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MACHINE-FOUNDATION-SOIL INTERACTION;
COMBINED CONTINUUM AND BOUNDARY
ELEMENT APPROACH

L. Gaul
Institut fur Mechanik
University of the German Armed Forces Hamburg

ABSTRACT

A theoretical approach is developed and programmed to analyze the
three-dimensional dynamic response of machines on foundations inter
acting with soil. Structures and soil are coupled by means of a
substructure technique. The substructure behavior of soil is
treated for rigid and flexible foundation slabs of arbitrary shape.
Surface foundations as well as embedded foundation can be taken
into account. The viscoelastic field equations of soil halfspace
are solved by a continuum approach. Semianalytical solutions are
superimposed by Fourier's integral theorem. The excavated soil for
embedded foundation slabs is described by substructure deletion by
means of combining the continuum approach for the halfspace with the
boundary element approach for the excavated soil domain. The diffi
culties of pure finite element and boundary element discretizatiomns,
namely introduction of artificial soil boundaries and truncation of
discretization respectively, are circumvented by the present method.
The interaction between asingle turbomachinery frame foundation and
soil as well as the interaction through the underlying soil between
adjacent block foundations are considered. The assumptions of per-
fectly smooth and perfectly welded contact at the interface between
soil and bases baund the influence of shear stresses. The impact of
foundation flexibility with respect to rotor vibrations is discussed.
Experimental studies describe the measured sine sweep response and
vibration modes of a small scale frame foundation and a rigid circu
lar block foundation on compressed sand.



170 RevBrMec. Rio de Janeiro. V. ViII, n? 3 — 1986

INTRODUCTION

The prediction of machine vibrations by theoretical approaches
as well as the modification of response after construction often
require taking the interaction between machine, foundation-structure
and subsoil into account. Three examples are given. Figure 1 shows
a discretized model of a drilling machine with long foundation slab
on soil. The impact of static soil-structure interaction was
calculated and measured by Thurat (1978). A base for the dynamic
analysis is given by the soil mocdel in the present paper.

Frame,
'_L”Tonl bar

Mount stiffness F Workpiece

r‘r:: : :‘x ‘_E Table
A\

Concrete foundation \Soil model

Figure 1. Model of drilling machine, foundation slab and soil

A multi body of a forging hammer (Fig. 2) is coupled with a
viscoelastic truncated cone model of soil (Knobloch and Gaul 1975}.
Thurat (1978) calculated and measured the transient response.

Novak (1982) treats a hammer foundation as a system of two masses
on a viscoelastic halfspace including embedment effects.

The global response of turbomachinery frame foundation e.g.
the low-tuned steel foundation with concret raft (Dietz 1972) of
Figure 3 or the response of block foundations are calculated and
studied experimentally by small scale models in the present paper.
Dynamic response results from active excitations by rotor unbalances,

short circuit moments and shaft misalignements or by passive seismic
excitation.
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The function of the foundation is not only to support the
weight of the expensive equipment; the light upper steel plate on
flexible columns (Figure 3) minimizes the amplitudes of shaft
whirling relative to the bearings. Although the tendency often
prevails to treat the rotor, the frame and the foundation as if they
were independent, actually all these substructure interact. This
interaction was treated by Gasch and Sarfeld (1980) for a Laval
shaft on a block foundation and by Aboul-Ella and Novak (1978) for
a turbogenerator on a pile-supported frame foundation. The horizon-
tal soil stiffness in the first paper was calculated by Gaul (1979),
the vertical soil stiffness matrix of the second paper by Gaul {(1977).

oil,
Plistnn { q'-T Hydraul
Ic
! """'fsysl’mn
Pad
Frame
Head
Joint { —F | 3 s
Pl o T ki
“T block
Pad|
Soil /
model

Figure 2. Model of hammer, foundation and soil
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Methods for simulation of scil-structure interaction often
take advantage of substructure techniques by coupling the model of
structure and base plate with the model of the substructure soil.
Structures are usually discretized by finite elements or can be
treated in special cases by analytical dynamic stiffness matrices
as in the present paper. Besides simplified scil models (Gaul and
Plenge 1983) the substructure soil is usually described by finite
elements (Waas 1972), halfspace theory (Holzl8hner 1969, Gaul 1980)
or boundary elements (Ottenstreuer 1982).

Figure 3. Low-tuned steel foundation with concrete raft
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Finite elements do also allow for a simultaneous
discretization of structure and soil. The method is equally
applicable to embedded foundations and inhomogeneous soil. It has
however serious disadvantages when applied to three-dimensional
problems since it requires extensive, complicated and expensive data
management. Energy radiation travelling out to infinity by waves
(geometrical damping) can be represented approximately by semi-
infinite elements, which do only simulate the infinite extension
in the horizontal direction (Waas 1972).

