stanford Heat and Mass Transfer
Program, is the STANS program (Crawford & Kays, 1976), which uses the Prandtl
mixing length with a modified van Driest damping parameter, &%, This augmen-
ted mixing length concept allows calculation of the distribution of the mean
velocity, including effects of pressure gradient and blowing. Heat transfer
calculations can be made only after the proper mean velocity profiles have
been deduced. The calculation of heat transfer rate also requires data con—
cerning the turbulent Prandtl number. Thus the principal modeling efforts are

aimed at A" and Prqp In the Stanford data.

Present research seems heading towards use of closures based on turbu-

lence iIntensity, and {t seems only prudent to store data concerning the
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turbulence intensity, as support for future models. Most of the recent data

sets lnclude turbulence measurements.

The mixing length can be thought of as having three different zomes: the

sublayer region, the y-propertional region, and the outer regiomn.

Predicting boundary layer behavior with a finite-difference program in~
volves one in many small but important details. The only way to transmit all
of the relevant detail is to transmit a copy of the actual computer code. The
comments which follow treat only the main physical elements: the modeling of
AT and Pre. These represent the proper physical inputs for a general mixing
length approach for slowly varying boundary condition. The details of how to
ensure stability, convergence, and proper response to abrupt changes in bound-
ary condition can be found in the STANS5 program, described by Crawford and
Kays (1976).

The undamped mixing length region, where £ = 0.41 y, seems to be a
generally valid concept. Data from accelerating, decelerating, smooth, rough,
and transpired boundary layer all show the same feature: a region wherein £ =
0.41 y. Figure 45 shows mixing length data extracted from decelerating flows
with blowing and suction. Similar results were found in accelerating rough-

wall flows with and without blowing.

The damped region, near the wall, proposed by van Driest, can be greatly

+
extended in uvtility 1f the parameter &% 1is allowed to be a function of Vo

and p'.

A+ o 25 (32)

+ + + 3\ ]
a |:v + b(p fl+ev )J +1
o o

> 0.0, else a =19.0,

where a=17.1 if v

b

4.25 1f p < 0.0, else b= 2.9,
c =10.0 1f p 2 0.0, else ¢ = 0.0.

Equation (32) is suitable for all smooth-wall work and has been shown
(Kays and Moffat, 1975) to be successful in predicting combinations of accel-

eration and blowing, as well as decelerations and flat-plate flows. Figure 46

shows A" versus p+ and ug from Eqn. (32).
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The outer region is characterized by:

Turbulent Prandtl number data for a smooth, flat-plate flow with blowing
and suction are shown in Fig. 47. The value tends towards 1/Pr at the wall
and 0.5 in the outer region. The mid-range value is approximately unity-
Either of the following equations seems adequate (Kays and Moffat, 1975).

Pr. = 1.43 - 0,17 Hl/4 (34)

(but  Pr, should not be less than 0.86)

or
Pr, = 0.90 + 0.35 [1 + cos(ny*/37)  for y* <37 (35)
X6
+ 0.99
b, = 880 5 BBy Kb
i 150;22

Prt = 0.60 , y 2

where X = 0.084 and x = 0.41.

Rough walls have been studied by Pimenta (1979) and Ligrani (1979). The
mixing length follows the original Prandtl form in the undamped region, but an
interesting region lies near the wall. Here, instead of approaching zero, as
conventional wixing-length theory dictates, rough—-wall boundary layers tend
toward a non-zeroc value at the wall. [Ligrani (1979) gives, for fully rough

flows:

R-e‘

B Bl I:y + 0307 k (1 - E“):I (36)
K

where k., = equivalent sand-grain roughness,
Rek = roughness Reynolds number, utks/“ §
Reﬁ = value of roughness Reynolds number at which the fully rough

gtate 1is attained for the surface in question.

