VOL. IX . N.º 4 - 1987

ISSN 0100-7386

REVISTA BRASILEIRA DE CIÊNCIAS MECÂNICAS

PUBLICAÇÃO DA ABCM ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS MECÂNICAS A Revista Brasileira de Ciências Mecânicas é uma publicação técnico-científica, da Associação Brasileira de Ciências Mecânicas. Destina-se a divulgar trabalhos significativos de pesquisa científi ca e/ou tecnológica nas áreas de Engenharia Civil, Mecânica, Metalur gia, Naval, Nuclear e Química e também em Física e Matemática Aplicada. Pequenas comunicações que apresentem resultados interessantes obtidos de teorias e técnicas bem conhecidas serão publicadas sob o título de Notas Técnicas.

Os Trabalhos submetidos devem ser inéditos, isto é, não devem ter sido publicados anteriormente em periódicos de circulação nacio nal ou internacional. Excetuam-se em alguns casos publicações em <u>a</u> nais e congressos. A apreciação do trabalho levará em conta a originalidade, a contribuição à ciência e/ou tecnologia, a clareza de exposição, a propriedade do tema e a apresentação. A aceitação final é da responsabilidade dos Editores e do Conselho Editorial.

Os artigos devem ser escritos em português, ou espanhol ou em inglês, datilografados, acompanhados dos desenhos em papel vegetal, em tamanho reduzido que permita ainda a redução para as dimensões da Revista e enviados para o Editor Executivo no enderego abaixo.

> Editor Executivo da RBCM Secretaria da ABCM PUC/RJ - ITUC Rua Marquês de São Vicente, 225 - Gávea 22453 - Rio de Janeiro, RJ - Brasil

A composição datilográfica será processada pela própria secretaria da RBCM de acordo com as normas existentes.

The Revista Brasileira de Ciências Mecânicas(Brazilian Journal of Mechanical Sciences) is a technical-scientific publication, sponsored by the Brazilian Association of Mechanical Sciences. It is intended as a vehicle for the publication of Civil, Mechanical, Metallurgical, Naval, Nuclear and Chemical Engineering as well as in the areas of Physics and Applied Mathematics. Short communications presenting interesting results obtained from well-known theories and techniques will be published under heading of the Technical Notes.

Manuscripts for submission must contain unpublished material, i.e., material that has not yet been published in any national or international journal. Exception can be made in some cases of papers published in annals or proceedings of conferences. The decision on acceptance of papers will take into consideration their originality, contribution to science and/or technology. The Editors and the Editorial Committee are responsible for the final approval.

The papers must be written in Portuguese, Spanish or English, typed and with graphics done on transparent white drawing paper in reduced size in such a way as to permit further reduction to the dimensions of the Journal, and sent to the Executive Editor at the following address.

> Executive Editor of RBCM Secretary of ABCM PUC/RJ -_ITUC Rua Marquês de São Vicente, 225 - Gávea 22453 - Rio de Janeiro, RJ - Brazil

The final typing will be done by the secretary of RBCM according to the journal norms.

NEVISTA BRASILEDRA DU CLENCLAS DECÁNICAS Vol. IX, nº 4 - Nov. 1987	Associação Brasileira de Ciências Mecân MEMBROS DA DIRETORIA DA ABCM Luiz Bevilacqua (Presidente) Hans Ingo Weber (Vice-Presidente) Augusto Cesar Galeão (Secretário Geral) Mauro Sergio Pinto de Sampaio (Secretário) Maurício Nogueira Frota (Diretor de Patrimònic	i :as
EDITOR RESPONSÁVEL Rubens Sampaio	METODOLOGIA AUTOMATIZADA PARA O CONTROLE GEOMÉTRICO DE SUPERFÍCIES DE PRECISÃO	251
EDITOR EXECUTIVO J. M. Freire	Armando Albertazzi Gonçalves Jr. UFSC – Departamento de Engenharia Mecânica Laboratório de Metrologia e Automatização	
CONSELHO EDITORIAL	DIFFUSION PROBLEMS WITH GENERAL TIME-DEPENDENT COEFFICIENTS	269
Abimael F. D. Loula Arthur J. V. Porto Berend Snoeijer Bernardo Horowitz C. S. Barcellos D. E. Zampieri Duraid Mahrus	 R. M. Cotta – Membro da ABCM Instituto Tecnológico de Aeronáutica Departamento de Energia M. N. Özisik North Carolina State University Mechanical and Aerospace Engineering Department 	
E.O. Taroco Aliano F. Venâncio Filho F. E. Mourão Saboya Giulio Massarani Guillermo Creuss Hans Ingo Weber	UM MODELO MATEMÁTICO PARA O ESTUDO DE UM FLUXO ESTRATIFICADO Armando M. Awruch Universidade Federal do Rio Grande do Sul Departamento de Engenharia Civil	293
Henner A. Gomide Jan Leon Scieszko Jerzy T. Sielawa J. J. Espíndola Liu Hsu Maurício N. Frota Miguel H. Hirata Nelson Back Néstor Zouain Nivaldo L. Cupini O. Maizza Neto Pedro Carajilescov Sergio Colle	VIABILIDADE DA ANÁLISE TÉRMICA EM ESCALA DO PRIMEIRO SATÉLITE BRASILEIRO Fernando Manuel Ramos Instituto de Pesquisas Espaciais Pedro Carajilescov – Membro da ABCM PUC/RJ – Departamento de Engenharia Mecânica	311
n an a' na an 💳 Na Art Andre an Anna Anna Anna		

A REVISTA BRASILEIRA DE CIÊNCIAS MECÂNICAS É PUBLICADA COM O APOIO:

MCT - CNPq - FINEP

ANÚNCIOS NA RBCM

Qualquer solicitação de anúncios na revista deverá ser encaminhada ao Representante exclusivo:

RIMTO COMUNICAÇÕES PUBLICITÁRIA LTDA.

Rio: Rua Conde de Bonfim, 370 Grs. 502/5/6/7/9 Tels.: 284-5842 (R) e 284-4920

SP: Rua Cel. Xavier de Toledo, 71 Grs. 602/3 - Tel.: 37-5252

DF: Shin QI 10 Cj. 7 - C/10 - Tel.: 577-2781

Formatos: com margem 12,5 x 19,9 – sangrando 15,5 x 22,0

Todo o material deve ser fornecido pelo anunciante. Fechamento: 30 dias antes do mês da circulação. Circulação: Fevereiro – Maio – Agosto – Novembro. Distribuição: Para todo o país.

AGRADECIMENTOS

A Direção da Revista Brasileira de Ciências Mecânicas agradece a contribuição de todos os revisores que se empenharam para a boa apresentação dos trabalhos publicados durante este ano de 1987:

> Álvaro Toubes Prata, UFSC Angela Ourivio Nieckele, PUC/RJ Antonio Mac Dowell de Figueiredo, COPPE/UFRJ Augusto César Galeão, LNCC/CNPg Carlos Alberto de Almeida, PUC/RJ Carlos Alberto Schneider, UFSC Carlos Telles, COPPE/UFRJ Clóvis Sperb de Barcellos, UFSC Fernando Venâncio Filho, PROMON Jorge Guilherme S. Patiño, PUC/RJ José Alberto dos Reis Parise, PUC/RJ Leonardo Goldstein Júnior, UNICAMP Luís Fernando Alzuguir Azevedo, PUC/RJ Luiz Bevilacqua, PUC/RJ Nisio de Carvalho L. Brum, COPPE/UFRJ Paulo Murillo de Souza Araújo, PUC/RJ Raúl Antonino Feijóo, LNCC/CNPg Rogério Martins Saldanha da Gama, LNCC/CNPg Sérgio Colle, UFSC

Announcement and Call for Papers

FIRST WORLD CONFERENCE

ON

EXPERIMENTAL HEAT TRANSFER, FLUID MECHANICS AND THERMODYNAMICS

September 4-9, 1988 Dubrovnik, Yugoslavia

The objectives of the Conference are to bring together the experimental researchers and industrialists active in the areas of thermal and fluid science and engineering, to exchange their expertise and experiences in many research areas with cooperation and friendship, and to further stimulate their research activities. All participants will also have an opportunity to get informed on:

- advances in basic phenomena of heat transfer and fluid flow through conventional and sophisticated experiments
- state-of-the-art in experimental techniques and instrumentation
- innovative applications of research results through cross--fertilization of ideas from conference participants of various disciplines
- validity of experimental results in many fields
- definition of needs for further measurements
- experience gained and lessons learned from building test facilities and reducing test data

Papers dealing with <u>experimental work</u> together with theory, analysis and numerical studies on all aspects of <u>heat transfer</u>, <u>fluid mechanics</u> and <u>thermodynamics</u> will be considered. Also, <u>papers analyzing original or existing</u> <u>experimental data together with theory or numerical results will be accepted</u>.

The Conference Scientific Committee (made up of leading world authorities and experimentalists in heat transfer, fluid mechanics, and thermodynamics) is in charge of approving the acceptance of papers and final conference program.

Deadlines

-	Nov.	1,	1987	Three copies of up to 1,000 word abstract.	
-	Dec.	1,	1987	Notify abstract acceptance	
-	Jan.	15,	1988	Full-length paper due	
-	Mar.	15,	1988	Notify paper acceptance	
2	Apr.	15,	1988	Author-prepared mats due	

Send abstracts and further inquiry to: Professor Paulo Roberto de Souza Mendes, Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, CEP 22453, Rio de Janeiro, RJ, BRASIL.

2° DINAME

SEGUNDO SIMPÓSIO SOBRE SISTEMAS DINÂMICOS DA MECÂNICA PROBLEMAS DINÂMICOS EM MÁQUINAS E ESTRUTURAS

CHAMADA DE TRABALHOS

Período: 29 de fevereiro a 04 de março de 1988

Local: Campos do Jordão em hotel a ser definido

Objetivos: . Congregar os pesquisadores brasileiros na área de Dinãmica de Máquinas, Equipamentos e Estruturas para intercâm bio de conhecimentos e experiência.

> . Consolidar um Comitê da Associação Brasileira de Ciências Mecânicas - ABCM, nesta área.

> . Integrar os participantes com pesquisadores estrangeiros presentes no evento.

. Apresentar experiências e problemas de caráter aplicado de origem industrial integrando os engenheiros, docentes universitários e pesquisadores de centros de pesquisa presentes.

Endereço apra correspondência:

Coordenação Geral GEPROM - Laboratório de Projeto Mecânica / UNICAMP Caixa Postal 6051 13081 - Campinas, SP Tel.: (0192) 39-1495 Telex: (019) 1150

EVENTOS

CADCOMP 88 - International Conference on Computer Aided Design in Composite Material Technology. 13-15 Abril 1988, Southampton Univ., UK.

CMWR 88 - Computational Methods in Water Resources. 13-17 Junho 1988, MIT, Boston, USA.

BEM 10 - Boundary Element Method Conference. 6-9 Setembro 1988, Southampton University, UK.

ASE 88 - International Conference on Applications of Supercomputers in Engineering. 19 21 Julho 1988, Aachen University, West Germany.

METODOLOGIA AUTOMATIZADA PARA O CONTROLE GEOMÉTRICO DE SUPERFÍCIES DE PRECISÃO

Armando Albertazzi Gonçalves Jr.* UFSC – Departamento de Engenharia Mecânica Laboratório de Metrologia e Automatização

RESUMO

Este trabalho descreve uma metodologia não convencional para medir erros geométricos de superfícies de precisão. São apresentados resultados da medição de planicidade de blocos padrão. Este método é extendido para medição de paralelismo, ortogonalidade, constância de afastamento e angular entre superfícies de precisão planas ou quase planas.

ABSTRACT

This work presents a non-conventional methodology to measure geometric errors of precise surfaces. There are presented results of a length gauge surface flatness. This method is extended to measure paralelism, ortogonality, thick and angular constancy between flat or almost-flat precise surfaces.

^(*) Prêmio Yehan Numata 1986 como melhor trabalho em Mecânica de Precisão no período (junho/85 a junho/86).

INTRODUÇÃO

Medições de propriedades de superfícies de precisão, tais como: planicidade, paralelismo, ortogonalidade, constância de afasta mento, etc., com elevada precisão, constitui um problema de difícil solução dentro do controle geométrico. Métodos convencionais pratica mente inexistem ou são caracterizados por grande morosidade e rare feição de informações. A medição de constância de afastamento em blo cos padrão (BP) é um exemplo clássico, onde além da retroação e desgaste provocado pelo contato mecânico dos apalpadores, o processo normalizado é bastante metódico e só fornece informações em cinco pontos notáveis, com precisão raramente melhor que 0,02µm.

Este trabalho apresenta um sistema não convencional, completa mente automático, para efetuar o controle geométrico de superfícies planas ou quase planas, com elevada precisão. Foi inicialmente idealizado para medição de planicidade em BP, onde são requeridas precisões melhores que 0,02µm. Porém, pode ser facilmente extendido para outras aplicações tais como: constância de afastamento, ortogonalida de, paralelismo e constância angular. Dispensa a intervenção do operador e efetua medições absolutamente sem contato ou "colagem" de su perfícies.

O sistema dispensa o uso de componentes ópticos de precisão e utiliza um padrão para compensar os erros sistemáticos provocados <u>pe</u> las aberrações ópticas.

São apresentados aqui seus princípios, forma de operação, com ponentes básicos para medição de planicidade, paralelismo, ortogonalidade e constância angular. Resultados da aplicação desta metodologia na medição de planicidade de BP são apresentados.

INTERFERÔMETRO DE MICHELSON

O interferômetro de Michelson possui largas aplicações na metrologia [l a 3]. Consiste basicamente de um divisor de feixe e um par de espelhos, como mostrado na figura la. O divisor separa o feixe original em duas componentes: a primeira segue em frente e é refletida de volta pelo espelho A, e na volta, desviada lateralmente, atingindo o anteparo. A outra componente é desviada para a direita pelo divisor e atinge o espelho B, sendo refletido de volta para a direção do anteparo. Assim, no anteparo incidem simultaneamente as duas componentes superpostas, havendo então interferência.

Fig. 1. a) Interferômetro de Michelson básico; b) Interferômetro de Michelson aplicado a comparação de superfícies

Dependendo da diferença de caminho óptico, estas duas componentes podem atingir o anteparo guardando uma certa diferença de fase. Quando é usada luz monocromática e coerente, esta diferença de fase é estável e facilmente visualizada.

Sendo esta diferença de fase de 180° , ou côngruos, há cancel<u>a</u> mento, resultando intensidade mínima, e máxima quando a diferença de fase é 0° ou côngruos. Estando fixo o espelho A, um deslocamento no espelho B provocará uma mudança de fase proporcional. Para um deslocamento no espelho B de $\lambda/2$, sendo λ o comprimento de onda da luz usa da, há uma variação de λ no caminho óptico provocando uma mudança de 360° na diferença de fase entre os feixes que incidem no anteparo. Este efeito é comumente usado na metrologia para medição de deslocamentos e, dependendo da precisão com a qual a diferença de fase é me dida, podem ser medidos deslocamentos de até alguns metros, com precisão melhor que poucos nanômetros.

Outra concepção do interferômetro de Michelson, que permite comparar interferometricamente superfícies, é mostrada na figura lb. Nesta, o feixe é colimado de forma a resultar em uma onda plana. De composta pelo divisor de feixe de forma análoga e refletida de volta por cada uma das superfícies a comparar, ambas as parcelas são superpostas e interferem mutuamente. Como resultado, aparece no anteparo uma imagem cuja diferença de fase é função das diferencas geométricas entre as duas superfícies. Tendo estas superfícies exatamente a mesma forma e sendo posicionadas ortogonalmente, a dife rença de caminho óptico e, conseqüentemente, fase, será constante, resultando uma imagem homogênea. Havendo uma ligeira não-ortogonali dade, aparecem franjas retas e equiespaçadas riscando a imagem sobre o anteparo. Se as franjas apresentam algum tipo de curvatura é sinal de que há diferença de forma. Geralmente estes efeitos aparecem superpostos.

A diferença de cota entre dois pontos que estejam sobre duas franjas vizinhas, é de $\lambda/2$.

Sendo uma das superfícies padrão, a imagem resultante reflete os erros de forma da segunda superfície em relação à primeira.

MEDIÇÃO DE FASE

Para medir a diferença de forma entre duas superfícies por processos interferométricos, é imprescindível a medição precisa de diferença de fase. Esta poderia ser feita simplesmente através da medição de intensidade luminosa resultante em cada ponto da imagem sobre o anteparo. Porém esta forma de medição, além de imprecisa, não define o sinal da diferença de fase, ou seja, se + ϕ ou - ϕ .

O processo alternativo desenvolvido consiste em, através de um dispositivo eletro-magnético, deslocar o espelho móvel (fig. 2) de forma controlada, ao mesmo tempo em que é registrada a intensida de luminosa do ponto de interesse a cada nova posição do espelho mó vel. Uma vez tendo sido calibrado o dispositivo eletromagnético de forma apropriada, controla-se o espelho para executar, por exemplo, uma série de 16 passos sucessivos com valor de $\lambda/32$. Como resultado, provoca-se a cada passo um acréscimo de fase em toda a imagem de $360^{\circ}/16=22,5^{\circ}$. Sendo medida a intensidade luminosa do ponto de inte resse em cada passo, obtém-se um gráfico similar ao da figura 2.

Fig. 2. Medição precisa de fase

Uma vez conhecido o período da senóide obtida, calcula-se o ângulo de fase ϕ do ponto de interesse, a menos de um número inteiro de voltas.