The halfspace theory presented here treats the substructure
s0ll separately. The soil is assumed to be an elastic (HolzlBhner
1969) or viscoelastic (Gaul 1980) homogeneous halfspace. Dynamic
stiffness matrices of the discretized soil surface can be coupled
with rigid or flexible base plates or arbitrary shape (Sarfeld and
Fr&hlich 1980, Gaul 1980). Three-dimensional motion of structures
can be described even in the high frequency range. Soil inhomogenity
has to be approximated by one or two layers or the concept of
equivalent moduli. Embedment has to be approximated as well.

As another tool the boundary element method proved to  be
well suited to handle soil dynamics problems. It is possible to
calculate embedded structures (Dominguez 1978, Huh, Schmid and
Ottenstreuer 1983) as well as layered media.

Viscoelastic material properties and coupling effects of
neighbouring foundations can be described by all three methods,

COUPLING OF SUBSTRUCTURES

The neighbouring structures (Fig. 4) 1nteract with soil.
The transfer behaviour of the three substructures can be descrlbed
in the frequency domain of Fourier transform by dynamic stiffness
matrices [K(iw)] including inertia,damping and stiffness properties.

The substructure matrices of soil (K] and both structures
lK]. [K] are coupled by compatibility requirements of generalized
displacements {U_ } and forces (F.)} at the contact nodes of the
interfaces I and II, Seismic excitation requires the input of
generalized displacements {U_.} at the unloaded interfaces generated
by incoming waves. With the generalized forces of active excitation
{P} the substructure equations are give by
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WL o
5 {u} {p}
[K{iw)] . - -
_{uc}d :{FC}J
(1)
el S 159
i {u} -{F.}
[K{iw)] II Sl U<
{u} {p}
L - - -
and
I I I
i {ugl = {ved {Fo}
[K{iw)] - 1 = II (2)
{ugl - {vc} {p,l

where the generalized displacements of structures {U} are separated
from those at the interfaces {U,}. With given excitation data Egs.
(1) and (2) lead to the generalized displacement response of the
coupled system by solving

{u} {e}
I I
[§]s (U, (o} s | el
[K] {u} {0} (v}

I1 I1I

{ug} {p}

The solution of Eq.(3) leads to complex amplitudes (U} =
= {Ug}l = {Ugpl} + i{UI] corresponding to real displacements {u(t)} =
= {Uglcos wt - {Urlsin wt for time harmonic excitation or to
Fourier transformed displacements, corresponding to transient
excitation. Calculation of transient response requires the inverse
transformation which can be computed efficiently by the fast
Fourier transform algorithm.



RevBrMec, Rio de Janeiro. V. VIII, n9 3 — 1986 1756

Figure 4. Substructures of soil-structure interaction

SUBSTRUCTURE SOIL

Interaction of Soil with Rigid and Flexible Base Plates

The substructure behavior of scil is calculated by the
halfspace approach for idealized rigid base plates and for flexible
plates. The plane interfaces of soil (Fig. 5) are loaded by forces
Fj and moments M; generated by the structures. Solutions of the
field equations of soil have to fulfill mixed boundary values:

- rigid bases require plane displacement fields at the interfaces,
- the soil surface is stressfree elsewhere.

While rigorous formulations by dual integral equations (Gaul
1980a) lead to approximate solutions only for simple base geometries,
the presented superposition method provides solutions for arbitrary
shapes and allows for taking flexible base plates into account.

Arbitrary shapes are modelled by subdividing the interfaces
into rectangqular surface elements. The continuous stress
distributions in the interfaces are discretized by locally constant
pressures in each element, acting harmonically in time. Each
loaded surface element in Fig. 5 defines a stress boundary value -
problem of the halfspace. The assumption of decoupled horizontal
and vertical displacement fields simplifies the analysis. Only
vertical displacements generated bh the load components in Fig. 5
are calculated. The horizontal displacements (Gaul 1977) generated
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by the missing load components are superimposed. To bound the
influence of shear stresses at the vertically moving interfaces:
- smooth contact with vanishing shear stresses,
- welded contact with vanishing horizontal displacements.
are compared. Semianalytical solutions of both boundary value
problems lead to flexibility influence matrices. One complex,
frequency dependent matrix element Eij relates the complex
displacement Wij in the middle of element i to the amplitude (ph}j
of the time harmonic force acting at element j.

Displacement superposition leads to

written with the flexibility matrix [h]

{w} = [h] {F}

s
or with the inverse dynamic stiffness matrix [K] of soil halfspace

H
{F} = [K] {w} .

For rigid bases the corresponding interface stress distribution
is determined by requiring:

- the displacement boundary conditions of the plane interface
displacement fields to be fulfilled in the center of each soil
element,

- the result of the interface stresses to be equivalent to the
halfspace load resultants.