Since Rey = Rep for fully rough flow, the mixing length remains non-zero at
the wall.
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When a rough wall with transpiration is encountered, Ligrani recommends:

v u
£ = 0.1y +0.0307 k_ (1+16.0 " EE—u—T) (37)
T T

where: kg = eguivalent sand-grain roughuess,
=. 1.0 if Rek > 55,
= Rek/SS.O if Rék S 55.0,
v = blowing velocity,
u = ghear velocity, J‘g:?;?ﬁ .

u! = shear velocity at the onset of fully tough behavior.

Equation (37} simulates the experimentally obtained result, that blowing seems

to enhance roughness——not suppress it.

For transitionally rough flows (flows where Rek is less than 55), some
damping of the mixing length 1s observed. The damping parameter, A; 7 La

given by Ligrani as:

& = A0 - gRe ) (38)
where the B function depends upon the angularity and regularity of the

roughness elements in a complex manner.

One of the most identifiable characteristics of roughness 1s the change
it causes in the mean velocity distribution expressed in "inner coordinates”,
ft.e., ot versus y+. The lag region of a rough-wall profile is depressed
below the smooth-wall line by an amount which can be correlated with the
roughness Reynolds number., A frequently used description for the rough wall

profile is

ut o= EAn(y/k ) + B (39)

where B 1is a function of Re(k)' Figure 48 shows the variations of B with
Re{k) for sand-grain roughness (Nikuradse, 1950) and for the deterministic
surface used in the Stanford program. The asymptotic value for fully rough
behavior is the same for both surfaces——the difference lies in the transi-
tional range. There is an abrupt change in B for the deterministic surface
and a gradual change for the sand-grain roughness. This is believed to re-
flect the fact that there is a range of sizes of particles in the sand-grain
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surface, and a range of geometries, while the deterministic roughness is "all

one kind".

Discrete-hole injection raises an entirely new set of modeling problems,
since the real flow is grossly three-dimensional. The approach followed at
Stanford has been to reduce the three-dimensional problem to a two-dimensional
one by spanwise averaging, and then to define the mixing length and turbulent

Prandtl numbers based upon the spanwise averages.

Figures 49 and 50 show mean velocity and mean temperature profiles at
several spanwise locations across the test plate, within the full-coverage
region. When the velocity profiles are averaged, ome can apply momentum con-
servation and the definition of mixing length to the averaged profiles and de-
duce an apparent distribution of the mixing length, £. The outcome of such
an exercise is shown in Fig. 51. The peak in deduced mixing length reflects
the augmented turbulent wmixing caused by the injected jets. An idealized
model of these results is shown in Fig. 52. The location and magnitude of the
peak in mixing length are the two parameters which must be extracted from data
to allow prediction of the results for different wvalues of the injection

parameter, M, and different injection geometries.

The models described above, for mixing length and turbulent Prandtl num—
ber, can be put into the STAN5 computer program and will permit predictions to
be made of the heat transfer under combinations of conditions never actually
tested. To test the validity of these predictions, it is necessary to compare

predictions with measurements for those situations where data do exist.

In the last four figures, predictions and measurements will be compared
to demonstrate the extent to which agreement has been established. Not all of
the tested cases are shown here--for example, acceleration on a flat plate is
well predicted by these models, but not shown here. Modeling of convex and
concave flows and of mixed convection has not progressed to the same level as

for the simpler cases, and will not be treated here.

Figure 53 shows measured and predicted values for Stanton number as a
function of the enthalpy-thickness Reynolds number, using data from two pro-
grams reported here. These data describe a flat, smocoth plate in a constant-

velocity flow, with the wall at uniform temperature.
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Figure 54 shows a comparison of measured and predicted Stanton numbers
and friction factors for a smooth-wall flow subject to a mild deceleration,
with and without transpiration through the wall. Except for the initial data

point on each curve, the agreement is excellent.

Rough-wall predictions are shown in Fig. 55, compared with data with and
without blowing through the rough surface. The conditions represented here

are in the "fully rough” domain.