Sendo a curva obtida equacionada por:

 $Y = A + K \operatorname{sen} (22,5 i + \phi)$ (1)

discretizada por

 $Y_{i} = A + K \operatorname{sen} (22, 5 i + \phi) \operatorname{com} i = 1, \dots, 16$ (2)

onde

$$A = \frac{1}{16} \sum_{i=1}^{16} Y_i \qquad (média dos 16 valores) \qquad (3)$$

obtém-se então

$$Z_{i} = Y_{i} - \frac{1}{16} \int_{i=1}^{16} Y_{i} = K \text{ sen } (22,5 \text{ } i+\phi)$$
 (4)

Observa-se que

$$Z_{i+4} = K \operatorname{sen} (22,5 i + \phi + 90) = K \cos (22,5 i + \phi)$$
 (5)

е

$$tg (22,5 i \not = \frac{K sen (22,5i + \phi)}{K cos (22,5i + \phi)} = \frac{Z_i}{Z_{i+4}}$$
(6)

ou

$$\phi = tg^{-1}\left(\frac{z_{i}}{z_{i+4}}\right) - 22,5 i ; i=1,...,16$$
(7)

Sabendo-se que $Z_i = Z_{i+16}$, podem ser calculados até 16 valores independentes para ϕ , e portanto, pode ser feito um tratamento esta tístico nestes valores medidos, aumentando a precisão do resultado.

Testes mostraram que com este processo é possível medir fase com repetibilidade melhor que 10° , o que se mostra suficiente para a grande maioria de aplicações dentro do controle geométrico. Uma incerteza de +/- 5° na medição de fase resulta em uma incerteza de +/- 4,4nm na medição de forma.

ABERRAÇÕES ÓPTICAS

A comparação de superfícies por processos interferométricos pode ser efetuada com grande precisão desde que sejam usados componentes ópticos perfeitos. Esta situação idealizada está longe de ser a real e compromete substancialmente os resultados.

Imperfeições ópticas de lentes, do divisor de feixe e do es-

pelho môvel, conhecidas genericamente por aberrações, bem como des<u>a</u> linhamentos, são responsáveis por distorções e erros sistemáticos na medição de forma.

Felizmente, para um mesmo sistema, estas aberrações são está veis, ou seja, não mudam com o tempo. Podem ser levantadas com o uso de uma superfície padrão de qualidade adequada: os "erros" de forma medidos para a superfície padrão representam exatamente o somatório das aberrações totais do sistema. Uma vez levantadas estas aberrações, podem ser convenientemente armazenadas e posteriormente compensadas.

Assim, ao medir uma superfície qualquer por este processo, deve-se compensar este erro sistemático, ou seja, abater do erro de forma encontrado a parcela correspondente às aberrações. Esta opera ção pode ser grandemente facilitada por meio de armazenamento digital de dados.

O SISTEMA DE MEDIÇÃO

A figura 3 ilustra os módulos do sistema de medição de plan<u>i</u> cidade desenvolvido. Consiste basicamente de um interferômetro de Michelson computadorizado.

A fonte de luz é um laser Hélio-Neônio com $\lambda=0,6328$ m filtra do e colimado convenientemente de modo a se obter uma onda plana.

O interferômetro de Michelson é de forma similar ao da figura 2, portanto já discutido. O deslocamento do espelho móvel é controlado por um dispositivo eletro-magnético, e varia linearmente pa ra pequenos deslocamentos com a tensão aplicada sobre este por meio do conversor digital/analógico (D/A), que por sua vez, é controlado pelo computador.

O bloco padrão é posicionado sobre uma mesa contendo guias apropriadas e dispositivos de ajuste fino para facilitar a tarefa de reposicionamento.

Fig. 3. Sistema de Medição de Planicidade

Uma lente objetiva é usada com o intuito de ampliar a imagem da interferência, de modo a torná-la com tamanho conveniente para sua análise.

Uma plotadora adaptada, na qual a pena é substituída por um fotodetetor, é usada como digitalizadora [4]. Por software, as posi ções dos quatro vértices da imagem sobre sua área útil são informadas. Uma vez tendo sido definida uma malha de discretização sobre o bloco padrão, a plotadora, corrigindo o efeito de perspectiva, posi ciona o fotodetetor sobre a posição correspondente na imagem a cada ponto da malha definida. O conversor A/D transforma o sinal de tensão emitido pelo fotodetetor em um dado digital inteligível ao microcomputador.

O microcomputador controla a tensão sobre o dispositivo eletro-magnético, a posição XY do fotodetetor e mede a intensidade luminosa.

MEDIÇÃO DE PLANICIDADE

O software utilizado é constituído de várias etapas. Inicialmente, a malha é definida e a posição da imagem sobre a plotadora é informada ao computador. Este, por sua vez, desloca o fotodetetor pa ra a região da imagem correspondente a cada ponto da malha definida sobre o bloco padrão. Em cada posição, procede-se um ciclo de incremento de 16 níveis de tensão sobre o eletroimã, provocando incrementos de deslocamentos de $\lambda/32$ e, conseqüentemente, variação de fase de 22,5[°] a cada incremento. Com estes dados, e o procedimento descr<u>i</u> to no item 3, calcula-se, a menos de um múltiplo inteiro de 360[°], a fase ϕ de cada ponto da malha.

Uma vez calculada a fase relativa de cada ponto da malha, estes são convertidos em cotas (distâncias) pela relação:

$$Z_{i} = (\phi_{i} + 360 K_{i}) \frac{\lambda}{2.360}$$
 (10)

Inclinações e translações nas cotas medidas são eliminadas ajustando-se ao conjunto de pontos (X_i, Y_i, Z_i) o melhor plano segun do o método dos mínimos quadrados. X_i e Y_i são as coordenadas do pon to "i" da malha e Z_i sua cota calculada por (10). A equação do plano ajustado pelos mínimos quadrados é da forma:

$$f(X_{i}, Y_{i}) = A X_{i} + B Y_{i} + C$$
 (11)

onde A, B e C são calculados por:

$$\begin{bmatrix} n & x_{i}^{2} & \sum_{i=1}^{n} x_{i} Y_{i} & \sum_{i=1}^{n} x_{i} \\ i = 1 & i = 1 & i = 1 \\ n & n & n \\ \sum_{i=1}^{n} x_{i} Y_{i} & \sum_{i=1}^{n} Y_{i}^{2} & \sum_{i=1}^{n} Y_{i} \\ n & n & n \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} Y_{i} & n \\ \vdots = 1 & i = 1 & i \end{bmatrix} \begin{bmatrix} A \\ B \\ B \\ C \end{bmatrix} = \begin{bmatrix} n \\ \sum_{i=1}^{n} X_{i} Z_{i} \\ i = 1 \\ n \\ \sum_{i=1}^{n} Z_{i} \end{bmatrix}$$
(12)

sendo "n" o número total de pontos da malha.

Desta forma, as distâncias dos pontos Z_i 's ao melhor plano (δ_i) refletem os erros de planicidade da superfície ensaiada em relação à superfície padrão, porém estarão ainda acrescidos de erros provocados por aberrações. Calcula-se δ_i como sendo:

$$\delta_i = Z_i - f(X_i, Z_i) \tag{13}$$

Para conhecer precisamente os erros provocados por aberrações ópticas, usa-se uma superfície plana padrão com erros de plani cidade pelo menos cinco vezes menores que os erros da superfície a analisar. Esta superfície é então medida pelo sistema. Os "erros" de planicidade encontrados para esta superfície plana padrão são exa tamente os erros provocados pelas aberrações ópticas como um todo.

Desde que a disposição seja mantida, os erros provocados pelas aberrações ópticas constituem um erro sistemático constante e conhecido, podendo facilmente ser compensado. Para tal, a superfície de interesse é medida pelo sistema, as cotas são calculadas, e o erro sistemático corresponde às aberrações é subtraído para, em seguida, serem calculados os erros de planicidade em relação ao melhor plano ajustado pelo método dos mínimos quadrados.

MEDIÇÃO DE BLOCOS PADRÃO

Uma vez constituído o sistema descrito, foram efetuados testes e ensaios de planicidade em blocos padrão.

Como padrão de planicidade, foi usado um bloco padrão de 25,000mm, classe 0, com erros de constâncias de afastamento da ordem de 0,01 μ m, segundo certificado emitido pelo IPT e confirmado pelo LABMETRO.

Os erros de planicidade medidos, correspondente às aberrações ópticas, são representados na figura 4. O referencial zero ado tado para as curvas de nível corresponde ao valor médio encontrado, sendo que assim sempre existem valores positivos e valores negativos. Uma translação deste referencial para o valor de nível mínimo é desejável em alguns casos. A vista em perspectiva mostra o retângulo tomado como nível igual a zero e, em relação a este, é desenha da a malha correspondente à superfície deformada. Neste caso, esta representação não possui significado físico, apenas fornece dados sobre a magnitude das aberrações ópticas. Foi selecionada uma malha de 8 x 4 nós.

Uma vez encontrado o erro sistemático, foi medida a planicidade de alguns blocos padrões. A figura 5 mostra os resultados de testes de repetibilidade efetuados em blocos padrão. O erro máximo de repetibilidade encontrado neste caso foi da ordem de 0,01µm. Estas medições foram efetuadas em um bloco padrão de 75mm.

Fig. 4. Aberrações Ópticas (µm)

A figura 6 mostra os resultados da medição de planicidade em um BP de 75mm grau 2. Nota-se a presença de uma região mais alta na parte esquerda do BP. Embora pertença ao grau 2, onde são aceitos erros de constância de afastamento de 0,15µm, o erro máximo de planicidade encontrado foi pouco superior a 0,05µm.

Fig. 5. Testes de Repetibilidade em um BP de 75mm (um)

Fig. 6. Erros de planicidade de um BP de 75mm - Grau 2 (μ m)

Os resultados da figura 7 correspondem aos erros de planicidade medidos nas duas faces de um BP grau 1 de 70mm.

Fig. 7a. Erros de planicidade nas duas faces de um BP de 70mm (µm)

Fig. 7b. Erros de planicidade nas duas faces de um BP de 70mm (µm)

Os erros de planicidade medidos em BP se mostraram bastante reduzidos, mesmo para BP de grau 2. Entretanto, estes erros são grandemente multiplicados quando são formadas composições com BP co lados. A figura 8 mostra os erros de planicidade da composição formada pelos BP de 25,000 e 1,001mm. Os erros de planicidade passam de cerca de 0,05µm para valores de até 0,25µm, ou mais. Este fenôme no se dá em função do ajuste não uniforme entre as duas superfícies no momento da colagem dos BP, provocando ligeira flexão. Uma segunda medição foi efetuada neste conjunto, após um novo reposicionamen to, e, em relação à primeira, foram feitas comparações e mostraram excelentes repetibilidade (fig. 8a e 8b).

Um último resultado é mostra do na figura 9. Neste caso, os erros de planicidade são de uma composição de um BP de 25,000 e outro de 1,010mm colados pelo mesmo operador, nas mesmas condições. Neste caso estão presentes erros de planicidade mais acentuados.

Fig. 8a. Erros de planicidade e testes de repetibilidade da composição dos BP de 25,000 com 1,001mm colados (µm)

Fig. 8b. Erros de planicidade e testes de repetibilidade da composi ção dos BP de 25,000 com 1,001mm colados (um)

Fig. 9. Erros de planicidade da composição dos BP de 25,000 com 1,010mm colados (µm)

EXTENSÃO DA METODOLOGIA

A metodologia apresentada mostrou-se bastante eficiente para a medição de planicidade de superfícies espelhadas de precisão, tais como BP, espelhos, vidros e lâminas de precisão. Entretanto, superfícies quase planas, com elevado raio de curvatura, podem ser compa radas interferometricamente por este método. Para tal, substitui-se o espelho móvel por uma superfície similar a medir e procede-se a determinação da aberração óptica de forma análoga usando uma superfície padrão. Assim, podem ser medidas cilindricidades, esfericidades e formas particulares, desde que estas superfícies possuam raios de curvatura elevados.

Outra extensão do método, de largas aplicações no controle geométrico de precisão, é a medição de constância de afastamento e paralelismo entre duas faces de um mesmo componente. É suficiente para isto, utilizar a variação do interferômetro de Michelson mos trado na figura 10. Ao passar pelo divisor de feixe; a luz é conduzida a cada uma das faces do componente e refletida de volta e superposta no anteparo. Novamente as franjas indicam a diferença de cota entre as duas superfícies (constância de afastamento). A deter minação das aberrações ópticas é efetuada mediante um padrão COM boas características de paralelismo. O software apenas elimina as aberrações, obtendo os resultados de constância de afastamento. A inclinação do plano ajustado a estes dados fornece a inclinação média entre as duas superficies.

Alternativamente, o interferômetro da figura ll mede ortogonalidade entre as faces assinaladas. Novamente é requerido o uso de um padrão, desta vez com boas características de planicidade em suas superfícies e de ortogonalidade entre suas faces. O processo de medição é análogo ao de paralelismo. Mudando a inclinação do espelho A, é possível generalizar o interferômetro para medição de "constância angular" entre duas superfícies planas afastadas de um ângulo qualquer, desde que se possua um padrão que possua as qualidades requeridas.

Fig. 10. Medição de paralelismo e constância de afastamento

Fig. 11. Medição de ortogonalidade

CONCLUSÕES

O sistema desenvolvido apresentou erros de repetibilidade menores que 0,015µm, considerados satisfatórios para uma série de apl<u>i</u> cações dentro do controle geométrico. Entretanto, acredita-se que, com uso de fontes de laser mais potentes e com alguns recursos de hardware, seja possível medir com precisões melhores que 0,005µm. Nes te limite, fatores que influenciam na estabilidade térmica e mecânica passam a ter maior influência e devem ser convenientemente considerados.

O sistema usado, embora na concepção inicial pareça caro ou muito sofisticado, pode ser enormemente simplificado se uma bateria de fotocélulas for usada nas posições de interesse sobre a imagem. O conversor D/A e o conversor A/D são facilmente adquiridos no mercado. Uma unidade de chaveamento (porta lógica) pode ser usada para adquirir de forma sequencial o sinal de cada fotocélula.

Este sistema poderá constituir uma estação de medição com lar gas aplicações dentro do controle geométrico de precisão, elevado grau de automatização e alta confiabilidade e eficiência.

REFERÊNCIAS

- [1] ZAJAC, A.; HECHT, E., "Optics", Addison Wesley Pub. Co, Massachusetts, 1980.
- [2] ENGELHARD, E., "Precise interferometric measurement of gage blocks", (Technische Bundesanstalt, Braunschweig, Germany).
- [3] ROLT, F.H., "Using of light waves for controlling the accuracy of block gages" (Consultant in Metrology an Standardization, Hampton, England).
- [4] ALBERTAZZI JR, A., "Automatização da medição de deslocamento pe la holografia interferométrica", Dissertação de Mestrado, UFSC, 1984.

DIFFUSION PROBLEMS WITH GENERAL TIME-DEPENDENT COEFFICIENTS

R. M. Cotta - Membro da ABCM

Instituto Tecnológico de Aeronáutica Departamento de Energia

M. N. Özisik

North Carolina State University Mechanical and Aerospace Engineering Department

ABSTRACT

Analytical solutions are given to diffusion equations with timedependent coefficients in any general functional form. The generalized integral transform technique is utilized and timedependence on related eigenvalue problems is completely avoided. Formal three-dimensional general solutions are first developed and then, the specific one-dimensional solutions are systematically obtained. Computational procedures for the solution of the associated systemas of linear first order differential equations are considered. In addition, a systematic procedure for obtaining approximate explicit solutions is suggested.

RESUMO

Soluções analíticas são obtidas para equações de difusão com coeficientes dependentes do tempo em forma funcional geral. A técnica de transformada integral generalizada é utilizada e a dependência com o tempo é completamente evitada no problema de autovalor corresponden te. Soluções gerais, tridimensionais são formalmente desenvolvidas e soluções unidimensionais específicas são sistematicamente obtidas. Procedimentos computacionais para a solução do sistema linear de equações diferenciais ordinárias de primeira ordem são considerados. Além disso, um procedimento sistemático para obter soluções aproximadas e explícitas é sugerido. NOMENCLATURE

 $a_{ii}^{*}(t)$ - defined by equations (6.c),(10.c), and (14.c)

f(x) - initial condition for equation (1.a)

N; - normalization integral

P(x,t) - source term in diffusion equation (1.a)

t - time variable

T(x,t) - temperature field

- $w_1\left(\underline{x}\right)$, $K_1\left(\underline{x}\right)$, $d_1\left(\underline{x}\right)$ time-independent portion of coefficients in diffusion equations
- $w_2(\underline{x},t)$, $K_2(\underline{x},t)$, $d_2(\underline{x},t)$ time-dependent portion of ccefficients in diffusion equations

x - position vector

Greek Letters

 μ_{i} - eigenvalue of Sturm-Liouville system

 $\Psi(\mu, \underline{x})$ - eigenfunctions

 $\alpha(\underline{x})$, $\beta(\underline{x})$ - boundary condition coefficients

Superscripts

integral transform

Subscripts

h	-	iterated	lowest order solution
i,j	-	order of	eigenquantities
k = 0, 1	-	boundary	condition index
R	-	lowest or	der solution

INTRODUCTION

The analytic solution of linear diffusion-type problems has been of great interest through the years, as demonstrated by the vast literature available, in both the contexts of applied mathematics and physical sciences. The considerably recent and parallel developments of computers and numerical analysis has been allowing the extraction of useful information, in the realm of applications, from those once formal and or too involved solutions. The classical integral transform technique, as described in several well-known works, has been the basic tool for such developments. Very recently [1], general solutions for seven different classes of problems have been provided in a systematic manner, from which several special cases of great interest in the heat and mass diffusion field can be obtained. This and related works have in common the fact that time-dependence (or corresponding independent variable) of the coefficients in the diffusion equation is not considered, despite its considerable importance. It appears that a systematic and computationally both fast and reliable approach has not yet been provided; purely numerical solutions are then, in general, preferred. A few previous works, however, have been directed towards obtaining such a systematic approach.