Figure 5. Mixed boundary value problem of socil. Stress boundary
value problem of one interface soil element



RevBrMec. Rio de Janeiro. V. VIII, n93 — 1986 177

The interaction of soil with flexible base plates requires
a plate discretization by finite elements compatible to the scil
element discretization (Fig. 6).

Finite elements

Soil elements

Figure 6. Base plate interacting with soil.
Coupled finite elements and soil elements

The equations of motion of the discretized base plate, which
is loaded by nodal external forces {P}, moments {T}! and halfspace
reactions{F}, are partitioned with respect to the translational {w}
and rotational {¢} degrees of freedom. Coupling of mass matrix [M]
and viscoelastic stiffness matrix (K] of the base plate with soil
is achieved by displacement compatibility at the plate nodes and
soil element centers. Expressing the unknown displacements { w ]
by Eg. (4) avoids the inversion of the flexibility matrix [h] and
leads to a linear set of complex equations

L |
(-w M1+ [K 1) (B +[E] 1 -u' (M, 1| e ) [
I

|
(0" g1 T+ 1Ky 1) (0] 1 —ut i)+ Re1 || (8 {1}
()
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- from which the halfspace reaction {F}, determining the soil
pressure distribution, and the translational and rotational
degrees of freedom {¢} and with Eq. (4) {w} follow. The results
have to be interpreted as complex amplitudes for time harmonic
excitations or as Fourier transform of transient response.

Flexibility Matrix of Soil Halfspace, Stress Boundary Value

Problems for Smooth and Welded Contact

The solutions of the stress boundary value problems of'half-
space, loaded vertically on one surface element (Fig. 5), are given
semianalytically by the Fourier integral for smooth and welded
contact. Compared with elastic halfspace theories, a better
approximation of the rheological properties of soil is given here
by using viscoelastic constitutive eqguations. It turns out, that
the energy dissipation by material damping is of considerable
influence when the geometrical damping by wave radiation is of same
order of magnitude. The equations of motion of the viscoelastic
continuum in terms displacements uilxj,t)

32

t . L. t 3 . u
f E_(t-1) htete P & dtr - e e f G(t_-l-]._u‘.'u.!'l 8t = p i
- D dT 13k "R 3t at?

(6)

are decomposed by

u, = ¢ (7)

1 =9 ve Yy

in two wave equations for the scalar and the vector potential ¢ and
Yy respectively

t a
f 2y t-1 Yort gp w32
3

it T at?
(8)

-

t 17 a3ty
f G(t=T1) —kAL g0 P X
T at?

- ]
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This representation is complete (Gaul 1980)if the constraint
condition wk X = 0 is satisfied. Steady state harmonic motion
5 :

ui(xj,t) = Re{ﬁi(xj) exp (iwt)} (9)

leads to reduced wave equations for dilatation € 'ul,l = ¢ m and
rotations 2mk = ekij uj}i = -wk,ll with relaxation functions of
plane dilatation ED(tl and shear G (t) replaced by complex moduli

* * - *
Ep(iw) =1 (iw) +2G (iw) and G (iw)
- - - g _
5,11'*2“7 T=0, G g+ & w, = o. (10)

ED G
Excluding reflections, solutions are given by
€ = A exp [~ayz + i(Bx + Yy)],
(11)

Gk -8 expl-a z + i (Bx + yy)]

where Re (op ) 2o, ;k x = O. Displacement field and stress field
and stress field are superimposed by these solutions

Wy R Ty oy

— w * i - * — -

Uij -[ED{iw}-zG {iw)] Yoy ok aij + G {iw){“i,j + uj'£) (12)
with A, Bk determined by the boundary conditions. The stress
boundary value problem is solved by superposition of harmonic
vertical displacement waves at the halfspace surface z = 0

wix,y,0,t) =

= 5% (B,v,w) B(B,Y) exp[i(Bx+yy+wt)] (13)
generated by the stress wave

-UzzthYroft} - p(xOY:t} =

= p(B,y) exp [1(Bx + vy + wt)] (14)
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propagating with phase velocity v = w/g, where ¢ =(g¥+ y?)1/%,
Real and imaginary part of the complex wave compliances o
corresponding to smooth (s) and welded (w) contact are plotted in
Fig. 7 versus the velocity ratio v/v'.