The last figure, Fig. 56, shows the predicted and measured Stanton num—
bers for discrete-hole injection (30° slant angle) using the augmented mixing-

length model described earlier.

Conclusions

The accuracy of our ability to predict heat transfer depends on the
breadth and accuracy of the data on which the modeling programs are based. At
present, the smooth-wall and rough-wall situations seem in relatively good
order, including the effects of streamwise acceleration and deceleration, as
well as transpiration. Modeling of discrete-hole injection is still in its
infancy, but results to date indicate that even the mixing-length approach can
be made to work well. Thus it appears certain that some form of 2-D model-

ing will be devised.
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Nomenclature

Thermal diffusivity.

Dawping factor for mixing length, Eqn. (14).

Damping factor for mixing length on a rough. wall, Eq. (34).
Blowing parameter based on friction, n"/(G Cf/Z}.

Blowing parameter based on heat transfer,

§
Pressure gradient parameter, ?l g;
o

Specific heat at constant pressure.

Friction coefflcient.

Location of a step in wall temperature, Eqn. (16).

Eddy diffusivicty for heat.

Eddy diffusivity for momentum.
oo t_
plU
Enthalpy thickness, T (t
o wm =\ g

t
o0

-t

o
Displacement thickness, f (1 - p—pg—) dy .
o

) dy .

LB -]

pU pU
Momentum thickness U 1 - ST
’ o pm -] ( pw -]

Blowing fraction, F = n"/G.
Proportionality constant, mass/force.
Free-stream mass velocity, o U_.
Shape factor, & /&, .

I ~Z
Mixing-length constant, & = 0.41.

Equivalent sand-grain roughness.

du

v
Acceleration parameter, - o
Uﬂ

-]
Acceleration parameter for a rough wall, E_ = °

) dy -

Boundary layer thickness to u/ue = 0.99.

m"/G St.

du
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Mixing length, Eqn. (3).

Acceleration parameter used in Eqn. (l1).

Mags flux injected through the surface.

Kinematic viscosity.
Pressure.
Prandtl number.

Turbulent Prandtl number.

Pressure gradient in the streamwise direction.

v

Ty
pUL

Pressure gradient parameter,
Density of injectant.

Density of free stream fluld.
Temperature of the wall.
Temperature of the free-stream.
Wall shear stress.

Velocity of free stream.
Velocity in the x-direction.
Friction velocity, f‘E:?:?E i
Velocity in the y-direction.
Velocity of injectant.

Blowing parameter, vofu .

T
Kinematic viscosity.

Roughness Reynolds number, utks/V-
Roughness Reynolds
x-Reynolds number,

U x/v .
0

Enthalpy thickness

Reynolds number,

dp
G -

number for onset of fully rough flow, Eqn. (32).

U’J.\zjv &

Momentum thickness Reynolds number, u_&zfv .

4 constant in Eqn. (33).
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FACTORS AFFECTING THE HEAT TRANSFER COEFFICIENT
REYNOLDS NUMBER, MACH NUMBER, GEOMETRY

PLUS
WALL. TEMPERATIIRE TRANSPIRAT ION
ACCELERATION DISCRETE TNJECTTON
TECELERAT 10N SURFACE CURVATURE
TURBULENCE UNSTEADTNESS
ROUGHNESS SECONDARY FLOW

Fig. 1. A list of important factors affecting heat transfer
on blades and vanes of gas turbines.

X-MOMENTUM DIFFERENTIAL EQUATION
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dp
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TURRULENCE CLOSURE

PAANDTL MIXING LENGTH: ¢, = 12 H?Uf

o= 0.4l y [1 - exp{- v’;n+}]

A = f évu L P, roughness, curvature}

Fig. 2. A representative differential equation and boundary
conditions for x-momentum.
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ENERGY DIFFERENTIAL EQUATION

' 3 El d
I_,%-]J%-I-VT*%-E(EHQHJJ = )

ay
witH: UV, ey, a, T(x,n)‘ T(x,AJ* T(o,v)

Y1ELD: ST = St £Domain, Ver. DisT., FLu. Pro., TBC, TIC

TURBULENCE CLOSURE

TurBu ENT PranpTy No.: | (Hé;%

+
Prr = F &y, v: , P!, ROUGHNESS, CURVATURE}

Fig. 3. A representative differential equation and boundary
conditions for energy.