In reference [2], Mikhailov obtained general solutions for the diffusion equation in finite regions, including separable time and space-dependent coefficients, with a particular transformable function form. Due to these specific constraints on the coefficients, a time-independent eigenvalue problem could immediately be considered and all the terms in the diffusion equation could be transformed through the appropriate integral transform.

Özisik and Murray [3] then introduced the so-called generalized integral transform technique for the solution of linear diffusion problems with variable boundary condition parameters. A time-dependent eigenvalue problem was considered which made the integral transform kernel time-dependent as well. Therefore, all but the time derivative term in the diffusion equation could be transformed to provide the usual system of uncoupled ordinary differential-equations. The formal solution to the problem then involves an infinite system of first-order linear differential equations. Approximate solutions are then suggested and obtained as explicit expressions for a zeroth, and first order approximations. This technique was then extended to multi-region problems [4] and diffusion problems with a moving boundary [5,6].

Mikhailov [7] then considered the more general case including time dependent coefficients in the diffusion equation itself. The generalized integral transform technique was utilized through consideration of a time-dependent eigenvalue problem involving the time-dependent coefficient. Again, all but the time derivative term could be transformed to yield the desirable uncoupled system of ordinary differential equations.

These formal solutions, besides requiring the solution of an infinite system of differential equations with variable coefficients, involve the additional difficulty of fast and reliable evaluations of time-dependent eigenvalues and eigenfunctions. Except for a few special cases that are obtainable as explicit expressions in time, these evaluations would be too lengthy for any practical purpose. Therefore, in this work we alleviate such difficulties by demonstrating how the generalized integral transform technique can be utilized through consideration of time-independent eigenvalue problems. For the sake of clarity, each time-dependent coefficient is considered at a time. Formal solutions are established for the general three-dimensional cases and then, specialized for its one--dimensional counterparts. Computational procedures for obtaining useful and accurate numerical results from these formal solutions are examined. Also, explicit lowest-order solutions are considered and suggested, when applicable, for fast, approximate estimates in the context of applications.

ANALYSIS

We consider the following boundary value problem in a homogeneous, finite region V with boundary surface S:

$$w(\underline{x},t) \quad \frac{\partial T(\underline{x},t)}{\partial t} = \nabla \cdot |K(\underline{x},t) \nabla T(\underline{x},t)| - d(\underline{x},t) T(\underline{x},t) + P(\underline{x},t) ,$$

in
$$\underline{x} \in V$$
, $t \ge 0$ (1.a)

272 ,

with initial and boundary conditions given, respectively, by:

$$T(\underline{x},t) = f(\underline{x})$$
, $\underline{x} \in V$, $t = 0$ (1.b)

$$\alpha(\underline{x}) T(\underline{x},t) + \beta(\underline{x}) K_1(\underline{x}) \frac{\partial T(\underline{x},t)}{\partial \underline{n}} = \phi(\underline{x},t), \quad \underline{x} \in S \ , \ t > 0 \ (1.c)$$

where, for convenience in the analysis, we let:

$$w(\underline{x},t) = w_1(\underline{x}) + w_2(\underline{x},t)$$
(2.a)

$$K(x,t) = K_1(x) + K_2(x,t)$$
 (2.b)

$$d(x,t) = d_1(x) + d_2(x,t)$$
 (2.c)

Also, $\alpha(\underline{x})$ and $\beta(\underline{x})$ are prescribed coefficients on the boundary S and $\partial/\partial \underline{n}$ denotes the outward normal derivative at the boundary.

The analytical solution of this problem by the classical integral transform technique [1,2] would involve certain difficulties, since the time-dependent coefficients are not necessarily separable in time and space variables, and do not have, a priori, any particular functional form [2]. In addition, application of the generalized integral transform technique as shown in [7] would introduce the undesirable, additional difficulty of a time-dependent eigenvalue problem. In the present approach this time-dependence of the auxiliary problem is completely avoided. For the sake of clarity in the presentation that follows, we consider separate problems with one time varying coefficient at a time. This appears to be more instructive, in the sense that several applications imediately derive from these cases.

Problem I - $d(\underline{x},t)$, $K(\underline{x})$, and $w(\underline{x})$

To apply the generalized integral transform technique the appropriate eigenvalue problem is taken as:

$$\nabla \cdot \left| K\left(\underline{\mathbf{x}}\right) \ \nabla \Psi\left(\mu,\underline{\mathbf{x}}\right) \right| + \left(\mu^2 w\left(\underline{\mathbf{x}}\right) - d_1\left(\underline{\mathbf{x}}\right)\right) \ \Psi\left(\mu,\underline{\mathbf{x}}\right) = 0 \ , \quad \underline{\mathbf{x}} \in V \tag{3.a}$$

with boundary conditions

$$\alpha(\underline{x}) \Psi(\mu, \underline{x}) + \beta(\underline{x}) K(\underline{x}) \frac{\partial \Psi(\mu, \underline{x})}{\partial \underline{n}} = 0, \qquad \underline{x} \in S \qquad (3.b)$$

Equations (3) form a classical. Sturm-Liouville system, which is assumed to have a known solution at this point. This well-known system allows the development of the following integral transform pair:

Transform -
$$\overline{T}_{i}(t) = \int_{V} w(\underline{x}) \frac{\Psi(\mu_{i},\underline{x})}{N_{i}^{1/2}} T(\underline{x},t) dv$$
 (4.a)

Inversion -
$$T(\underline{x},t) = \sum_{i=1}^{n} \frac{1}{N_{i}^{1/2}} \Psi(\mu_{i},\underline{x}) T_{i}(t)$$
 (4.b)

where the normalization integral is given by:

$$N_{i}(\mu) = \int_{V} w(\underline{x}) |\Psi(\mu_{i}, \underline{x})|^{2} dv \qquad (4.c)$$

Note that a symmetric kernel has been utilized in the definition of the integral transform pair, eqs.(4.a,b), for reasons to be stated later.

Now, equation (1.a) with K(x) and w(x), is operated on with

$$\int_{V} \frac{1}{N_{i}^{1/2}} \Psi(\mu_{i}, \underline{x}) dv ,$$

to yield:

$$\frac{d\overline{T}_{i}(t)}{dt} = -\mu_{i}^{2} \overline{T}_{i}(t) - \int_{V} \frac{1}{N_{i}^{1/2}} \Psi(\mu_{i}, \underline{x}) d_{2}(\underline{x}, t) T(\underline{x}, t) dv + \overline{g}_{i}(t)$$
(5.a)

where

$$\overline{g}_{\underline{i}}(t) = \frac{1}{N_{\underline{i}}^{1/2}} \int_{S} K(\underline{x}) \left| \Psi(\mu_{\underline{i}}, \underline{x}) \frac{\partial T(\underline{x}, t)}{\partial \underline{n}} - T(\underline{x}, t) \frac{\partial \Psi(\mu_{\underline{i}}, \underline{x})}{\partial \underline{n}} \right| ds + \int_{V} \frac{1}{N_{\underline{i}}^{1/2}} \Psi(\mu_{\underline{i}}, \underline{x}) P(\underline{x}, t) dv$$
(5.b)

274

The untransformed term can then be rewritten as:

$$\int_{V} \frac{1}{N_{i}^{1/2}} \Psi(\mu_{i},\underline{x}) d_{2}(\underline{x},t) T(\underline{x},t) dv =$$

$$= \sum_{j} \frac{1}{(N_{i}N_{j})^{1/2}} \left| \int_{V} d_{2}(\underline{x},t) \Psi(\mu_{i},\underline{x})\Psi(\mu_{j},\underline{x}) dv \right| \overline{T}_{j}(t)$$
(5.c)

Equation (5.a) can be expressed as follows

$$\frac{d\overline{T}_{i}(t)}{dt} + \nu_{i}^{2} \overline{T}_{i}(t) + \sum_{j} a_{ij}^{*}(t) \overline{T}_{j}(t) = \overline{g}_{i}(t) \qquad (6.a)$$

with the transformed initial condition

$$\overline{T}_{i}(0) = \overline{f}_{i} = \int_{V} w(\underline{x}) \frac{\Psi(u_{i}, \underline{x})}{N_{i}^{1/2}} f(\underline{x}) dv$$
(6.b)

where,

$$a_{ij}^{\star}(t) = \frac{1}{\left(N_{i}N_{j}\right)^{1/2}} \int_{V} d_{2}(\underline{x},t) \Psi(\mu_{i},\underline{x}) \Psi(\mu_{j},\underline{x}) dv , \qquad (6.c)$$

and the nonhomogeneous term $\overline{g}_i(t)$ is given, after manipulation of boundary conditions (1.c) and (3.b), by:

$$\overline{g}_{i}(t) = \frac{1}{N_{i}^{1/2}} \int_{S} \phi(\underline{x}, t) \left| \frac{\Psi(\mu_{i}, \underline{x}) - K(\underline{x})}{\alpha(\underline{x}) + \beta(\underline{x})} \frac{\frac{\partial \Psi(\mu_{i}, \underline{x})}{\partial \underline{n}}}{\frac{\partial \underline{n}}{\partial \underline{n}}} \right| ds + \int_{V} \frac{1}{N_{i}^{1/2}} \Psi(\mu_{i}, \underline{x}) P(\underline{x}, t) dv$$
(6.d)

Equations (6) above form an infinite system of coupled, linear, first-order differential equations, and provide a formal solution to the problem, since after the functions \overline{T}_i (t) have been determined,

the inversion formula (4.b) can be utilized to provide the complete solution. For the special cases of $d_2(\underline{x},t)$ identically zero, or $d_2(x,t)=\beta(t)w(\underline{x})$, system (6) is uncoupled, and the resulting explicit solutions correspond to those in [1,2].

Problem II - d(x), K(x,t), and w(x)

The appropriate eigenvalue problem in this case is taken as:

$$\nabla \cdot \left[K_{1}(\underline{x}) \nabla \Psi(\mu, \underline{x}) \right] + \left(\mu^{2} W(\underline{x}) - d(\underline{x}) \right) \Psi(\mu, \underline{x}) = 0 \quad , \quad \underline{x} \in V \quad (7.a)$$

with boundary conditions

$$\alpha(\underline{x}) \Psi(\underline{\nu}, \underline{x}) + \beta(\underline{x}) K_1(\underline{x}) \frac{\partial \Psi(\underline{\nu}, \underline{x})}{\partial \underline{n}} = 0 , \underline{x} \in S$$
(7.b)

which allows the development of the following integral transform pair with a symetric kernel:

Transform -
$$\overline{T}_{\underline{i}}(t) = \int_{V} w(\underline{x}) \frac{\Psi(\mu_{\underline{i}},\underline{x})}{N_{\underline{i}}^{1/2}} T(\underline{x},t) dv$$
 (8.a)

Inversion -
$$T(\underline{x}, t) = \sum_{i=1}^{\infty} \frac{1}{N_{i}^{1/2}} \Psi(\mu_{i}, \underline{x}) \overline{T}_{i}(t)$$
 (8.b)

and the normalization integral is written as:

$$Ni(\mu) = \int_{V} w(\underline{x}) \left[\Psi(\mu_{\underline{i}}, \underline{x}) \right]^{2} dv \qquad (8.c)$$

Now, equation (1.a) with $d\left(\underline{x}\right)$ and $w\left(\underline{x}\right)$, is operated on with the operator

$$\int_V \frac{1}{N_1^{1/2}} \, \Psi(\mu_1,\underline{x}) \, dv \ , \ \text{to obtain:}$$

$$\frac{d\overline{T}_{i}(t)}{dt} = -\mu_{i}^{2} \overline{T}_{i}(t) + \int_{V} \frac{1}{N_{i}^{1/2}} \Psi(\mu_{i},\underline{x}) \nabla \cdot |K_{2}(\underline{x},t) \nabla T(x,t)| dv + \overline{g}_{i}^{*}(t)$$

$$(9.a)$$

where,

$$\overline{g}_{\underline{i}}^{\star}(t) = \frac{1}{N_{\underline{i}}^{1/2}} \int_{S} K_{1}(\underline{x}) \left| \Psi(\mu_{\underline{i}}, \underline{x}) \frac{\partial T(\underline{x}, t)}{\partial \underline{n}} - T(\underline{x}, t) \frac{\partial \Psi(\mu_{\underline{i}}, \underline{x})}{\partial \underline{n}} \right| ds + \int_{V} \frac{1}{N_{\underline{i}}^{1/2}} \Psi(\mu_{\underline{i}}, \underline{x}) P(\underline{x}, t) dv$$
(9.b)

The untransformed term in equation (9.a) can be written in the alternative form

$$\frac{1}{N_{1}^{1/2}} \int_{V} \Psi(\mu_{1},\underline{x}) \nabla \cdot |K_{2}(\underline{x},t) \nabla T(\underline{x},t)| dv =$$

$$= \frac{1}{N_{1}^{1/2}} \left\{ \int_{V} T(\underline{x},t) \nabla \cdot |K_{2}(\underline{x},t) \nabla \Psi(\mu_{1},\underline{x})| dv + \int_{S} K_{2}(\underline{x},t) |\Psi(\mu_{1},\underline{x})| \frac{\partial T(\underline{x},t)}{\partial \underline{n}} - T(\underline{x},t) \frac{\partial \Psi(\mu_{1},\underline{x})}{\partial \underline{n}} | ds \right\}$$
(9.c)

The first integral in the right hand side can then be expressed as:

$$\frac{1}{N_{1}^{1/2}} \int_{V}^{T} (\underline{x}, t) \nabla \cdot |K_{2} (\underline{x}, t) \nabla \Psi (\mu_{1}, \underline{x})| dv =$$

$$= \sum_{j} \frac{1}{(N_{1}N_{j})^{1/2}} \left| \int_{V}^{\Psi} (\mu_{j}, \underline{x}) \nabla \cdot |K_{2} (\underline{x}, t) \nabla \Psi (\mu_{1}, \underline{x})| dv \right| \overline{T}_{j} (t)$$
(9.d)

And we let:

$$\begin{split} \overline{g}_{i}(t) &= \overline{g}_{i}^{*}(t) + \\ &+ \frac{1}{N_{i}^{1/2}} \int_{S} K_{2}(\underline{x}, t) \left| \Psi(\mu_{i}, x) \frac{\partial T(\underline{x}, t)}{\partial \underline{n}} - T(\underline{x}, t) \frac{\partial \Psi(\mu_{i}, \underline{x})}{\partial \underline{n}} \right| ds \end{split}$$

$$(9.e)$$

Equation (9.a) is then rewritten as:

$$\frac{d\overline{T}_{i}(t)}{dt} + \mu_{i}^{2} \overline{T}_{i}(t) - \sum_{j} a_{ij}^{*}(t) \overline{T}_{j}(t) = \overline{g}_{i}(t) \qquad (10.a)$$

with the transformed initial condition

$$\overline{T}_{i}(0) = \overline{f}_{i} = \int_{V} w(\underline{x}) \frac{\Psi(\mu_{i}, \underline{x})}{N_{i}^{1/2}} f(\underline{x}) dv \qquad (10.b)$$

where,

$$a_{ij}^{\star}(\mathbf{\dot{t}}) = \frac{1}{(N_{i}N_{j})^{1/2}} \int_{V} \Psi(\mu_{j},\underline{x}) \nabla \cdot |K_{2}(\underline{x},t) \nabla \Psi(\mu_{i},\underline{x})| dv \qquad (10.c)$$

and the independent term $\overline{g}_i(t)$ is given, after manipulating the boundary condition for both the original and auxiliary problem, by:

$$\overline{g}_{\underline{i}}(t) = \frac{1}{N_{\underline{i}}^{1/2}} \int_{S} \phi(\underline{x}, t) \left| \frac{\Psi(\mu_{\underline{i}}, \underline{x}) - K_{1}(x)}{\alpha(\underline{x}) + \beta(\underline{x})} \right| ds +$$

$$+ \frac{1}{N_{i}^{1/2}} \int_{S} \frac{K_{2}(\underline{x}, t)}{K_{1}(\underline{x})} \phi(\underline{x}, t) \left| \frac{\Psi(\mu_{1}, \underline{x}) - K_{1}(\underline{x})}{\alpha(\underline{x}) + \beta(\underline{x})} \frac{\frac{\partial \Psi(\mu_{1}, \underline{x})}{\partial \underline{n}}}{\alpha(\underline{x}) + \beta(\underline{x})} \right| ds + \int_{V} \frac{1}{N_{1}^{1/2}} \Psi(\mu_{1}, \underline{x}) P(\underline{x}, t) dv \qquad (10.d)$$

The infinite system of coupled differential equations (10) is now decoupled for the case K, (\underline{x},t) identically zero, reducing the present solution to the explicit forms of [1,2].