; B ! "
7. | “\r+ WY ]
. . Compliance
H* Smooth contact
A™ Welded contact

0.0
l A g
I\, o Viscoelastic halfspace
JPTY S 1) t‘;\ - Const. hysteretic solid
m \ [m 1=02  wm, el
s / v=04
|
%3 : "o = ) : .0 M_'l_y_ .0
Vs

Figure 7. Wave compliances of viscoelastic halfspace

The compliance show the features of a single-degree-of-
freedom system. Welded contact leads to a resonant condition at
the shear wave velocity v_ = vG/p, smooth contact leads to
resonance associated with the slightly slower Rayleigh wave speed
Vg- Fig. 8 shows an experimental setup (Crandall et al.l1971) by
wEich the damping.factors nD(ml, nstw] of the complex moduli
Ep = EDl1+inD}, G = G(1+insl and Poisson's ratioc can be measured.
The damping factors are related by

Np = Ny + (ng = ny) (1 = 2v) /(1 = v),

with damping factor n, of Lamé modulus A* = k(1 + in; ).

Taking advantage of available measured data, results are
presented for the constant hysteretic solid and Kelvin—?oiét-solid
leading to damping factors

“s,x‘”’ = Mg, and s, (w) = a 53'1
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respectively, where a_ = ma/vs is a frequency parameter with

o
characteristic length a.

The obtained harmonic solutions are now superimposed by
integrating with respect to the wave numbers B, y in Fourier's

integral theorem

wix,y,o,t) = %_j]"i"“ (8,Y,0) B (B,Y) x
T
-0

x exp(i(Bx+ yy+wt)] dB dy (15)
with
- 2p. [sinBa. sinYb
PB,Y) = —1 (_____i______i)
m By

being the two-dimensional Fourier transform of the exciting stress
field (Fig. 5) at one surface element of area 4aj bj. The elastic
halfspace leads to improper integrals due to poles the compliance
in Eq. (15) at the shear wave and the Rayleigh wave speed. Solutions
can be obtained by choosing Cauchy's principal value and performing
a contour integration in the complex plane. Here a different
technique is used. Because the viscoelastic halfspace yields finite
resonance amplifications instead of poles (Fig. 7), the integral of
Eq. (15) is no longer improper with respect to the integrand and can
be integrated directly.

Dilatation

Epliw)

Impedance head
Shaker

Figure 8. Clay sandwich for alternating
dilatation and shear tests
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By pointwise evaluation of the complex surface displacement
field, the soil flexibility matrix ([h) of Eq. (4) is obtained with
elements

hyy = Etxi.yilxtsaixj.yjﬂ.

Flexibility Matrix of Excavated Soil Halfspace for Coupling

With Embedded Base Plates by Substructure Deletion

The dynamic stiffness matrix of substructure soil calculated
analytically by solving the field equations of the halfspace can be
applied not only for describing surface foundations but also for
embedded foundations. The effect of embedment can be taken into
account by substructure deletion utilizing the available continuum
and discrete solution techniques.

Finite element discretizations of soil require to introduce
artificial boundaries at some distance from the base plate although
the foundation medium is gebmetrically unbounded. When applying
the boundary element method, surface discretization too has to be
truncated at some distance from the base implying a discretization
error.

These difficulties are circumvented in the present approach
by employing the substructure deletion technique (Fig. 9). i

The dynamic stiffness matrix of the excavated halfspace [Ke]
is calculated from the known dynamic stiffness matrix of the half-
space obtained by the continuum approach [gland the dynamic stiffnes
matrix [K]Jof the excavated domain.

Finite element discretization of the excavated domain
(Dasgupta 1980) requires to condense the internal nodal degrees of
freedom out and leads to [K] = [K] - w?[M] by static condensation.

The author applies surface discretization by the boundary
element method, where condensation drops out.

The boundary nodes are divided in those at the ground level
surface {Es} and those at the excavation surface {Ee}. Interface
conditions at the ground level surface require identity of nodal
forces and displacements at the halfspace surface and excavated
domain surface:

H E H E
(F) = {F_}, {u,}={(u}
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- At the excavated surface equilibrium of nodal forces [P } o+
+ {(F_} = {0} and displacement compatibility {E } -[g } has to bg
fulfilled.

As simultaneous prescription of nodal forces and displacements
on the common boundary points is required,Dasgupta(l1979)demonstrated
that well posedness can be guaranteed if and only if the discrete
models can reproduce those results which are the counterparts of
Almansi's triviality theorem (Almansi 1907).

These requirements and the known dynamic stiffness matrices
of halfspace and excavated domain lead to the dynamic stiffness
matrix of the excavated [ﬂe] (fig, 9). Interaction with an embedded
base plate can be calculated by coupling the dynamic stiffness

matrices.

HALFSPACE

(R} = [K{us)

() fu

EXCAVATED HALFSPACE
(R = [Kafue

(ot -l -ty TR}

Figure 9. Flexibility of excavated soil halfspace
by substructure deletion
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SUBSTRUCTURE FRAME FOUNDATION AND SHAFT

As an example of a sensitive structure interacting with soil
a frame foundation (Fig. 3) is considered. Only the global vibration
behaviour in the low frequency range is treated on the bases of a
simplified model (Fig. 9) which is suited for comparisons with
experimental results from small scale frame foundations.