X-MOMENTUM INTEGRAL FORMS
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Fig. 4, The integral equation for x-momentum as a guide to
experiments with variable boundary conditions.
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Y. 5-PASS CROSS-COUNTER 17+ TRANSPIRATION HEADER
HEAT EXCHANGER 14, TRANSFIRATI1ON HEAT EXCH
6. COOLING WATER 15. TRANSFIRATION BLOWER
7. BOURTARY LAYER TRIP D
8, TEST SECTION

Fig. 5. Schematic of tunnel HMT-1, used for smooth-wall studies with
transpiracion, variable velocity and variable wall temperature
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Fig. 6. Schematic typical of tunnels HMT-2 and HMT-3 used for rough-wall
studies and for discrete-hole injectionwith various hole patterns.
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Schematic of tunnel HMT-4, used for studies of curvature effects
with and without discrete-hole injection.
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Examples of test-plate construction for the porous plate (Ba)
and the discrete-hole (8b) test surfaces used in tunnels 1-4.
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Fig. 13. Effects of moderate & strong acceleration on smooth-wall boundary
layer; no transplration, uniformwall temp. {(Kays & Moffat, 1975).
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Fig. 14. Effects of moderate acceleration on smooth-wall boundary layer with
transpiration, uniform F; uniform wall temp. (Kays & Mcoffat, 1975).
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Fig. 15. The effect of the initial condition of the boundary layer on its
response to strong acceleration (Kays & Moffat, 1975).
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Fig. 16. Evidence that deceleration does not alter the relationship be-
tween Stanton number and enthalpy thickness Reynolds number.
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Fig. 4/. Stanton number vs. enthalpy thickness Reynolds number for trans-
piration through a smooth plate of uniform temp. (Moffat, 1967).
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Fig. 29. Illustration of the superposition theorem and its relationship to
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Fig. 31. Stanton no. vs. x-Reynolds no. for 30° slant-hole injection; 8 =
0.0 and 6 = 1.00, unheated starting length (Crawford et al., 1975).

T I T T

- e . - #8=0 Compound =

5 4 st PO

.. / Ug =16 9mrmc
- Y _ RUN ] [}
E t/l 03 soerr o N

i % a D07117T-1 B840 © ]
. ; 1 " WOTUTT-Z 0T | 1
- & -1 = ooT2I7T-1 091 © T
L - - eor2i77-z 080 | -
A 0829TT-1 124 O
5 F [ LI o i
= AOB2TT-2 12 .
A A 1 L A L A L
ot 2z s w0o* ] s
LT LY
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45° skew), 8 = 0.0 & 1.00, heated starting length (Kim, 1978).
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Fig. 36. The effect of strong convex curvature on heat transfer for

8, ss/R = 0.10, U_'=14.8 m/s, K= 0.0 (Simon et al., 1980)
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Fig. 38. The combined effects of acceleration and convex curvature on
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Fig. 45 Prandtl mixing-length values deduced for smooth-plate flows with
deceleration and transpiration (Kays and Moffat, 1975).
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Fig. 47 Turbulent Prandtl number values for smooth, flat-plate flows with
suction and blowing (Kays and Moffat, 1975).
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Fig. 49, Velocity profiles at different spanwise locations, 30° slant-angle
injection, M = 0.39. (Crawford et al., 1976).
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Fig. 50, Temp. profiles at different spanwise locations with full-coverage
film cooling, 30° slant-angle injection, 6 = 0.16, Crawford, 1976).
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Fig. 53. Comparison of predicted and measured Stanton numbers for flat-
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factor distributions on a smooth, flat plate with deceleration
and blowing.
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