Problem III - d(x), K(x), and w(x,t)

The appropriate eigenvalue problem is now taken as:

$$\nabla \cdot [K(x) \ \forall \Psi(\mu, x)] + (\mu^2 w_1(x) - d(x)) \Psi(\mu, x) = 0, x \in V \quad (11.a)$$

with boundary conditions

$$\alpha(\underline{\mathbf{x}}) \ \Psi(\mu, \underline{\mathbf{x}}) + \beta(\underline{\mathbf{x}}) \ K(\underline{\mathbf{x}}) \quad \frac{\partial \Psi(\mu, \underline{\mathbf{x}})}{\partial \underline{\mathbf{n}}} = 0 \quad , \quad \underline{\mathbf{x}} \in \mathbf{S}$$
(11.b)

The development of the appropriate integral transform pair then yields:

Transform -
$$\overline{T}_{i}(t) = \int_{V} w_{1}(x) \frac{\Psi(\mu_{i}, \underline{x})}{N_{i}^{1/2}} T(\underline{x}, t) dv$$
 (12.a)

Inversion - T(
$$\underline{x}$$
, t) = $\sum_{i} \frac{1}{N_{i}^{1/2}} \Psi(\mu_{i}, \underline{x}) \overline{T}_{i}(t)$ (12.b)

and the normalization integral is now given by:

$$N_{i}(\mu) = \int_{V} w_{i}(\underline{x}) |\Psi(\mu_{i}, \underline{x})|^{2} dv \qquad (12.c)$$

Equation (1.a), with $d\left(\underline{x}\right)$ and $K\left(\underline{x}\right),$ is now operated on by the operator

$$\int_{V} \frac{1}{N_{i}^{1/2}} \Psi(\mu_{i}, \underline{x}) dv , \text{ to obtain:}$$
$$\frac{d\overline{T}_{i}(t)}{dt} + \int_{V} w_{2}(\underline{x}, t) \frac{\Psi(\mu_{i}, \underline{x})}{N_{i}^{1/2}} \frac{\partial T(\underline{x}, t)}{\partial t} dv = -\mu_{i}^{2} \overline{T}_{i}(t) + \overline{g}_{i}(t)$$
(13.a)

where,

$$\overline{g}_{\underline{i}}(t) = \frac{1}{N_{\underline{i}}^{1/2}} \int_{S} K(\underline{x}) \left| \Psi(\mu_{\underline{i}}, \underline{x}) \frac{\partial T(\underline{x}, t)}{\partial \underline{n}} - T(\underline{x}, t) \frac{\partial \Psi(\mu_{\underline{i}}, \underline{x})}{\partial \underline{n}} \right| ds + \int_{V} \frac{1}{N_{\underline{i}}^{1/2}} \Psi(\mu_{\underline{i}}, \underline{x}) P(\underline{x}, t) dv \qquad (13.b)$$

The untransformed term equation (13.b) can then be rewritten

$$\int_{V} w_{2}(\underline{x},t) \frac{\Psi(\mu_{1},\underline{x})}{N_{1}^{1/2}} \frac{\partial T(\underline{x},t)}{\partial t} dv =$$

$$= \sum_{j} \frac{1}{(N_{1}N_{j})^{1/2}} \left| \int_{V} w_{2}(\underline{x},t) \Psi(\mu_{1},\underline{x}) \Psi(\mu_{j},\underline{x}) dv \right| \frac{d\overline{T}_{j}(t)}{dt}$$
(13.c)

Equation (13.a) is now expressed by:

$$\frac{d\overline{T}_{i}(t)}{dt} + \sum_{j} a_{ij}^{*}(t) \frac{d\overline{T}_{j}(t)}{dt} + \mu_{i}^{2} \overline{T}_{i}(t) = \overline{g}_{i}(t)$$
(14.a)

with the transformed initial condition

$$\overline{T}_{i}(0) = \overline{f}_{i} = \int_{V} w_{1}(\underline{x}) \frac{\Psi(\mu_{i}, x)}{N_{i}^{1/2}} f(x) dv \qquad (14.b)$$

where,

$$a_{ij}^{*}(t) = \frac{1}{\left(N_{i}N_{j}\right)^{1/2}} \left| \int_{V} w_{2}(\underline{x}, t) \Psi(\mu_{i}, \underline{x}) \Psi(\mu_{j}, \underline{x}) dv \right|$$
(14.c)

and $\overline{g}_{i}(t)$, after manipulation of boundary conditions, is given by:

$$\overline{g}(t) = \frac{1}{N_{1}^{1/2}} \int_{S} K(\underline{x}) \left| \Psi(\mu_{1}, \underline{x}) \frac{\partial T(\underline{x}, t)}{\partial \underline{n}} - T(\underline{x}, t) \frac{\partial \Psi(\mu_{1}, \underline{x})}{\partial \underline{n}} \right| ds + \int_{\nabla} \frac{1}{N_{1}^{1/2}} \Psi(\mu_{1}, \underline{x}) P(\underline{x}, t) dv$$
(14.d)

Although not in normal form, equations (14) form an infinite system of coupled, first order, linear differential equations, which is decoupled for $w_2(\underline{x},t)$ identically zero, or $w_2(\underline{x},t)=\beta(t)w_1(\underline{x})$, to yield the explicit solutions in [1,2].

We can now focus attention on the one-dimentional counterpart of the boundary value problem (1), which is given in the form:

$$w(x,t) \frac{\partial T(x,t)}{\partial t} = \frac{\partial}{\partial x} \left| K(x,t) \frac{\partial T(x,t)}{\partial x} \right| - d(x,t) T(x,t) + P(x,t) , \text{ in } x_0 < x < x_1 , t > 0$$
(15.a)

with initial and boundary conditions given by:

$$T(x,t) = f(x) , \text{ in } x_0 \le x \le x_1 , t=0$$
(15.b)

$$\alpha_k T(x,t) - (-1)^k \beta_k K_1(x) \frac{\partial T(x,t)}{\partial x} = \phi(x,t) , \text{ at } x=x_k , k=0,1, t>0$$
(15.c,d)

The formal solutions provided by systems (6,10,14) can be immediately specialized to the one-dimensional problem above, if the corresponding volume and surface integrals are appropriately restricted to this special case. Therefore, these systems can be rewritten as:

Problem I

$$\frac{d\overline{T}_{i}(t)}{dt} + \mu_{i}^{2} \overline{T}_{i}(t) + \sum_{j=1}^{\infty} a_{ij}^{*}(t) \overline{T}_{j}(t) = \overline{g}_{i}(t)$$
(16.a)

$$\overline{T}_{i}(0) = \overline{f}_{i} = \int_{x_{o}}^{x_{1}} w(x) \frac{\Psi(\mu_{i}, x)}{N_{i}^{1/2}} f(x) dx , \quad i=1,2,3... \quad (16.b)$$

where,

$$a_{ij}^{*}(t) = \frac{1}{(N_{i}N_{j})^{1/2}} \int_{x_{o}}^{x_{1}} d_{2}(x,t) \Psi(\mu_{i},x) \Psi(\mu_{j},x) dx , \quad (16.c)$$

$$\overline{g}_{i}(t) = \frac{1}{N_{i}^{1/2}} \frac{1}{k=0} \phi(x_{k}, t) \left| \frac{\Psi(\mu_{i}, x_{k}) + (-1)^{k} K(x_{k}) \Psi'(\mu_{i}, x_{k})}{\alpha_{k}^{+}\beta_{k}} \right| + \int_{X_{0}}^{X} \frac{1}{N_{i}^{1/2}} \Psi(\mu_{i}, x) P(x, t) dx$$
(16.d)

and

$$N_{i}(\mu) = \int_{X_{0}}^{X_{1}} w(x) |\Psi(\mu_{i}, x)|^{2} dx \qquad (16.e)$$

Problem II

$$\frac{d\overline{T}_{i}(t)}{dt} + \mu_{i}^{2} \overline{T}_{i}(t) - \sum_{j=1}^{\infty} a_{ij}^{*}(t) \overline{T}_{j}(t) = \overline{g}_{i}(t)$$
(17.a)

$$\overline{T}_{i}(0) = \overline{f}_{i} = \int_{x_{0}}^{x_{1}} w(x) \frac{\Psi(\mu_{i}, x)}{N_{i}^{1/2}} f(x) dx , \quad i=1,2,3... \quad (17.b)$$

where,

$$a_{ij}^{\star}(t) = \frac{1}{\left(N_{i}N_{j}\right)^{1/2}} \int_{x_{o}}^{x_{1}} \Psi(\mu_{j}, x) \frac{\partial}{\partial x} \left| K_{2}(x, t) \frac{\partial \Psi(\mu_{i}, x)}{\partial x} \right| dx , \qquad (17.c)$$

$$\overline{g}_{i}(t) = \frac{1}{N_{i}^{1/2}} \sum_{k=0}^{1} \phi(x_{k}, t) \left| \frac{\Psi(u_{i}, x_{k}) + (-1)^{k} K_{i}(x_{k}) \Psi'(u_{i}, x_{k})}{\alpha_{k}^{+\beta} k} \right| +$$

+
$$\frac{1}{N_{i}^{1/2}} \sum_{k=0}^{\frac{1}{2}} \frac{K_{2}(x_{k},t)}{K_{1}(x_{k})} \phi(x_{k},t) \left| \frac{\Psi(\mu_{i},x_{k}) + (-1)^{k}K_{1}(x_{k})\Psi'(\mu_{i},x_{k})}{\alpha_{k} + \beta_{k}} \right| +$$

+
$$\int_{x_0}^{x_1} \frac{1}{N_1^{1/2}} \Psi(u_1, x) P(x, t) dx$$
 (17.d)

and

$$N_{i}(\mu) = \int_{x_{0}}^{x_{1}} w(x) |\Psi(\mu_{i}, x)|^{2} dx \qquad (17.e)$$

Problem III

$$\frac{d\overline{T}_{i}(t)}{dt} + \sum_{j=1}^{\infty} a_{ij}^{*}(t) \frac{d\overline{T}_{j}(t)}{dt} + \sum_{\mu i}^{2} \overline{T}_{i}(t) = \overline{g}_{i}(t)$$
(18.a)

$$\overline{T}_{i}(0) = \overline{f}_{i} = \int_{x_{0}}^{x_{1}} w_{i}(x) \frac{\Psi(\mu_{i}, x)}{N_{i}^{1/2}} f(x) dx , \quad i=1,2,3... \quad (18.b)$$

where,

$$a_{ij}^{*}(t) = \frac{1}{(N_{i}N_{j})^{1/2}} \int_{x_{o}}^{x_{1}} w_{2}(x,t) \Psi(\mu_{i},x) \Psi(\mu_{j},x) dx , \qquad (18.c)$$

$$\overline{g}_{i}(t) = \frac{1}{N_{i}^{1/2}} \sum_{k=0}^{l} \phi(x_{k}, t) \left| \frac{\Psi(\mu_{i}, x_{k}) + (-1)^{k} K(x_{k}) \Psi'(\mu_{i}, x_{k})}{\alpha_{k} + \beta_{k}} \right| + \int_{x_{0}}^{x_{1}} \frac{1}{N_{i}^{1/2}} \Psi(\mu_{i}, x) P(x, t) dx$$
(18.d)

and

$$N_{i}(\mu) = \int_{x_{0}}^{x_{1}} w_{1}(x) |\Psi(\mu_{i}, x)|^{2} dx$$
 (18.e)

Therefore, once numerical results have been obtained from systems (16, 17, or 18), the complete solution is evaluated from the inversion formula of the integral transform pair.

COMPUTATIONAL PROCEDURE

Our first concern when seeking numerical results from systems (16, 17, or 18) lies in the fact that they form infinite dimensional or denumerable systems. For numerical purpose it would be extremelly desirable if a sufficiently large finite dimensional system could be considered instead, since several well-established numerical schemes of solution exist in this case. In reference [8], more general denumerable systems were investigated in the formal sense, by truncating the infinite system at the Nth row and Nth column, solving the NxN system, and looking for conditions on the coefficients ensuring that the solution of the finite system would tend to the infinite system solution as N+∞. We make no attempt of reproducing here the results obtained through this formal, mathematical analysis. Instead, we assume these conditions are met for a certain particular problem, a priori, and investigate the solution convergence by considering increasing values of N, which might suffice for practical purposes. Therefore, if a finite dimensional system is to be considered, systems (16, 17, and 18) can be written

in more conveniently as:

Problem I

$$\chi' + A(t) \chi(t) = g(t)$$
 (19.a)

$$y(0) = f$$
 (19.b)

where,

$$A(t) = \{a_{ij}\} \text{ is the NxN symmetric matrix with}$$
$$a_{ij} = \delta_{ij} \mu_i^2 + a_{ij}^*(t) , \quad i, j=1,2,\ldots,N \quad (19.c)$$

and,

$$\delta_{ij} = \begin{pmatrix} 0 & , \text{ for } i \neq j \\ 1 & , \text{ for } i = j \end{pmatrix}$$

also

$$\underline{Y} = \{\overline{T}_{1}(t), \overline{T}_{2}(t), \dots, \overline{T}_{N}(t)\}^{T}$$
(19.d)

$$\underline{g} = (\overline{g}_1(t), \overline{g}_2(t), \dots, \overline{g}_N(t))^T$$
(19.e)

$$\underline{\mathbf{f}} = \{\overline{\mathbf{f}}_1, \overline{\mathbf{f}}_2, \dots, \overline{\mathbf{f}}_N\}^{\mathrm{T}}$$
(19.f)

Problem II

$$\chi' + A(t) \chi(t) = g(t)$$
 (20.a)

$$\underline{Y}(0) = \underline{f} \tag{20.b}$$

with

10 A. 10

$$a_{ij} = \delta_{ij} \mu'_i - a^*_{ij}(t) , \quad i, j=1, 2, \dots, N$$
 (20.c)

and other quantities defined as above.

Problem III

$$A(t) y' + B y(t) = g(t)$$
 (21.a)

$$\chi(0) = f$$
 (21.b)

with

$$a_{ij} = \delta_{ij} + a_{ij}^{*}(t)$$
, i,j 1,2,...,N (21.c)

where B = {b_{ij}} is a constant, diagonal, NxN matrix with

$$b_{ij} = \delta_{ij} \mu_i^2$$
, $i, j=1, 2, ..., N$ (21.d)

For A non-singular, system (21) can be rewritten in normal form as:

$$\chi' + C(t) \chi(t) = h(t)$$
 (22.a)

$$\underline{y}(0) = \underline{f} \tag{22.b}$$

where,

$$C(t) = A^{-1}(t) B$$
 (22.c)

$$\underline{h}(t) = A^{-1}(t) g(t)$$
 (22.d)

The problems are now reduced to the solution of a finite, linear system of first order differential equations with time-varying coefficients. Closed-form solutions are unlikely to be obtainable, except for a class of commutative equations [9], which include the special case of systems with constant coefficients. Therefore, if a commutative coefficients matrix is identified, the solution can be

constructed by performing the same operations as for the constantcoefficients case, namely, through the solution of algebraic eigenvalue problems and systems of algebraic linear equations, making the inspection of conditions for commutivity particularly attractive. Some sufficient conditions for commutivity have been provided in references [9-12]. If the verification of commutivity does not apply, sufficiently accurate numerical results can still be obtained through consideration of well-known numerical techniques for initial value problems [13]. However, the systems of differential equations here considered are likely to produce the so-called "stiff problems" [13, 15], which are often related in the literature as problems with widely differing time constants, since the solution components y, (t)'s may have transient decays at sharply different rates. Fortunately, over the past few years, special solution techniques have been developed for these class of problems, and are readily available through reliable and automatic subroutines packages [14]. In addition, specialized procedures for linear problems have been considered, and should be directly applicable to the systems under consideration [13, 15, 16]. These aspects are more closely examined in a companion paper within an application frame.

Therefore, once the components of the solution vector $\underline{y}(t)$ have been numerically evaluated, the inversion formula in the integral transform pair can be utilized to provide the complete solution for the potential T(x,t).

It should also be noted that for best computational results, splitting up of the original problem into simpler ones, when applicable, might be mandatory, as demonstrated in references [1,2].

APPROXIMATE SOLUTIONS

We consider the system of first-order linear differential 🥐 equations given in normal form as:

 $\underline{y}' + A(t) \underline{y}(t) = \underline{g}(t)$, t>0 (23.a) $\underline{y}(0) = \underline{f}$ (23.b) It is clear that in the case of a diagonal coefficients matrix, A(t), the above problem would be uncoupled in the components of vector \underline{y} , and an explicit, straight forward solution would be provided for each component \underline{y}_i . In addition, the problem of solving system (23) can be interpreted as mathematically equivalent to the problem of diagonalizing the coefficients matrix. Therefore, when the diagonal elements of matrix A(t) dominate the system over nondiagonal elements, it seems reasonable to consider an approximate solution by taking only the diagonal of A(t). Therefore, when applicable, this "lowest order solution" would be given by:

$$y_{i,\ell}(t) = \overline{f}_{i} \exp \left| - \int_{0}^{t} a_{ii}(t') dt' \right| + \int_{0}^{t} g_{i}(t')$$
$$\cdot \exp \left| - \int_{t}^{t} a_{ii}(t'') dt'' \right| dt' \qquad (24)$$

This approximate, explicit solution will in general be appropriate for estimatives in practical applications, being more or less accurate in a certain range of parameters involved in the timedependent coefficients of the original problems. Its suitability can be investigated, a priori, through inspection of the particular structure of the coefficients matrix, and by identifying parameters that govern the magnitude of non-diagonal elements.

Iterated Lowest Order Solution

When the lowest order solution proves not to be suitable over an entire range of interest, due to an increased importance of nondiagonal elements in the coefficients matrix, an analytical iteration on the complete system can be employed to approximately account for the effects of this decreased dominance. This so-called iterated lowest order solution would then provide more accurate results over a wider range of parameters, reamining explicit and simple enough to become practical.