The rigid upper plate is excited harmonically by the force
Fy and torque Tg generated e.g. by the unbalances of a Laval rotor
with excentricity e. Upper plate and base plate are connected by
flexible columns, rigid bearings and rotating disk are connected
by the flexible shaft. The halfspace reactions are reduced to point
B in the interface. The three-dimensional motion of upper plate,
base plate anddisk are described by displacement coordinates Viely,
wy and the angles of small rotations ¢i' wi' oy respectively. The
geometrically linearized Newton-Euler equations of motion yield
with simbols, coordinates and constraints from Fig.10.
- for the upper plate with mass M, inertia tensor 2.

1]
D - a =
Iij ¢j-+M eijk rj vk =

F D

- b e b BT e
ijk T Px My 1

c (16}

M(vi-eijk r. ¢k] =

B a
=-1p +xp"
a=1

- for the base plate with mass m, inertia tensor J?j

A s

13 %37 Cigk X5

I J—
=

B o o [+ o
8,8 B B
= -ail (eijk xj Pk +Mi]-{Hi +aijk xj Fk )

(17)
u ¢ = B a
8 B
m(ui-eijk xj ¢kl = -uEI Pi -Fi "
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-

- for the rotating disk with mass my, inertia tensor ng, angular
velocity w

a - a . . a
Biy %4 * Opp @ (855 @) = 843030 == Ty

i (18)
mg W = kg +my e w? (cosuwt 611 - sinwt 631i

Flexible columns and flexible shaft are treated as space
beams with distributed mass. The effects of shear, rotary inertia,
static axial force and viscoelastic material properties are
considered in dynamic, complex value stiffness matrices (Aboul-Ella,
Novak 1980, Gaul 1980)

- column a

o
M.F )
- £ ¢
F v,-e
Pi - lki!' ]ﬂ. L "imn "m n (19)
oy o,
* o
S ”
Py Up=€omn *m *n
- shaft
d
Hi ﬂz
d W
5 a -
= [K,,] (20)
i L
D
X \f)

In the frequency domain Egs. (16) to (20) lead to a
substructure equation like Eg. (1)

(K (1w) ] [{U }] - [ (e }] (21)
(u,) ~(r)
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x,,lr,-vg,lzrou l
va
rotor

Column d
a=1,...,B

——

Figure 10. Rotor on frame foundation interacting with soil
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CALCULATED RESULTS OF SOIL-STRUCTURE INTERACTION

Lumped Parameters of Substructure Soil

The solution of the mixed boundary value problem, describing
the interaction between one rigid base and soil leads to the complex
elements of the soil stiffness matrix (Eg. 2) ﬁij = cij[aol +
+ 1 a, dij [aol, which can be modelled as lumped parameters of soil.
The spring and damping coefficients cz(aol and dz(aol corresponding
to vertical vibration of rigid square base are plotted in Fig. 10
versus the frequency parameter a, = ua/vs. The spring coefficient,
describing elastic restoring forces and inertia forces, is slightly
higher in the low frequency range for welded contact than for smooth
contact. This is due to the displacement constraint at the half-
space geometrical damping primarily associated with the Rayleigh
wave for smooth contact. Thus the damping coefficient d: exceeds
d:. In the present paper all lumped parameters additionally depend
on the energy dissipation of soil governed by viscoelasticity. One
important result of the analysis with respect to the uncertainties
of the contact boundary conditions is that it makes little

difference whether the contact at the interface is smooth or welded.
‘ Ll L L Ll

& & e
ol
6 il
Smooth contact
———— Welded contact
‘ - ‘
v 04
Viscoelastic halfspace -E-— =1
2l Kelvin -Voigt maodel
!.'M h/!--ﬂ 1
F,--‘l‘tc:"oiugd:'*lw
0 05 10 ' 15 @ 20

Figure 1l1. Spring and damping coefficient of soil
for vertical motion of a rigid base
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Interaction Between Two Structures

Real and imaginary parts of the complex interface pressure
distribution are given in Fig. 12 corresponding to the interaction
through the underlying soil between two rigid structures, which are

I IT I

excited by forces Pz’ Pz and torques Tx’ T;I due to rotating

unbalanced masses, acting with a phase shift.
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Figure 12. Interface pressure distribution for
adjacent excited bases

Dynamic Response of Machine Foundations

The dynamic response of a frame foundation (Fig. 13) with
eight concrete columns is evaluated as an application of the
presented substructure technique. The system is excited by an
unbalanced rigid rotor. The magnification functions in Fig. 12
describe the amplitudes of horizontal displacements Vs Uy and
vertical displacements Va, Uy According to Fig. 9 vy belongs to

the upper plate and u; to the base plate. The coupled rocking and
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horizontal motion gives rise to two resonant amplifications
indicated by the horizontal displacement amplitudes within the
regarded frequency range. The resonant amplifications are affected
by material daﬁping of soil because rocking motion cause only small
geometrical damping by wave radiation (Gaul, 1980). This indicates
vertical motion being associated with strong geometrical damping.
Frequency independent static lumped parameters of soil lead to the
compared deviations of response. The vibration modes in Fig. 14
show the coupling between a rocking and sliding motion.

.ts Du;ll’ﬂ‘ Ozﬁ,fo, Al:l'fﬂ.
x10°4 4 teifo,  XaVa,  Owiyfe,
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3 L —— Frequency dependent 8
————— Static parameters
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\
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\ M‘.‘“
! \\ ]
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2.
0 T Bl ¥ T - T
1 2 3

Frequency parameter %

Figure 13. Response of frame foundation on soil
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Rigid columns of the frame foundation simplify Egs.(16) to
(21) and lead to the description of a Laval rotor on a block-
foundation (Gasch and Sarfeld 1980, Kr8mer 1984). If only a planr
motion is considered, the system has 5 degrees of freedom. Fig. 5
compares the response of the rotor on a rigid foundation with the
response corresponding to a flexible foundation.

Deflection
scale

wtew/2 ‘\’ﬁun

0=23

Figure 14. Vibration modes of frame foundation on soil
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Analogous to the frame foundation (Fig. 13) the first three
resonant amplifications are predominately due to the foundation,
while the last two are governed by the rotor. The foundation
influence splits one rescnant frequency of the rotor in two of the
combined structure with lower amplitudes.

Rotor on flexible
—-——Rotor on rigid
foundation

A '1.3
fr b =

Horizontal, vertical rotor amplitudes
w

Figure 15. Response of Laval rotor and rigid
and flexible block foundation

Turbomachinery Frame Foundation Supported by Piles

Aboul-Ella and Noval 1978 analyzed the dynamic response of
turbomachinery frame foundations supported by piles or a foundation
slab. Their study investigates interaction of all components of
the system, i.e. flexible rotors, viscoelastic oil film, space frame,
flexible mat piles and soil (Fig. 16). The mat is composed of
rectangular finite plate elements. The pile and soil resistance
is included into mat element stiffness matrix. The dynamic complex
soil stiffness matrix is obtained from Gual (1977).

In the study of Aboul-Ella and Novak special attention is
paid to the effects of scil-structure interaction. It was found
that this interaction markedly affects the response of the frame
as well as the rotors in the lowest resonant regions. The
interaction reduces rotor and frame amplitudes. This results from
the increase in damping due to energy radiation in the soil and
viscoelastic behaviour of soil and mat. The interaction reduces
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the frame vibration more than shaft vibration..

Turbine
Generator Shuft—l Disks
=l o flm—
|| in journal
u ' bearings
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7 :
T e (1111

ca
P Piles

Figure 16, Turbomachinery frame foundation and its model

E.g. Fig. 17 compares the vertical response of frame under
bearing pedestal corresponding to a rotor on elastic frame and
rigid foundation with a rotor on elastic frame and elastic foundation.

EXPERIMENTAL INVESTIGATION OF SOIL-STRUCTURE INTERACTION

Measured Response of a Model Frame Foundation

The response of a frame foundation according to the model
of Fig. 10 was simulated by a small scale model (Fig. 18). Four
rotating unbalances driven via a control gear allow for coupled
and uncoupled excitation by horizontal and vertical forces and
by torsion and rocking moments. The stiffness of coupling between
upper plate and base plate can be varied by changeable columns.
Rubber springs simulate the soil.

The sine sweep response of 12 degrees of freedom where
measured by velocity pick-ups. The results are in good agreement
with those calculated by Egs. (16) to (21) (Gaul, Mahrenholtz 1981).
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The coupled horizontal and rocking modes in Fig. 19 correspond to

the calculated modes in Fig. l4.
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Figure 17. Effect of foundation (piles and soil) flexibility on
vertical response of frame under bearing pedestal

Figure 18. Small scale model of frame foundation
with measuring setup
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Level Shaft on a Model Frame Foundation

For simulating the interaction between rotating shaft, frame
foundation and subsoil on a model scale, the lab model of Fig. 20
has been built. A laval shaft with adjustable disk position and
excentricity driven by a variable speed motor is supported by two
ball-bearings on the upper foundation plate.

Figure 19. Vibration modes of frame
foundation on rubber springs

The experimental work in progress simulates the interaction
effects of the three substructure where the base plate is bedded
on rubber springs, on a foam layer or on a model sand foundation
which is explained in the next chapter.