The decoupled system to be solved is then given by:

$$y'_{i,h} + a_{ii}(t) y_{i,h}(t) = G_i(t) + g_i(t) , t>0$$
 (25.a)

$$y_{i,h}(0) = f_{i}$$
 (25.b)

where,

$$G_{i}(t) = -\sum_{\substack{j \\ j \neq i}} a_{ij}(t) Y_{j,k}(t)$$
 (25.c)

And this higher-order solution could be written in the form:

$$y_{i,h}(t) = y_{i,l}(t) + y_{i,c}(t)$$
 (26.a)

where the "correction term", would be simply given by:

$$Y_{i,c}(t) = \int_{0}^{t} G_{i}(t') \exp \left| - \int_{t}^{t} a_{ii}(t'') dt'' \right| dt'$$
(26.b)

The particular merits of each analytical approximation shall be better envisioned in a companion paper where an specific application is considered.

ACKNOWLEDGEMENT

One of the authors (R.M.C.) wishes to acknowledge the hospitality of the Mechanical & Aerospace Engineering Dept., North Carolina State University, during his stay in August, 1986. This work was also partially supported by CNPq/Brasil through grant n9 302366-85/EM.

REFERENCES

 MIKHAILOV, M.D. and M.N. Özisik, Unified Analysis and Solutions of Heat and Mass Diffusion, John Wiley & Sons, New York, 1984.

- [2] MIKHAILOV, M.D., General Solutions of the Heat Equation in Finite Regions, Int. J. Engng. Sci., Vol. 10, pp. 577-591, 1972.
- [3] ÖZISIK, M.N. and R.L. Murray, On the Solution of Linear Diffusion Problems with Variable Boundary Condition Parameters, J. Heat Transfer, V. 96, pp. 48-51, 1974.
- [4] YENER, Y. and M.N. Özisik, On the Solution of Unsteady Heat Conduction in Multi-Region Finite Media with Time Dependent Heat Transfer Coefficient, Proc. 5th Int. Heat Transfer Conference, Tokyo, Sept. 1974.
- [5] LEITE, S.B., M.N. Özisik, and K. Verghese, On the Solution of Linear Diffusion Problems in Media with Moving Boundaries, Nucl. Science Eng., Vol. 76, pp. 345-370, 1980.
- [6] ÖZISIK, M.N. and S.I. Guçeri, A Variable Eigenvalue Approach to the Solution of Phase-Change Problems, Can.J.Chem.Eng., Vol. 55, pp. 145-148, 1977.
- [7] MIKHAILOV, M.D., On the Solution of the Heat Equation with Time Dependent Coefficient, Int.J. Heat Mass Transfer, Vol. <u>18</u>, pp. 344-345, 1975.
- [8] DEIMLING, K., Ordinary Differential Equations in Banach Spaces, Lect. Notes Math., Vol. 596, 1977.
- [9] LUKES, D.L., Differential Equations: Classical to Controlled, Academic Press, New York, 1982.
- [10] ERUGIN, N.P., Linear Systems of Ordinary Differential Equations with Periodic and Quasi-Periodic Coefficients, Academic Press, New York, 1966.
- [11] ASLANYAN, A.G. and V.I. Burenkov, Integrability in Quadratures of Some Systems of Linear Differential Equations, Diff. Uravneniya, Vol. 4, nº 7, pp. 1241-1249, 1986.
- [12] FREEDMAN, H.I., Functionally Commutative Matrices and Matrices with Constant Eigenvectors, Lin.Mult., Vol. <u>4</u>, pp. 107-113, 1976.

Ĩ,

10

- [13] GEAR, C.W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, New Jersey, 1971.
- [14] IMSL Library, Edition 7, GNB Building, 7500 Ballaire Blvd. Houston, Texas, 77036, 1979.
- [15] HALL, G. and J.M. Watt, Eds., Modern Numerical Methods for Ordinary Differential Equations, Clarendon Press, Oxford, 1976.
- [16] LAWSON, J.D., Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants, SIAM J.Numer.Anal., Vol. 4, no 3, 1967.

UM MODELO MATEMÁTICO PARA O ESTUDO DE UM FLUXO ESTRATIFICADO

Armando M. Awruch Universidade Federal do Rio Grande do Sul Departamento de Engenharia Civil

RESUMO

Neste trabalho são apresentadas a formulação e solução numérica de um modelo matemático para simular o fluxo estratificado num sistema de águas rasas. Os métodos dos elementos finitos e diferenças fin<u>i</u> tas são usados para discretizar o espaço e o tempo respectivamente. A aplicação do modelo é mostrada através de dois exemplos simples.

ABSTRACT

The formulation and numerical solution of a mathematical model to study stratified flow in shallow waters are presented in this work. Finite element and finite differences are used for space and time discretization respectively. The adequacy of the model is shown through two simple examples.

INTRODUÇÃO

Muitas vezes o estudo do fluxo de um sistema hídrico não pode fazer-se supondo que o mesmo é homogêneo, já que alguns fatores como a existência de gradientes de temperatura ou intrusão salina originam um escoamento estratificado em duas ou mais camadas. Muitos modelos matemáticos foram realizados com o fim de estudar fluxos estratificados, fundamentalmente referidos a problemas de intrusão salina. Existem autores que utilizaram técnicas analíticas ([1],[2],[3],[4]) fazendo algumas simplificações; outros preferem sofisticar estes modelos utilizando métodos numéricos.

Entre os métodos numéricos, o de diferencas finitas tem sido intensivamente aplicado para simular fluxos estratificados. De todos estes modelos pode-se mencionar o trabalho de Dazzi e Tomassino [5] que foi aplicado ao Delta do Rio Pó (Itália); este modelo é uni dimensional, constituido por duas camadas e está baseado num esquema de diferenças finitas centradas; seus aspectos mais importantes são a utilização de intervalos de espaço diferentes para cada estra to, a eliminação dos termos convectivos nas equações de movimento e a definição do operador diferencial de tal forma, que se assume uma variação linear de todas as variáveis (em tempo e em espaço), expres sando-se um valor num ponto intermediário da malha como a média entre o ponto precedente e o que segue. Um outro modelo similar que po de ser destacado é o de D.O. Hodgins et alii [6] que foi aplicado ao Rio Fraser (USA); utilizando-se também aqui um esquema de diferenças finitas centradas explícito; uma característica interessante des te modelo é a introdução do número de Froude interfacial na expressão das tensões de cisalhamento interfaciais, o qual atua como um fa tor de amplificação, crescendo quando a espessura das camadas decresce.

O método dos elementos finitos tem sido aplicado com bastante frequência no estudo de fluxos estratificados nos últimos anos. Entre os diferentes modelos apresentados pode-se mencionar o trabalho de H.P. Wang [7]; este modelo, que pode ser usado para um número arbitrário de camadas, é uma extensão dos modelos bidimensionais que resultam de integrar verticalmente as equações tridimensionais de movimento e continuidade em meios homogêneos e que são aplicadas em sistemas de águas rasas; neste modelo pode-se destacar; a) a com paração feita entre resultados obtidos usando a matriz de massa con sistente e discreta; b) a análise para eliminar instabilidades numé ricas provocadas pelos termos não lineares usando um processo de "sua vização" (smoothing); c) a utilização de um esquema de adequação dos níveis das diferentes camadas aos câmbios da topografia do fundo; para a integração no tempo utiliza-se um esquema explícito e são usa dos elementos triangulares lineares. Outro modelo que convém mencionar é o de M. Kawahara et alii [8]; este modelo tem como caract<u>e</u> rística fundamental o tipo de esquema de integração no tempo, que é explícito e se faz em dois passos combinando a matriz de massa consistente e discreta; a justificativa deste esquema pode achar-se na ref.[9].

Neste trabalho é apresentado um modelo matemático bidimensio nal transiente para simular um fluxo estratificado em sistemas de águas rasas (onde as dimensões horizontais são significativamente maiores que a vertical, e assumindo-se que as amplitudes das ondas são muito pequenas em relação à espessura das camadas), o qual é r<u>e</u> solvido numericamente usando o método dos elementos finitos para di<u>s</u> cretizar no espaço e diferenças finitas para discretizar no tempo. As camadas são acopladas por condições cinemáticas e dinâmicas. E<u>m</u> bora as expressões aqui deduzidas estejam particularizadas para o <u>ca</u> so de duas camadas, sua extensão a um número arbitrário de estratos pode facilmente ser realizada.

FORMULAÇÃO DAS EQUAÇÕES QUE GOVERNAM O PROBLEMA

O sistema de equações diferenciais que governa o fluxo tridi mensional transiente é dado por:

$$\frac{\partial}{\partial t} (\rho \mathbf{v}_{i}) + \frac{\partial}{\partial \mathbf{x}_{j}} (\rho \mathbf{v}_{i} \mathbf{v}_{j}) - \frac{\partial}{\partial \mathbf{x}_{j}} \tau_{\mathbf{x}_{j} \mathbf{x}_{i}} + \frac{\partial p}{\partial \mathbf{x}_{i}} = 0$$
(1)

$$\frac{\partial p}{\partial t} + \frac{\partial}{\partial x_j} (pv_j) = 0 \qquad (i, j = 1, 2, 3) \qquad (2)$$

onde as $v_i(x_i,t)$ são as componentes da velocidade do fluido, $\rho(x_i,t)$ é a massa específica, p é a pressão e as $\tau_{x_ix_j}$ são as tensões tangenciais que incluem os efeitos da viscosidade molecular e a transferência turbulenta de quantidade de movimento.

A seguir se fazem as seguintes considerações (ver Figura 1): a) Assume-se uma distribuição hidrostática de pressões na direção ve<u>r</u> tical, o que implica que a equação de 'momentum' na direção x₃ fica

$$-\frac{\partial p}{\partial x_3} + \rho g = 0 \tag{3}$$

b) A massa específica e as componentes da velocidade, quando integra das verticalmente em cada camada, dão a densidade e componentes da velocidade "média" que são constantes em toda a espessura da camada. Assim sendo, pode-se escrever as seguintes expressões:

$$\rho_{1}(x_{1}, x_{2}, t) = \frac{1}{H_{1}} \int_{H_{2}}^{H_{1}+H_{2}} \rho(x_{1}, x_{2}, x_{3}, t) dx_{3}$$

$$\rho_{2}(x_{1}, x_{2}, t) = \frac{1}{H_{2}} \int_{0}^{H_{2}} \rho(x_{1}, x_{2}, x_{3}, t) dx_{3}$$

$$v_{1}^{1}(x_{1}, x_{2}, t) = \frac{1}{H_{1}} \int_{H_{2}}^{H_{1}+H_{2}} v_{1}(x_{1}, x_{2}, x_{3}, t) dx_{3}$$

$$v_{1}^{2}(x_{1}, x_{2}, t) = \frac{1}{H_{2}} \int_{0}^{H_{2}} v_{1}(x_{1}, x_{2}, x_{3}, t) dx_{3}$$

$$(4)$$

onde o superindice 1 e 2 indicam a camada superior e inferior, respectivamente.

Figura 1. Porção do domínio com escoamento estratificado em duas camadas

c) Condições de contorno cinemáticas

```
- Na superfície:
```

$$|\mathbf{v}_{3}|_{\mathbf{X}_{3}=\mathbf{H}_{1}+\mathbf{H}_{2}} = \left| \frac{\partial n_{1}}{\partial t} + \mathbf{v}_{1} \frac{\partial n_{1}}{\partial \mathbf{x}_{1}} \right|_{\mathbf{X}_{3}=\mathbf{H}_{1}+\mathbf{H}_{2}} \quad (i = 1, 2) \quad (5)$$

- Na interface:

$$|\mathbf{v}_{3}|_{\mathbf{x}_{3}=\mathbf{H}_{2}} = \left| \frac{\partial n_{2}}{\partial t} + \mathbf{v}_{1} \frac{\partial n_{2}}{\partial \mathbf{x}_{1}} + \mathbf{v}_{e} \right|_{\mathbf{x}_{3}=\mathbf{H}_{2}}$$
 (i = 1,2) (6)

- No fundo:

$$|v_{3}|_{x_{3}=0} = 0 \tag{7}$$

onde $v_{\rm e},$ na interface é a diferença entre $v_{\rm 3}$ e a velocidade de movimento da interface.

d) Condições de contorno dinâmicas

- Na superficie:

$$\tau_{x_{\underline{i}}}^{s} = |\tau_{x_{3}x_{\underline{i}}}|_{x_{3}=H_{1}+H_{2}} = \rho_{a}\gamma^{2}V_{v}^{2}\cos(x_{v},x_{\underline{i}}) \qquad (i=1,2) \quad (8)$$

- Na interface:

$$\tau_{x_{1}}^{i} = |\tau_{x_{3}x_{1}}|_{x_{3}=H_{2}} = C^{i} F_{r}^{i} \rho_{1} |\vec{v}_{1} - \vec{v}_{2}| (v_{1} - v_{1}) \quad (i = 1, 2) \quad (9)$$

- No fundo:

$$\tau_{x_{i}}^{f} = |\tau_{x_{3}x_{i}}|_{x_{3}=0} = \frac{g}{C^{2}} \rho_{2} |\vec{v}_{2}| v_{i_{2}} \qquad (i = 1, 2) \quad (10)$$

onde ρ_a é a massa específica do ar, V_v a velocidade do vento, (x_v, x_i) o ângulo que forma o vento com o sentido positivo do ei-

xo x_i , Cⁱ um coeficiente adimensional, g a aceleração da gravid<u>a</u> de, C o coeficiente de Chezy e Fⁱ_r o número de Froude interfacial, que é igual a

$$\mathbf{F}_{\mathbf{r}}^{\mathbf{i}} = \{ \rho_2 (\mathbf{H}_1 + \mathbf{H}_2) [g(\rho_2 - \rho_1) \mathbf{H}_1 \mathbf{H}_2]^{-1} \}^{\frac{1}{2}}$$
(11)

sendo que os sub-índices l e 2 referem-se à camada superior e i<u>n</u> ferior, respectivamente.

 e) Equilíbrio dinâmico entre as tensões de superfície e as interiores. Tomando um elemento infinitesimal na superfície e projetando segundo os eixos de referência tem-se:

$$\tau_{\mathbf{x}_{i}}^{\mathbf{s}} + \mathbf{p}^{\mathbf{s}} \frac{\partial n_{1}}{\partial \mathbf{x}_{i}} = \left| -(\tau_{\mathbf{x}_{i}\mathbf{x}_{i}} - \mathbf{p}) \frac{\partial n_{1}}{\partial \mathbf{x}_{i}} - \tau_{\mathbf{x}_{j}\mathbf{x}_{i}} \frac{\partial n_{1}}{\partial \mathbf{x}_{j}} - \tau_{\mathbf{x}_{3}\mathbf{x}_{i}} \right|_{\mathbf{x}_{3} = \mathbf{H}_{1} + \mathbf{H}_{2}}$$
(12)

$$-p^{s} + \tau_{x_{j}}^{s} \frac{\partial \eta_{1}}{x_{j}} = \left[-\tau_{x_{j}x_{3}} \frac{\partial \eta_{1}}{\partial x_{j}} + (\tau_{x_{3}x_{3}} - p)\right]_{x_{3} = H_{1} + H_{2}} \quad (i=1,2) \quad (13)$$

onde o super-indice s indica valores tomados na superfície.

f) O excesso de pressão em relação à pressão hidrostática correspon dentes a h_1+h_2 e h_2 podem expressar-se da seguinte forma (sem le var em conta os termos de segunda ordem em η_1 e η_2):

$$F_{p_{1}} \cong p^{S} H_{1} + o_{1} g h_{1} (\eta_{1} - \eta_{1})$$

$$F_{p_{2}} \equiv \rho_{1} g h_{1} \eta_{2} + \rho_{1} g h_{2} \eta_{2}$$
(14)

Assume-se no que segue que $p^{S} = p_{atm} = 0$.

- g) As componentes das velocidades instantâneas são expressas em função de um valor médio e uma flutuação, e se assume que a massa es pecífica fica constante em cada camada.
- h) Integrando as equações (1) e (2) entre H_2 e H_1+H_2 e entre zero e H_2 , levando em conta as considerações anteriores e aplicando a regra de Leibnitz, obtém-se o seguinte sistema de equações que governa o problema:

- Camada superior:

$$(n_1 - n_2)_{t} + [(h_1 + n_1 - n_2)v_{1}]_{x_1} - (\rho_1)^{-1} [\rho v_e]_{x_3 = H_2} = 0$$
 (16)

- Camada inferior:

$$n_{2,t} + (h_{2}+n_{2})v_{12} + (\delta\rho_{1})^{-1} \rho v_{e} = 0$$
 (i=1,2) (18)

onde

$$\frac{\partial()}{\partial t} = ()_{,t}; \frac{\partial()}{\partial x_{i}} = ()_{,x_{i}}; \beta = \frac{\eta_{1} - \eta_{2}}{H_{1}}; \lambda = \frac{\eta_{2}}{H_{2}}; \delta = \frac{\rho_{1}}{\rho_{2}}$$

sendo que os índices 1 e 2 correspondem à camada superior e inferior respectivamente. Os termos de viscosidade surgem ao se fazer a apro ximação de Boussinesq para as integrais que contém as tensões tangenciais e as de Reynolds (função das flutuações das componentes da velocidade); os coeficientes $v_{x_ix_j}^k$ são os componentes da viscosidade turbulenta e são funções do campo de velocidades (convém esclar<u>e</u> cer que os valores destes coeficientes não são conhecidos com prec<u>i</u> são e inclusive para casos práticos sua influência é pequena em relação à fricção interfacial e no fundo. Contudo, embora tenha sido negligenciado neste modelo, pode ser útil para criar um mecanismo de eliminação de instabilidade e oscilações numéricas); f é o coeficien te de Coriolis, e ε_{ij} é um tensor tal que $\varepsilon_{11} = \varepsilon_{22} = 0$ e $\varepsilon_{12} = -\varepsilon_{12} =$ = 1. As incógnitas do problema são as elevações $n_j(x_i,t)$ sobre os planos de referência $h_j(x_i,t)$ (com i, j=1,2) e as componentes das velocidades integradas verticalmente $v_j(x_i,t)$ de cada camada (com i, j=1,2). Nos contornos "sólidos" (linhas da costa) são prescritas as velocidades e nos contornos "abertos" (limite de domínio que não é "sólido") prescreve-se as elevações $\eta_1 \in \eta_2$.