Steady-State Vibrations of Model Footings

The substructure behaviour of soil was measured on a model
scale by shaker-driven footings at the surface of homogeneous or
layered sand miexed with grave (Fig. 21). The response of
acceleration and phase angle versus frequency of the sine sweep
(Fig. 22) as well as the deduced frequency dependent lumped
parameters of soil are found in satisfactory agreement with
calculated results (Gaul,Maherenholtz 1984).



RevBrMec. Rio de Janeiro, V. VIII, n93 — 1986 195

Figure 20. Lab model for measuring interaction effects between
rotating shaft, frame foundation and subsoil
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Figure 21. Experimental setup of shaker-driven model footing
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SUMMARY AND CONCLUSIONS

On the basis of substructuring a theoretical approach has
been formulated and programmed to analyze the three-dimensional
dynamic response of machine foundations considering the interaction
of the system components; namely, viscoelastic soil,frame and rotor,
as well as the interaction through the underlying soil with an
adjacent structure. Geometrical as well as material damping of
soil are considered., Material damping is found to be of considerable
influence for rocking motion, The influence of shear stresses at
the interface between base and soil is limited. It makes little
difference whether the contact at the interface is smooth or welded.
The dynamic response of a model frame foundation and a model footing
on compressed sand are measured. Both, theoretical approach and
experiments, provide a good understanding of the basic interaction
effects.
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Figure 22. Sine sweep response of vertical vibration
for a circular model footing
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TOWARD THE UTILIZATION OF COMPUTER
INTELLIGENCE IN METAL MACHINING

Dr. Hejat Olgac
University of Connecticut — USA

ABSTRACT
Very difficult task of coordinating controllable parameters of metal
cutting needs a lengthy experience of human operators. The accumu-
lated knowledge in the minds of expert machinists can now be deliv-
ered — at least partially — to the intelligent controllers of such
equipment as CNC Lathes, milling machines, drills, etc. The sensory
feedback control structure which isoften times referred as "Adaptive
Machine Tool Control Set-up" is addressed in this work.
The principle aim of this study is to achieve the two important steps
of the Adaptive Control System (ACS). One is to successfully gather
the necessary pieces of information about the ongoingdynamic event.
And the second is to process this dynamic data inreal-time in order
to generate the commands which would otherwise be introduced by the
expert machinist. So the goals can be renamed as sensing and control
respectively.
Normally the signature of any dynamic data brings a stochastic fea-
ture to the problem we just posed. The study entails the treatise
of such complex data structures, by using an off-line "learning" or
"adaptation" package to be introduced to the real time operator. A
typical lathe cutting operation is chosen as the generic application
case. Various findings of the experimental work and critical points
of monitoring the dynamic behavior are discussed along with the fu-
ture research directions on this control operation.
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INTRODUCTION

The influence of computers in manufacturing operations is
reaching for brpader application areas everyday. The novel uses
computerized process control operations become routine tasks as new
technigques are developed, and the "unthinkables" are becoming
closer to the reach of the human race [1]. What governs this rapid
enhancement in the technology is the astonishing strength of the
microprocessors' world. The more powerful chips, the better
computers, the faster performing software naturally result in
perfectly desirable environment for the production operation. 1In
this report the intension is to cover a broad range of computerized
manufacturing problems, with the state-of-the art issues and future
trendé, research topics as well as the difficulties encountered in
the direction of intelligent/smart operations,

It should be underlined that although it looks as if the
forerunning scientists are trying to achieve the age of human
replicas, it is not the case from various perspectives [2]. First
of all the combined perfection of sensory capabilities of human
beings is impossibility difficult to duplicate., Therefore, very
limited sensory interaction can be aimed between the "autonomous
devices" and their environments. Secondly, the speed and
sophistication ‘of human brain are rather difficult to obtain via
electronic components. This issue is a very important one from the
point of making observations, recognitions and controls inreal-time
(i.e. while the events actually proceed in their dynamic structures).
What it is, then, which makes the scientists strive for achieving,
is the importation of computerized schemes into various traditional
"skilled labor" operations. The reason for this, as well known, is
"the advantage of the repeatability and the storage potential of
the computerized operations".

A significant breakthrough in the computers involvement in-
manufacturing comes in design: CAD (Computer Aided Design), CAG
(Computer Assisted Graphics). Even in the 3-Dimensional (3-D)
sense, design is a routine activity for the computer users today.
Another faucet in which computerization assisted the manufacturing
operations is, naturally, CAM (Computer Aided Manufacturing) or CIM
{Computer Integrated Manufacturing). 1In this report we look into
the marriage of CAD and CAM in an autonomous. The word "autonomous"
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is rather controversial one. OQur use in this text covers the
features of "on-line decision generations without a supervisory
triggering based on a set of sensory understanding of the dynamics
state" i

In the center of our discussions a typical orthogonal lathe
cutting process is taken for its very descriptive nature [3-6].