Uma exposição mais detalhada da formulação deste parágrafo é apresentada na ref.[11].

FORMULAÇÃO DO MÉTODO DOS ELEMENTOS FINITOS E ESQUEMA DE INTEGRAÇÃO DO TEMPO

Aplicando um princípio de resíduos ponderados (neste caso usa -se o método de Galerkin) ao sistema de seis equações representado em (15) a (18), e expandindo as incógnitas em cada elemento através de funções de interpolação, obtém-se uma expressão matricial do tipo

$$\underset{\sim}{\mathsf{M}} \overset{\mathbf{x}}{\underset{\sim}{\mathsf{x}}} + \underset{\sim}{\mathsf{A}} (\mathbf{X}) \overset{\mathbf{x}}{\underset{\sim}{\mathsf{x}}} + \underset{\sim}{\mathsf{P}} = \underset{\circ}{\mathsf{0}}$$
(19)

onde X é a derivada em relação ao tempo do vetor de incógnitas X.

A integração no tempo é efetuada utilizando o método das diferenças finitas empregando a regra trapezoidal, obtendo-se

$$\left[\frac{2}{\Delta t} \underset{\sim}{M} + \underset{\sim}{A} (x_{t+\Delta t})\right] \underset{\sim}{X}_{t+\Delta t} = \left[\frac{2}{\Delta t} \underset{\sim}{M} - \underset{\sim}{A} (x_{t}) \underset{\sim}{X}_{t}\right] - \left(\underset{\sim}{P}_{t} + \underset{\sim}{P}_{t+\Delta t}\right) \quad (20)$$

onde At é o intervalo de tempo. Esta expressão deve ser montada p<u>a</u> ra todos os elementos do sistema e nela devem aplicar-se as correspondentes condições de contorno.

A matriz A é decomposta na soma de uma matriz que contém os termos não lineares A_{NL} , e em outra que contém os termos lineares

AL, empregando-se a seguinte fórmula de recorrência para resolver o problema:

- Primeiro passo (em t+
$$\Delta$$
t):
 $K_1 X_{t+\Delta t} = K_1 X_t - (P_t + P_{t+\Delta t})$ (21)
- Segundo passo (em t+2 t):
 $K_1 X_{t+2\Delta t} = K_2 X_{t+\Delta t} - (P_{t+\Delta t} + P_{t+2\Delta t}) -$
 $- \phi \Lambda_{NL} (X_{t+\Delta t}) X_{t+\Delta t}$ (22)

onde

 $K_1 = \frac{2}{\Delta t} M + A_L$ e $K_2 = \frac{2}{\Delta t} M - A_L$

Pode observar-se que no primeiro passo, expressão (21), não foram levados em conta os termos não lineares no membro esquerdo $[A_{NL}(X_{t+\Delta t}) \cdot (X_{t+\Delta t})]$ e no membro direito $(A_{NL}(X_t)X_t)$; jã no segundo passo, expressão (22), não foram considerados os termos não lineares no membro esquerdo $(A_{NL}(X_{t+2\Delta t})X_{t+2\Delta t})$, sendo que no membro direito aparece multiplicado por um fator ϕ . Se $\phi=0$, o problema é linearizado por eliminação dos termos não lineares; entretanto se $\phi=4$ significa que, à maneira do método dos passos fraccionários [10], a so ma das equações correspondentes a cada passo daria um sistema bala<u>n</u> ceado em t+ Δ t, fornecendo resultados em t+ 2Δ t.

Pode observar-se que foi feita a seguinte hipótese (se \$=4):

$$4 \stackrel{A}{_{\sim}NL} (X_{t+\Delta t}) \stackrel{X}{_{\sim}t+\Delta t} = \stackrel{A}{_{\sim}NL} (X_{t}) \stackrel{X}{_{\sim}t} + 2 \stackrel{A}{_{\sim}NL} (X_{t+\Delta t}) \stackrel{X}{_{\sim}t+\Delta t} + \\ + \stackrel{A}{_{\sim}NL} (X_{t+2\Delta t}) \stackrel{X}{_{\sim}t+2\Delta t}$$
(23)

A matriz K_1 é estacionária e deve ser calculada e triangularizada uma só vez em todo o processo; para cada elemento, K_1 vem d<u>a</u> da por de turbulenta e são funções do campo de velocidades (convém esclar<u>e</u> cer que os valores destes coeficientes não são conhecidos com prec<u>i</u> são e inclusive para casos práticos sua influência é pequena em relação à fricção interfacial e no fundo. Contudo, embora tenha sido negligenciado neste modelo, pode ser útil para criar um mecanismo de eliminação de instabilidade e oscilações numéricas); f é o coeficien te de Coriolis, e ε_{ij} é um tensor tal que $\varepsilon_{11} = \varepsilon_{22} = 0$ e $\varepsilon_{12} = -\varepsilon_{12} =$ = 1. As incógnitas do problema são as elevações $\eta_j(x_i,t)$ sobre os planos de referência $h_j(x_i,t)$ (com i,j=1,2) e as componentes das velocidades integradas verticalmente $v_j(x_i,t)$ de cada camada (com i,j=1,2). Nos contornos "sólidos" (linhas da costa) são prescritas as velocidades e nos contornos "abertos" (limite de domínio que não é "sólido") prescreve-se as elevações $\eta_1 \in \eta_2$.

Uma exposição mais detalhada da formulação deste parágrafo é apresentada na ref.[11].

FORMULAÇÃO DO MÉTODO DOS ELEMENTOS FINITOS E ESQUEMA DE INTEGRAÇÃO DO TEMPO

Aplicando um princípio de resíduos ponderados (neste caso us<u>a</u> -se o método de Galerkin) ao sistema de seis equações representado em (15) a (18), e expandindo as incógnitas em cada elemento através de funções de interpolação, obtém-se uma expressão matricial do tipo

$$M \dot{X} + A (X) X + P = 0$$
(19)

onde X é a derivada em relação ao tempo do vetor de incógnitas X.

A integração no tempo é efetuada utilizando o método das diferenças finitas empregando a regra trapezoidal, obtendo-se

$$\left[\frac{2}{\Delta t} \underset{\sim}{M} + \underset{\sim}{A} (x_{t+\Delta t})\right] \underset{\sim}{X}_{t+\Delta t} = \left[\frac{2}{\Delta t} \underset{\sim}{M} - \underset{\sim}{A} (x_{t}) \underset{\sim}{X}_{t}\right] - \left(\underset{\sim}{P}_{t} + \underset{\sim}{P}_{t+\Delta t}\right) \quad (20)$$

onde At é o intervalo de tempo. Esta expressão deve ser montada p<u>a</u> ra todos os elementos do sistema e nela devem aplicar-se as correspondentes condições de contorno.

A matriz A é decomposta na soma de uma matriz que contém os termos não lineares $A_{\rm NL}$, e em outra que contém os termos lineares

A_L, empregando-se a seguinte fórmula de recorrência para resolver o problema:

- Primeiro passo (em t+
$$\Delta$$
t):
K₁ X_{t+ Δ t} = K₁ X_t - (P_t + P_{t+ Δ t}) (21)
- Segundo passo (em t+2 t):
K₁ X_{t+ 2Δ t} = K₂ X_{t+ Δ t} - (P_{t+ Δ t} + P_{t+ 2Δ t}) -
- $\phi A_{NL}(X_{t+\Delta}t)X_{t+\Delta}t$ (22)

onde

 $K_1 = \frac{2}{\Delta t} M + A_L$ e $K_2 = \frac{2}{\Delta t} M - A_L$

Pode observar-se que no primeiro passo, expressão (21), não foram levados em conta os termos não lineares no membro esquerdo $[A_{NL}(X_{t+\Delta t}) \cdot (X_{t+\Delta t})]$ e no membro direito $(A_{NL}(X_t)X_t)$; jã no segundo passo, expressão (22), não foram considerados os termos não lineares no membro esquerdo $(A_{NL}(X_{t+2\Delta t})X_{t+2\Delta t})$, sendo que no membro direito aparece multiplicado por um fator ϕ . Se $\phi=0$, o problema é linearizado por eliminação dos termos não lineares; entretanto se $\phi=4$ significa que, à maneira do método dos passos fraccionários [10], a so ma das equações correspondentes a cada passo daria um sistema bala<u>n</u> ceado em t+At, fornecendo resultados em t+2At.

Pode observar-se que foi feita a seguinte hipótese (se $\phi=4$):

$$4 \stackrel{A}{_{NL}} (X_{t+\Delta t}) \stackrel{X}{_{t+\Delta t}} = \stackrel{A}{_{NL}} (X_{t}) \stackrel{X}{_{t+}} + 2 \stackrel{A}{_{NL}} (X_{t+\Delta t}) \stackrel{X}{_{t+\Delta t}} +$$
$$+ \stackrel{A}{_{NL}} (X_{t+2\Delta t}) \stackrel{X}{_{t+2\Delta t}}$$
(23)

A matriz K_1 é estacionária e deve ser calculada e triangularizada uma só vez em todo o processo; para cada elemento, K_1 vem da da por

sendo:

$$\underline{M}' = \int_{A} \underbrace{\phi}_{i} \underbrace{\phi}_{i}^{T} dA ; \quad \underline{G}_{x_{i}} = g \int_{A} \underbrace{\phi}_{i} \frac{\partial \underbrace{\phi}_{i}^{T}}{\partial x_{i}} dA ; \quad \underline{N}_{x_{i}}^{j} = -\int_{A} (\underbrace{\phi}_{i}^{T} h_{j}^{n}) \frac{\partial \underbrace{\phi}_{i}^{T}}{\partial x_{i}} \underbrace{\phi}_{i}^{T} dA$$

(i=1,2) (refere-se ao eixo) (j=1,2) (refere-se à camada)

onde ϕ são as funções de interpolação, T indica transposição, n é o número de nós do elemento e A o domínio do elemento.

No vetor de incógnitas X estão incluídas as componentes das velocidades em cada camada, e a elevação $\eta_1 e \eta_2$ de cada camada em relação aos níveis médios $h_1 e h_2$, respectivamente. No vetor de ter mos independentes P tem-se

$$\mathbf{p}^{\mathrm{T}} = \left\{ \mathbf{w}_{\mathbf{x}_{1}}^{\mathrm{n}} \quad \mathbf{w}_{\mathbf{x}_{2}}^{\mathrm{n}} \quad \overline{\mathbf{Q}}_{1}^{\mathrm{n}} \quad \mathbf{0} \quad \mathbf{0} \quad \overline{\mathbf{Q}}_{2}^{\mathrm{n}} \right\}$$
(25)

onde

$$\mathbb{W}_{\mathbf{x}_{\underline{i}}} = \frac{\rho_{\mathbf{a}} \gamma^{2}}{\rho_{1}} \mathbb{V}_{\mathbf{v}}^{2} \cos(\mathbf{x}_{\mathbf{v}}, \mathbf{x}_{\underline{i}}) \int_{\mathbf{A}} \frac{\Phi}{(\Phi^{T} H^{n})} d\mathbf{A}$$

sendo \overline{Q}_1 e \overline{Q}_2 os fluxos que entram e/ou saem de cada camada.

A matriz que contémos termos não lineares ${\tt A}_{\rm NL}\left(x\right)$ vem dada por

onde

$$\begin{split} \tilde{A}_{j} &= \int_{A} \left(\tilde{\phi}^{T} \ v_{k}^{j^{n}} \right) \notin \frac{\partial \tilde{\phi}^{T}}{\partial x_{k}} \ dA \quad ; \\ \tilde{B}_{x_{k}} &= g \int_{A} \left(\frac{\partial \tilde{\phi}^{T} (\eta_{1}^{n} - \eta_{2}^{n})}{(\tilde{\phi}^{T} \ H_{1}^{n})} \ \tilde{\phi} \ \frac{\partial \tilde{\phi}^{T}}{\partial x_{k}} \ dA \quad ; \\ \tilde{D}_{x_{k}} &= g \int_{A} \left(\frac{\partial \tilde{\phi}^{T}}{\partial x_{k}} \ \tilde{h}_{1}^{n} \right) \ \frac{\tilde{\phi}}{(\tilde{\phi}^{T} \ H_{1}^{n})} \ dA \quad ; \\ \tilde{L}_{x_{k}}^{j} &= \int_{A} \left(\tilde{\phi}^{T} \ \eta_{j}^{n} \right) \ \frac{\partial \tilde{\phi}}{\partial x_{k}} \ \tilde{\phi}^{T} \ dA \quad ; \\ \tilde{L}_{x_{k}}^{j} &= g \int_{A} \left(\frac{\tilde{\phi}^{T} \ \eta_{j}^{n}}{(\tilde{\phi}^{T} \ H_{2}^{n})} \right) \ \tilde{\phi} \ \frac{\partial \tilde{\phi}^{T}}{\partial x_{k}} \ dA \quad ; \\ \tilde{E}_{x_{k}} &= g \int_{A} \left(\frac{\tilde{\phi}^{T} \ \eta_{j}^{n}}{(\tilde{\phi}^{T} \ H_{2}^{n})} \right) \ \tilde{\phi} \ \frac{\partial \tilde{\phi}^{T}}{\partial x_{k}} \ dA \quad ; \\ \tilde{S}_{x_{k}} &= g \int_{A} \left(\delta \ \frac{\partial \tilde{\phi}}{\partial x_{k}} \ \tilde{h}_{1}^{n} + \frac{\partial \tilde{\phi}}{\partial x_{k}} \ \tilde{h}_{2}^{n} \right) \ \frac{\tilde{\phi}}{(\tilde{\phi}^{T} \ H_{2}^{n})} \ dA \quad ; \\ \tilde{E}_{j}^{1} &= \int_{A} \tilde{C}_{i} \ \tilde{F}_{i}^{1} \left[\tilde{\phi}^{T} \ (\tilde{\psi}_{1}^{n} - \tilde{\psi}_{2}^{n}) \right] \ \frac{\tilde{\phi}}{\tilde{\phi}^{T}} \ \tilde{\theta}_{j}^{n} \ dA \quad ; \\ \tilde{F}_{j}^{1} &= \int_{A} \tilde{C}_{i} \ \tilde{F}_{i}^{1} \left[\tilde{\phi}^{T} \ (\tilde{\psi}_{1}^{n} - \tilde{\psi}_{2}^{n}) \right] \ \frac{\tilde{\phi}}{\tilde{\phi}^{T}} \ \tilde{\theta}_{j}^{T} \ dA \quad ; \\ \tilde{F}^{f} &= \frac{g}{C^{2}} \int_{A} \left(\tilde{\phi}^{T} \ \tilde{\psi}_{2}^{n} \right) \ \frac{\tilde{\phi}}{\tilde{\psi}_{2}} \ \tilde{\phi}^{T} \ \tilde{\theta}_{2}^{n} \ dA \end{split}$$

EXEMPLOS DE APLICAÇÃO

Exemplo 1

Seja o canal da Figura 2 onde estão indicados os dados util<u>i</u> zados. A solução analítica para as ondas estacionárias, sem levar em conta a fricção e a convecção, é a seguinte [2]:

$$\eta_1 = \left\{ A \cos k_1 x + B \cos k_2 x \right\} \operatorname{sen} \omega t$$
(27)

$$\eta_{2} = \left\{ A \left(1 - \frac{gh_{1}}{\omega^{2}} k_{1}^{2} \right) \cos k_{1} x + B \left(1 - \frac{gh_{1}}{\omega^{2}} k_{2}^{2} \right) \cos k_{2} x \right\} \text{ sen } \omega t$$
 (28)

onde

$$A = \frac{a(1 - \frac{gh_1}{\omega^2} k_2^2)}{(k_1^2 - k_2^2) \frac{gh_2}{\omega^2} \cos k_2 L}$$
$$B = \frac{a(\frac{gh_1}{\omega^2} k_1^2 - 1)}{(k_1^2 - k_2^2) \frac{gh_1}{\omega^2} \cos k_2 L}$$

$$\begin{cases} k_1 \\ k_2 \end{cases} = \begin{cases} \frac{1}{2} \frac{\rho_2}{\rho_2 - \rho_1} \frac{(h_1 + h_2)}{g h_1 h_2} \omega^2 \pm \\ \pm \omega^2 \left[\frac{1}{2} \frac{\rho_2}{\rho_2 - \rho_1} \frac{(h_1 + h_2)}{g h_1 h_2} - \frac{\rho_2}{\rho_2 - \rho_1} \frac{1}{g^2 h_1 h_2} \right]^{\frac{1}{2}} \end{cases}$$

sendo L o comprimento do canal.

Na Figura 3 são indicados os valores de $\eta_1 \in \eta_2$ no tempo t = = T = 500seg e na Tabela 1 se compara os resultados analíticos e nu méricos em t = 2T = 1000seg.

x	SOLUÇÃO ANALÍTICA		SOLUÇÃO NUMÉRICA		
	η	л ₂	η ₂ nós laterais	n₂ nós laterais	n₂ nós centrais
0	0,20000	0,20000	0,20000	0,00000	0,00000
25	0,20208	0,01189	0,20208	0,01389	-0,00066
50	0,20397	0,05845	0,20399	0,05937	0,05457
75	0,20572	0,12189	0,20569	0,13348	0,11289
100	0,20739	0,17781	0,20738	0,18052	0,17341
125	0,20902	0,20472	0,20902	0,21163	0,20940
150	0,21964	0,19243	0,21064	0,19098	0,19283
175	0,21224	0,14607	0,21226	0,13434	0,16278
200	0,21378	0,08402	0,21378	0,08945	0,08681
225	0,21518	0,03078	0,21520	0,02216	0,02428
250	0,21640	0,00740	0,21643	-0,00147	0,01459
275	0,21742	0,02323	0,21745	0,02324	0,01940
300	0,21824	0,07229	0,21823	0,07128	0,06761
325	0,21892	0,13561	0,21891	0,13816	0,13603
350	0,21951	0,18862	0,21951	0,19685	0,18662
375	0,22007	0,21076	0,22002	0,22215	0,20848
400	0,22061	0,19351	0,22056	0,20848	0,18763
425	0,22113	0,14369	0,22115	0,14068	0,13766
450	0,22156	0,08085	0,22157	0,06963	0,08849
475	0,22186	0,02957	0,22184	0,02565	0,03199
500	0,22196	0,00991	0,22204	-0,00672	0,01547

Tabela 1

At = 10 seg.; solução numérica calculada em 2T

T = 500 seg.

Exemplo 2

Seja um fluxo estratificado unidimensional estacionário com os dados indicados na Figura 4. Assumindo que as variações da profundidade total H_1+H_2 são pequenas em relação às de H_2 (devido a que o número de Froude baseado em H_1+H_2 e a velocidade média do fluxo é muito menor à unidade) Schiff e Schönfeld [3] derivaram a seguinte equação para a interface:

$$\frac{dH_2}{dx} = -\frac{dH_1}{dx} = \frac{c^{f}(1-\zeta)^{3} \frac{|q_2|q_2}{q_1^2} - c^{\frac{1}{2}} \left[\zeta - \frac{q_2}{q_1} (1-\zeta) \right] \left[\zeta - \frac{q_2}{q_1} (1-\zeta) \right]}{\left\{ -\frac{1}{F^2} (1-\zeta)^{3} \zeta^{3} + \zeta^{3} + (1-\zeta)^{3} (\frac{q_2}{q_1})^{2} \right\}}$$
(29)

onde

 $c^{f} = g/C^{2}$ (C: coef. de Chezy); $\zeta = H_{2}/(H_{1}+H_{2});$ $F = \rho q_{1}^{2}/[(H_{1}+H_{2})^{3} g \Delta \rho]$

e sendo q, e q, os fluxos por unidade de largura.

Figura 4. Fluxo estratificado estacionário e malha de elementos finitos para o modelo numérico

O modelo transiente é aplicado com $\Delta t = 4 \text{ seg. até atingir o es}$ tado estacionário. Na Tabela 2 são comparadas as soluções "analíti cas" (resolvendo (21) com o método de Runge Kutta de quarta ordem) e numérica para η_2 ao atingir o fluxo do regime estacionário. Neste caso adotou-se intervalos de tempo que satisfazem a condição de estabilidade de Courant-Friedricks-Levy já que Δt maiores apresentavam instabilidade numérica; por outro lado, os fluxos q₁ e q₂ foram introduzidos de forma gradual até atingir o valor final pelas mesmas razões.

х	n ₁ (m)	TI 2	n ₂
(m)	Elementos Finitos	Elementos Finitos	(29) Usando Runge Kutta
0	$4, 4 \times 10^{-5}$	$-3,283 \times 10^{-2}$	$-3,263 \times 10^{-2}$
20	$3,6 \times 10^{-5}$	$-2,640 \times 10^{-2}$	$-2,683 \times 10^{-2}$
40	$2,7 \times 10^{-5}$	$-1,941 \times 10^{-2}$	$-1,935 \times 10^{-2}$
60	$1,8 \times 10^{-5}$	-1,289 x 10 ⁻²	$-1,284 \times 10^{-2}$
80	$0,9 \times 10^{-5}$	$-0,627 \times 10^{-2}$	$-0,639 \times 10^{-2}$
100	$0,0 \times 10^{-5}$	0,025 x 10 ⁻²	$0,000 \times 10^{-2}$
120	$-0,8 \times 10^{-5}$	$0,667 \times 10^{-2}$	$0,639 \times 10^{-2}$
140	-1,8 x 10 ⁻⁵	$1,314 \times 10^{-2}$	$1,284 \times 10^{-2}$
160	$-2,7 \times 10^{-5}$	$1,941 \times 10^{-2}$	$1,935 \times 10^{-2}$
180	-3,6 x 10 ⁻⁵	$2,588 \times 10^{-2}$	$2,683 \times 10^{-2}$
200	$-4,5 \times 10^{-5}$	$3,200 \times 10^{-2}$	3,263 x 10 ⁻²

Tabela 2. Comparação de resultados analíticos e numéricos

CONCLUSÕES

No presente trabalho foi deduzido o sistema de equações que go verna o fluxo estratificado quando existem duas camadas; sua extensão para o caso da existência de maior número de camadas é imediato. Como em geral o tempo de integração para a simulação numérica de um problema real é bastante grande, convém formular um esquema implíci to onde seja possível tomar intervalos de tempo grandes sem perder significativamente a precisão e sem que o acoplamento resultante de tal esquema implique num consumo excessivo de tempo de processamento na montagem e solução do sistema de equações.

O modelo matemático demonstra, para os casos simples apresen tados, sua capacidade em simular um escoamento estratificado.

Existem ainda algumas dificuldades que devem ser analisadas. Assim, por exemplo, resultaria mais próximo do real considerar uma variação vertical das velocidades no lugar de uma velocidade constante em toda a camada; também é necessário estudar com mais profun didade a influência de viscosidade turbulenta e da mistura entre as camadas nas condições de contorno e nas tensões interfaciais.

Finalmente, a comparação dos resultados do modelo com medidas num protótipo torna-se fundamental antes de extrapolar aos efeitos de obter uma previsão do fluxo num sistema qualquer.

REFERÊNCIAS

- [1] Vass, R.J. Characteristics of the interfacial region of a two layer flow system. <u>In</u>: International Symposium on River Mechanics. Proceeding IAHR, Bankgok, Thailand, 1973. p.441-451.
- [2] Connor, J.J. et alii. Analytical models for one and two-layer systems in rectangular basins. <u>In</u>: Mathematical Models for the Massachussets Bay. Washington, Ralph M. Pearson Laboratory for Water Resources and Hydrodynamics of M.I.T., 1973. v.2.
- [3] Schiff, J.B. & Schönfeld, J.C. Theoretical considerations on the motion of salt and fresh water. <u>In</u>: International Hydraulic Convection. <u>Proceeding</u>. Minessota 1953. IAHR/J. of the Hyd. Div., ASCE, New York, 1953. p.321-333.
- [4] Fisher, J.; Dimars, J.D. & Ippen, A.T. Mathematical Simulation of tidal time-averages of salinity and velocity profiles in estuaries. <u>In</u>: Rep nº 151. Washington, Ralph M. Pearson Laboratory for Water Resources and Hydrodynamics of MIT, 1972. 193p.
- [5] Dazzi, R. & Tomassino, M. Mathematical model of salinity intrusion in the Delta of the Po River. In: International Conference on Coastal Engineering, 14. Copenhagen, 1974. Cap. 134, p.2303-2321.
- [6] Hodgins, D.O.; Osborn, T.R. & Quick, M.C. Numerical model of stratified estuary flow. <u>Journal of the Wateway</u>, <u>Port</u>, <u>Coastal and Ocean Division</u>, <u>95</u> (2): 621-631, Mar.1969. ASCE, New York.

- [7] Wang, H.P. Multi-leveled finite element hydrodynamics model of Block Island Sound. <u>In</u>: Finite Element in Water Resources. Pentech Press, 1975. p. 4.69-4.93.
- [8] Kawahara, M.; Kobayashi, M. & Makata, K. A three dimensional multiple level finite element, considering variable water density. <u>Finite Element in Fluids</u>, <u>4</u>: p.129-156, 1982. J. Wiley & Sons.
- [9] Kawahara, M. et alii. Selective lumping finite element method for shallow water flow. <u>Int. Journal of Num. Meth. in Fluid</u>, 4 (1) : 89-112, 1982.
- [10] Yanenko, N. <u>The method of fractional steps</u>. Springer Verlag (1971).
- [11] Awruch, A.M. Modelos numéricos em hidrodinâmica e fenômenos de transporte usando elementos finitos. Tese de Doutorado. COPPE/UFRGS, Maio 1983.

VIABILIDADE DA ANÁLISE TÉRMICA EM ESCALA DO PRIMEIRO SATÉLITE BRASILEIRO

Fernando Manuel Ramos Instituto de Pesquisas Espaciais

Pedro Carajilescov – Membro da ABCM PUC/RJ – Departamento de Engenharia Mecânica

RESUMO

Este trabalho analise a viabilidade do emprego de modelos em escala reduzida na realização de testes de simulação espacial visando obter a distribuição de temperaturas do protótipo do primeiro satélite brasileiro. As condições gerais para o modelamento térmico em e<u>s</u> cala são estabelecidas e as técnicas de preservação das temperaturas e preservação dos materiais são consideradas. Modelos em escala do satélite são especificados e seus comportamentos térmicos são ca<u>l</u> culados e comparados com o comportamento do protótipo em escala real.

ABSTRACT

This paper analyses the feasibility of testing reduced-scale thermal models of the first brazilian type spacecraft in simulated space environment in order to obtain the prototype temperature distribution. General conditions for thermal scaling are established and the temperature preservation and materials preservation techniques are considered. Reduced-scale thermal models are specified and their temperature distributions are calculated and compared to the prototype.

INTRODUÇÃO

Um dos aspectos mais delicados no desenvolvimento de um satélite é assegurar que, quando em órbita, todos os equipamentos do sistema operarão dentro dos seus limites de temperatura especificados. Esta tarefa exige uma cuidadosa especificação dos materiais, cobertu ras e dispositivos que regularão as trocas de calor no satélite durante sua vida útil, o que, por sua vez, demanda uma multiplicidade de atividades como a realização de testes térmicos sob vácuo ou a execução de simulações numéricas das condições de operação do sistema.

Atualmente, mesmo com o desenvolvimento de rotinas computacio nais rápidas para o cálculo da distribuição de temperatura em satéli tes, verifica-se que é imprescindível a realização de ensaios experi mentais em maquetes com o objetivo de aumentar a confiabilidade do projeto, especialmente quando os acoplamentos são difíceis de modelar analiticamente ou quando as propriedades dos materiais e das superfícies não são bem conhecidas.

O aumento do porte e da complexidade dos satélites tem exigido o emprego de instalações de teste cada vez maiores, com custos operacionais exponencialmente crescentes. Observou-se que o custo de um programa de testes térmicos pode representar até 7% do custo total de desenvolvimento de um satélite [1]. Por isto, desde a década de sessenta, propôs-se a utilização de modelos térmicos em escala reduzida no lugar de protótipos em escala real, possibilitando a realiza ção de ensaios mais rápidos e menos onerosos, em instalações menores e mais baratas.

No começo do programa espacial americano, foram determinadas as condições gerais para o modelamento térmico em escala de satélites [2,3] e duas principais técnicas foram desenvolvidas. Na primeira técnica, chamada "técnica de preservação das temperaturas", o modelo em escala é concebido de modo a reproduzir ponto a ponto a distribuição de temperaturas do protótipo. Na segunda técnica, chamada "técnica de preservação dos materiais", o modelo e o protótipo são construídos com os mesmos materiais. Nesta técnica, as temperaturas em pontos homólogos do modelo e protótipo são diferentes mas estão relacionadas por uma razão constante e conhecida. Os problemas e os erros associados a ambas as técnicas foram analisados por alguns au tores [4,5].

Após 1965, foram realizadas investigações experimentais para determinar a viabilidade da utilização de modelos em escala no âmbi to de diversos projetos espaciais. Foram utilizados modelos em esca la, por exemplo, no desenvolvimento da sonda Voyager [6] e no programa Apollo [7].

O presente trabalho analisa a viabilidade do desenvolvimento de modelos térmicos em escala reduzida para o primeiro satélite br<u>a</u> sileiro a ser lançado em 1989. Quatro modelos foram especificados e os seus comportamentos térmicos foram calculados e comparados com a distribuição de temperaturas do protótipo.

CRITÉRIOS PARA MODELAMENTO EM ESCALA

Para um satélite dividido em "n" regiões isotérmicas, a equa ção de balanço térmico para o i-ésimo nó pode ser expressa por

$$\rho_{i}C_{i}V_{i} \frac{dT_{i}}{dt} + \sum_{j=1}^{n} R_{ij} (T_{i}^{*} - T_{j}^{*}) + \sum_{j=1}^{n} S_{ij}(T_{i} - T_{j}) - \phi_{i} - \phi_{i} = 0 , \quad (i=1,2,\ldots,n)$$
(1)

onde $(\rho_i C_i V_i)$ representa a capacidade térmica do nó i, $R_{ij} \in S_{ij}$ são, respectivamente,os coeficientes de acoplamento radiativo e condutivo entre os nós i e j, ϕ_i é a carga térmica externa absorvida pelo nó i devido a insolação direta, albedo e radiação terrestre, P_i é a potência térmica dissipada internamente no i-ésimo nó.

A solução do sistema de equações (l) permite determinar o comportamento térmico do satélite desde que as cargas térmicas dos diversos nós sejam conhecidas.

Considerando um modelo térmico deste satélite onde cada par<u>a</u> metro e variável tenham sido escalonados por um correspondente fator de escala, y, sua distribuição de temperaturas pode ser descríta pe lo seguinte sistema de equações:

$$\frac{(\gamma_{p}\gamma_{c}\gamma_{L}^{j}\gamma_{T})}{\gamma_{t}} \rho_{i}C_{i}V_{i} \frac{dT_{i}}{dt} + (\gamma_{R}\gamma_{T}^{u})\sum_{j=1}^{n} R_{ij}\sigma(T_{i}^{u}-T_{j}^{u}) +$$

$$+ (\gamma_{S}\gamma_{T})\sum_{j=1}^{n} S_{ij}(T_{i}-T_{j}) - \gamma_{\phi}\phi_{i} - \gamma_{p}P_{i} = 0 ,$$

$$(i=1,2,...,n) \qquad (2)$$

Para que modelo em escala e protótipo sejam termicamente semelhantes entre si, impõe-se:

$$\frac{\gamma_{p}\gamma_{c}\gamma_{L}^{J}\gamma_{T}}{\gamma_{t}} = \gamma_{R}\gamma_{T}^{*} = \gamma_{S}\gamma_{T} = \gamma_{\phi} = \gamma_{p} .$$
(3)

Os coeficientes de acoplamento radiativo e condutivo e a car ga térmica externa são usualmente expressos por

$$R_{ij} = \varepsilon_i A_i \{\sum_{k=1}^{n} F_{ik} [\delta_{jk} - (1 - \varepsilon_j) F_{jk}]^{-1} \} \varepsilon_j , \qquad (4)$$

$$S_{ij} = \frac{K_{ij}A_{ij}}{L_{ij}} + h_{ij}A_{c,ij}$$
 (5)

$$\phi_{i} = \alpha_{i} A_{i} H_{i}$$
 (6)

Nestas expressões, A_i , A_{ij} , $A_{c,ij}$ representam a área do nó i, a área da seção reta entre os nós i e j e a área de contacto entre nós adjacentes, respectivamente, enquanto que $\varepsilon_i = \alpha_i$ são a emissividade e a absortividade do nó i e $K_{ij} = h_{ij}$ representam a condutividade térmica e a condutividade de contacto. Finalmente, H_i é o flu xo térmico incidente sobre o i-ésimo nó e F_{ik} é o fator de forma do nó i em relação ao nó k.

Considerando identidade geométrica e emissividades iguais en tre regiões homólogas do modelo em escala e do protótipo, as equações (4), (5) e (6) indicam que
$$\gamma_{\rm R} = \gamma_{\rm L}^2 , \quad \gamma_{\rm S} = \gamma_{\rm k} \gamma_{\rm L} = \gamma_{\rm h} \gamma_{\rm L}^2 , \quad \gamma_{\rm \varphi} = \gamma_{\rm \omega} \gamma_{\rm L}^2 \gamma_{\rm H} . \tag{7}$$

Substituindo (7) em (3), segue:

$$\frac{\gamma_{p}\gamma_{c}\gamma_{L}^{\dagger}\gamma_{T}}{\gamma_{t}} = \gamma_{L}^{2}\gamma_{T}^{4} = \gamma_{k}\gamma_{L}\gamma_{T} = \gamma_{h}\gamma_{L}^{2}\gamma_{T} = \gamma_{\alpha}\gamma_{L}^{2}\gamma_{H} = \gamma_{p}$$
(8)

Em geral, um grande número de elementos de um satélite é constituído por placas, cascas, perfis, onde a distribuição de temperaturas pode ser considerada bidimensional. Neste caso, a espessu ra de um elemento pode ser escalonada independentemente do fator de escala adotado para as demais dimensões. Este procedimento permite ajustar a condutância térmica entre dois nós, modificando a área de passagem de calor. Considerando γ_{δ} como o fator de escala das espes suras, segue

$$\frac{\gamma_{\rho}\gamma_{c}\gamma_{\delta}\gamma_{L}^{2}\gamma_{T}}{\gamma_{t}} = \gamma_{L}^{2}\gamma_{T}^{4} = \gamma_{k}\gamma_{\delta}\gamma_{T} = \gamma_{h}\gamma_{L}^{2}\gamma_{T} = \gamma_{\alpha}\gamma_{L}^{2}\gamma_{H} = \gamma_{p}$$
(9)

Esta expressão define as condições para o desenvolvimento de um modelo em escala a partir de um dado protótipo.

ESPECIFICAÇÃO DOS MODELOS EM ESCALA

.

Para aplicação da técnica de modelamento térmico em escala, considerou-se o protótipo da estrutura do primeiro satélite brasileiro, ilustrado na Figura 1. Dados gerais sobre este protótipo estão apresentados na Tabela 1.

Foram especificados quatro modelos de acordo com técnicas de escalonamento e para regimes de operação diferentes, conforme segue:

TÉCNICAS	PERMANENTE	TRANSITÓRIO
Preservação das Temperaturas	Modelo I	Modelo III
Preservação dos Materiais	Modelo II	Modelo IV

Fig. 1. Vista explodida do primeiro satélite brasileiro

TABELA 1. Especificaçõe	s Gerais do Protótip	0
-------------------------	----------------------	---

COMPONENTES	MATERIAL	δ (mm)	K (W/mK)	pC x 10 ⁵ (J/m ³ K)
Cilindro central	A1 2024	2.00	121.0	25.5
Painéis porta- equipamentos	Painel sandu <u>í</u> che de alumí- nio	26.21	4.42	1.60
Painéis laterais e anti-geocēntr <u>i</u> co	Painel sandu <u>í</u> che de alumí- nio	13.51	7.79	2.69

Os seguintes critérios foram adotados:

- a) Y_L = 0.5 compromisso entre o tamanho dos modelos e a dimensão das instalações de teste do INPE;
- b) Y_m = 1 para preservação das temperaturas;
- c) $\gamma_0 = \gamma_c = \gamma_k = 1 = para preservação dos materiais;$
- d) o primeiro termo da eq. (9) não considerado para regime permanente;
- e) $\gamma_{\alpha} = 1$ mesma cobertura externa para modelos e protótipo;
- f) Y_h = 1 utilização da mesma graxa térmica nos contactos do protótipo e dos modelos.

A condutividade térmica dos painéis sanduíches foi calculada de acordo com modelo proposto por Daniels et alii (8).

Os dados selecionados para os modelos em escala e os fatores de escala mais importantes são apresentados nas Tabelas 2 e 3, respectivamente.

	MODEL	ΙQ	MODE	II QU	MODEL) III	MODELO	IV
COMPONENTES	MAT.	δ (mm)	MAT.	් (mm)	MAT.	් (mm)	MAT.	් (mm)
Cilindro Cen- tral	Aço Inox 430	2.37	Al 2024	1.02	Aço Inox 430	2.78	Al 2024	2.00
Painēis Porta- Equipamentos	Aço Inox 316	1.98	Al 2024	0.41	Aço Inox 316	2.00	Painéis Sanduíche de alumínio	26.21
Painéis Late- rais e Anti-Ge ccêntrico	Aço Inox 316	1.79	Al 2024	0.41	Aço Inox 316	1.79	Painéis Sanduíche de alumínio	13.61

TABELA	2.	Especificad	oes	dos	modelos	em	escala
					111 C C C C C C C C C C C C C C C C C C		

	Υ _T	Υt	YL	Υ _H	Υp
MODELO I	1.0	-	0.5	1.0	0.25
MODELO II	1.24	-	0.5	2.30	0.58
MODELO III	1.0	1.95	0.5	1.0	0.25
MODELO IV	1.59	0.25	0.5	6.35	1.59

TABELA 3. Fatores de Escala

Deve-se acrescentar que todos os modelos em escala foram especificados considerando materiais e bitolas disponíveis comercialmente.

RESULTADOS

O comportamento térmico do protótipo e dos modelos foi simulado numericamente com o conjunto de programas de análise térmica desenvolvido pelo Grupo de Controle Térmico do INPE [9]. Os sistemas foram divididos em nós isotérmicos, como ilustrado na Figura 2, e analisados sob diversas condições de operação, em regime permanen te e transitório. Em regime transitório, considerou-se uma órbita circular com 700 Km de raio e 25⁰ de inclinação, típica do primeiro satélite brasileiro.

As Figuras 3 e 4 mostram os resultados das simulações para o desempenho dos modelos I e II comparado com o comportamento do protótipo, para diferentes posições na órbita (diferentes cargas térmi cas externas).

Figuras 5,6 e 7 apresentam resultados típicos do comportamen to térmico, ao longo de uma órbita, de regiões homólogas do protóti po e dos modelos III e IV. Resultados adicionais podem ser encontra dos nas referências [10] e [11].

Fig. 2. Malha de nós adotada: (a) painel antigeocêntrico, (b) painel porta-equipamentos central, (c) painel porta-equipamentos geo cêntrico, (d) painéis laterais e (e) cilindro central

Fig. 3. Distribuição de temperaturas do protótipo e dos modelos I e II em regime permanente (condição C).

319

Fig. 4. Distribuição de temperaturas do protótipo e dos modelos I e II em regime permanente (condição B).

Fig. 5. Variação da temperatura do nó 2 do protótipo e dos modelos III e IV ao longo de uma órbita.

Fig. 6. Variação da temperatura do nó 38 do protótipo e dos modelos III e IV ao longo de uma órbita

Fig. 7. Variação da temperatura do nó 48 do protótipo e dos modelos III e IV ao longo de uma órbita

Com base nos resultados para regime permanente, verificou-se que os modelos I e II reproduzem o comportamento do protótipo satis fatoriamente com desempenhos equivalentes. Em ambos os modelos, os desvios máximos ocorrem em regiões com altos níveis de potência dis sipada localmente ou com grande incidência de carga externa.

Para regime transitório, os modelos III e IV apresentam um comportamento térmico bastante semelhante ao do protótipo, ao longo de toda a órbita e em todos os nós da malha.

Observou-se, também, que os modelos I, II e III apresentam niveis de temperatura sistematicamente inferiores ao do protótipo, enquanto no modelo IV, único modelo em escala constituído por painéis sanduíche, ocorre o inverso. Este fato resulta da redução de escala do protótipo ter sido efetuada a partir de suas dimensões ex ternas e não pelas linhas médias de seus elementos constitutivos. Como os painéis sanduíche apresentam espessuras significativas, este procedimento introduz distorções não desprezíveis nos modelos em escala, como demonstrado a seguir.

Seja

$$\gamma_{L_n} = \frac{Lm + \delta m}{Lp + \delta p}$$

$$\gamma_{L_r} = \frac{Lm}{Lp}$$
,

onde γ_{L_n} é o fator de escala nominal ($\gamma_{L_n}=0.50$), representando a relação entre dimensões externas, e γ_{L_r} é o fator de escala real calcu lado a partir das linhas médias dos elementos do protótipo (p) e dos modelos (m).

Para os modelos I, II e III, constituídos por chapas finas,tem se que $\delta_{\rm m}$ << $L_{\rm m}.$

Logo

$$\gamma_{L_r} = \gamma_{L_n} (1 + \frac{op}{Lp})$$

ou seja,

$$\gamma_{L_r} > \gamma_{L_n}$$
.

Para o modelo IV, constituído por painéis sanduíche, onde $\delta_{\rm m}^{\,=\,\delta}{}_{\rm p},$ segue que

$$\gamma_{L_r} = \gamma_{L_n} - \frac{\delta p}{L p} (1 - \gamma_{L_n})$$

е

Consequentemente, de acordo com a Equação 8, segue que para os modelos I, II e III

e para o modelo IV

 $\gamma_{T_r} > \gamma_{T_n}$.

Finalmente, a sensibilidade dos modelos em escala foi avaliada com relação a perturbações nos acoplamentos condutivos (γ_S), nos acoplamentos radiativos (γ_D) e nas cargas térmicas (γ_D e γ_{Φ}).

Para isto, foram calculadas, para cada modelo, as sensibilida des médias definidas por:

$$S_{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{\partial^{\gamma} T_{i}}{\partial \gamma_{\alpha}} \right| , \qquad (10)$$

com $\alpha = S, R, p, \phi$.

Para a técnica de preservação das temperaturas, os resultados ilustrados pela Figura 8, indicam que eventuais distorções nos acoplamentos condutivos implicam em pequenas variações no comportamento térmico dos modelos em escala. No entanto, a minimização de perturba ções nos acoplamentos radiativos e nas cargas térmicas é crítica para a garantia do bom desempenho dos modelos em escala. Observa-se, também, que a diminuição dos modelos resulta em dificuldades crescen tes, tornando-se a técnica de modelamento térmico em escala praticamente inviável a partir de $\gamma_{\tau} < 0.25$.

Fig. 8. Variação das sensibilidades em função da redução de escala dos modelos

Considerações análogas podem ser feitas para a técnica de pr<u>e</u> servação dos materiais, embora, neste caso, as perturbações nas cargas térmicas sejam menos críticas.

COMENTÁRIOS FINAIS

O presente trabalho demonstra a viabilidade do emprego de modelos em escala, concebidos de acordo com qualquer uma das técnicas de preservação estudadas, para a simulação do comportamento térmico do primeiro satélite brasileiro. Os modelos especificados reproduzem satisfatoriamente o desempenho do protótipo com desvios médios inferiores a 8°C, para todos os nos e todas as condições de operação an<u>a</u> lisadas.

Deve-se mencionar também que:

- a) a redução da escala do protótipo com base nas suas dimensões externas introduz desvios sistemáticos no desempenho dos modelos em escala. Tais desvios, entretanto, podem ser estimados e corrigidos, adequadamente;
- b) a especificação de valores muito pequenos para o fator de escala dimensional, γ_L, introduz incertezas na distribuição de temperat<u>u</u> ra dos modelos que podem inviabilizar a utilização da técnica de modelamento térmico em escala.

REFERÊNCIAS

- BRINKMANN, F.W. et alii, "Economic use of facilities for thermal testing of large satellites and subsystems", In European Space Agency (ESA), Spacecraft Thermal and Environmental Control Systems, France (1972), pp. 387-396.
- [2] KATZOFF, S., "Similitude in thermal models of spacecraft", Report NASA-TND-1631, Washington (1963).
- [3] JONES, E.P., "Thermal similitude studies", J. Spacecraft and Rockets, V. 1 (4), (1964), pp. 364-369.

- [4] VICKERS, J.M.F., "A study of thermal scale modeling techniques", Report NASA-CR-52598, Caltech (1963).
- [5] FOWLE, A.A., GABRON, F. and VICKERS, J.M.F., "Thermal scale modeling: an experimental investigation", J. Spacecraft and Rockets, V. 3 (4), pp. 577-581.
- [6] GABRON, F., "Thermal scale modeling techniques for Voyager type spacecraft", Report NASA-CR-87447, Caltech (1967).
- [7] SHANNON, R.L., "A thermal scale modeling study for Apollo and Apollo applications", Report NASA-CR-115753 (1972).
- [8] DANIELS, D.H.W. et alii, "Thermal conductivity of metallic honeycomb sandwich panels", In European Space Research Organization (ESRO), Structural and Thermal Tests: Their Evolution and Present Trends, V. 3, Part 1, France (1972), pp. 47-68.
- [9] OLIVEIRA FQ, O.B. et alii, "Programas de análise térmica para satélite: Manual do usuário", INPE, S. José dos Campos, Brasil (1986), (to be published).
- [10] RAMOS, F.M., "Análise em escala de modelos térmicos de satélites", M.Sc. Thesis, INPE (1986).
- [11] RAMOS, F.M., CARAJILESCOV, P., "Thermal scale modeling applied to the first brazilian type spacecraft", I Encontro Nacional de Ciências Térmicas - ENCIT 86 (1986), pp. 79-82.

ÍNDICE GERAL

VOL. IX - Nº 1

THE COUPLED PROBLEM OF THE OPERATING TEMPERATURES AND ELASTOHYDRODYNAMIC LUBRICATION (EHL) OF ROLLING CONTACT BEARINGS

V. A. Schwarz Department of Mechanical Engineering Escola Federal de Engenharia de Itajubá, MG

B. R. Reason School of Mechanical Engineering Cranfield Institut of Technology Cranfield, Bedford – England

A COMPUTER PACKAGE FOR THE MODELLING AND ANALYSIS OF MULTIBODY SYSTEMS

33

5

José Eduardo Zindel Deboni – Membro da ABCM IPEN – Instituto de Pesquisas Energéticas e Nucleares CNEN/SP

VIBRATION CONTROL OF MAGNETICALLY SUPPORTED 47 ROTORS 47

M. Frik R. Weweries University of Duisburg

A SELF-TUNING REGULATOR BASED ON POLE 65 PLACEMENT DESIGN FOR USE IN SATELLITE ATTITUDE CONTROL

José Francisco Ribeiro Antonio Felix Martins Neto João Moro Instituto de Pesquisas Espaciais – INPE/MCT São José dos Campos, SP

> SILGRAF ARTES GRÁFICAS LTDA. TEL.: 263-5685 - 233-0017

VOL. IX - Nº 2

STABILITY OF CENTRIFUGES PARTIALLY FILLED WITH LIQUID	73
Dr. Eberhard Brommundt Institut für Technische Mechanik (Mechanikzentrum) Technische Universitat Braunschweig D-3300 Braunschweig	
DYNAMICS OF THE RELATIVE MOTION OF A SOLID PARTICLE AND A VISCOUS FLUID CONFINED IN CYLINDRICAL DUCTS OF DIFFERENT GEOMETRIES	87
Roberto Guimarães Pereira, Membro da ABCM Maurício Nogueira Frota, Membro da ABCM Departamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro	
DETERMINAÇÃO TEÓRICA E EXPERIMENTAL DA VELOCIDADE DE QUEIMA DE PROPELENTE SÓLIDO	105
Aparecida Minhoko Kawamoto IAE - Divisão de Química CTA - São José dos Campos, SP	
Gordiano Farai de Alvim Filho ITA - Departamento de Aeronáutica CTA - São José dos Campos, SP	
SOBRE AS SOLUÇÕES DE PROBLEMAS DE TROCA DE ENERGIA RADIANTE TÉRMICA	121
Rogério Martins Saldanha da Gama – Membro da ABCM LNCC/CNPq	
ANÁLISE NÃO-LINEAR DO EQUILÍBRIO DE ESTRUTURAS UNIDIMENSIONAIS ELÁSTICAS PLANAS	131
Haroldo Silva da Costa Mattos – Membro da ABCM Rubens Sampaio Filho, Membro da ABCM Depto de Engenharia Mecânica, PUC/RJ	
MODELING OF FLEXIBLE MULTIBEAM SYSTEM BY RIGID-ELASTIC SUPERELEMENTS	151
Werner O. Schiehlen Jochen Rauh University of Stuttgart, Stuttgart, F. R. G.	

SILGRAF ARTES GRÁFICAS LTDA. TEL.: 263-5685 – 233-0017

VOL. IX - Nº 3

A BOUNDARY ELEMENT ALGORITHM FOR PLATE PROBLEMS

J. A. Costa Jr. – Membro da ABCM Departamento de Engenharia Mecânica – PUC/RJ

THE STATE OF THE ART IN ADVANCED HEAT-TRANSFER A REVIEW OF TURBULENT BOUNDARY LAYER HEAT TRANSFER

Robert J. Moffat – Member of ABCM Thermosciences Division Department of Mechanical Engineering Stanford University

> SILGRAF ARTES GRÁFICAS LTDA. TEL.: 263-5685 - 233-0017

157

173

VOL. IX - Nº 4

AETODOLOGIA AUTOMATIZADA PARA O	251
DE PRECISÃO	
Armando Albertazzi Gonçalves Jr.	
JFSC – Departamento de Engenharia Mecânica	
aboratório de Metrologia e Automatização	
DIFFUSION PROBLEMS WITH GENERAL	269
TIME-DEPENDENT COEFFICIENTS	
R. M. Cotta – Membro da ABCM	
nstituto Tecnológico de Aeronáutica	
Departamento de Energia	
M. N. Özisik	
North Carolina State University	
Mechanical and Aerospace Engineering Department	
UM MODELO MATEMÁTICO PARA O ESTUDO	293
DE UM FLUXO ESTRATIFICADO	
Armando M. Awruch	
Universidade Federal do Rio Grande do Sul	
Departamento de Engenharia Civil	
VIABILIDADE DA ANÁLISE TÉRMICA EM ESCALA	311
DO PRIMEIRO SATÉLITE BRASILEIRO	
Fernando Manuel Ramos	
nstituto de Pesquisas Espaciais	
Pedro Carajilescov – Membro da ABCM	

PEDIDO DE ASSINATURA DA RBCM OU NÚMEROS ATRASADOS QUER DA REVISTA OU ANAIS DE CONGRESSOS

- Preencha a ficha abaixo, indicando o desejado, e remeta para ABCM.

Secretaria da ABCM PUC/RJ - ITUC Rua Marquês de São Vicente, 225 - Gávea 22453 - Rio de Janeiro, RJ - Brasil

 Remeta, em anexo, um cheque nominal (Associação Brasileira de Ciên cias Mecânicas) no valor indicado na referida ficha.

	BRASIL AMÉRICA LATINA	EXTERIOR
Anais do COBEM	() 3,0 OTN'S	() US\$ 100,00
Anais do SIBRAT	() 2,0 OTN'S	() US\$ 50,00
Anais do ENCIT	() 2,0 OTN'S	() US\$ 50,00
Número avulso RBCM	() 1,0 OTN'S	() US\$ 15,00
Assinatura da RBCM	() 2,0 OTN'S	() US\$ 40,00
	SINALE SUA SULICITAÇÃO	J
AS.		
AS.		