The above mentioned autonomous control directions are defined,
along with the sensory bases for these decisions. The difficult
task of interpreting the signals from the semnsors in very short
time intervals are discussed. This interpretation naturally
represents the form in which the controller is informed about the
status of the process (i.e. this is the feedback data).

There are two fundamental techniques of manipulating the
above mentioned data; FFT (Fast Fourier Transformation Analysis)
and ARMA (Auto Regressive Moving Average Method) [7]. The nature
of the control actions are described in response to the data
feedback. Even in the chosen simple cutting conditions, these
observation data is noisy enough to call for a stochastic treatment.

A particular concepticn of stability in the machining
operations is expressed. The primary concern of the controller is
to assume the "stable" operating conditions as well as those of
"optimal”. Since there are fundamental dynamic changes in governing
equations of the process, this operation is often times referred to
as "Adaptive Control with Optimization" [6].

CAD/CAM IN THE PERSPECTIVE OF "AUTOMATIC CONTROLS™

A successful coupling of CAD with CAM can be named a priori
defined/programmed and partially feedback type control systematic.
"A Priori"™ because the programmer defines the shape of the final
product, the starting primitive workpiece, the cutting tool paths
(in the case of machining) to the level of machine language. 1In
Figure la self descriptive program for a 2-D machining process is
depicted. There are many tool path generating packages today which
are commercially available. They simply need the 3-D graphics
(such as Figure 1b) descriptions of the parts to be manufactured
and the starting primitives [8]. That is, the leg from the graphics
to the machine code is autonomous (i.e. it is handled without the
need of a human.superéision).
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But there is an important — and again a priori — guidance
based on operator and/or programmer experience which goes into this
path program. It is the set of specifications of the step by step
operation:

- the tools to be used for each segment of the process;
- the operating speeds at each and every point of the process;

- if used the volume of cutting fluid and variety (if there exists
different types);

- the ways in which the workpiece is to be secured to the operation
platform, etc...
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For instance if an array of tools are involved as shown in
Figure 2 their positions on the tool rack should also be specified.
In other words a computerized manufacturing process in this sense,
has to have full guidance of the operator/programmer sketched ocut
even before the operation starts. Naturally without the knowledge
of instantaneous, unexpected, on-line abnormalities. If all goes as
predicted the program successfully proceeds and materializes the
ultimate goal. But, what happens if a sudden tool breakage takes
place, or a segregated material abnormality exists...? 1Is the
computerized controller prepared to take proper action in order to
compensate for such array of "on-line" events? Just based on this

question the CAM operations can be grouped into twomajor categories:
a) A priori programmed, off-line CAM operation.

b) On-line, autonomous CAM operations.

Automatic

Tool changer Fulti-tool rack

spare toQl rack . B _—

Figure 2. A typical tool rack with coded tools

(from Cincinnati Milacron FMS set-ups)
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In principle, the first category entails the multi-axes
motion control operations. A few examples may be listed as:

- moving the pens on a color plotter, without checking the ink level
in the pens;

- guiding a robot arm without guestioning whether the liquid being
transported is spilled or the orientation of the object to be
manipulated is not as originally planned;

- metal machining without continuously monitoring the tool forces,
as it is in the framework of the main stream-line of this report.

This list can be expanded much beyond the limits of a CNC
(Computarized Numerical Controlled) machining operations as seen
from the variety of examples. All of them have some common features:

1. All are targeting certain multi-axial motion coordination.

2. All are a priori programmed and they are partially feedback as
indicated earlier. Figure 3 depicts a small closed loop control
over the position of a machine tool cutter.

The second category of cam operations, which is the central
element to the research efforts in these days, entails the struggle
toward generating "smart machine" equipped with a "brain" of their
own by effectively utilizing the computer intelligence. This
constitutes the guintessential issue in this work. A few typical
questions that arise in metal machining processes are:

1. How can the tool tip oscillations (possibily the undesirable
event called "chatter") be controlled autonomously?

2. Can the machine monitor the surface conditions of the sections

which are being cut and properly compensate for the undesired
level of roughness?

3. Can a sense of "optimal machining" be introduced in the
operation? etc...

These questions and alike lead us toward an operating scheme
of the future covering two basic issues:
1. An intelligent, on-line recognition of the working environment
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by the machines via sensory devices (e.g. vision, touch sensing,
position~-speed-acceleration sensing, etc.).

2. A sophisticated, algorithmic machine legic in order to comprehend
the sensory information developed in (1) and judge for the
control actions. That is, a higher echelon of feedback control
systematic or sometimes an "adaptive control".

The following segments of this report address these line
items in the framework of metal cutting. But, again, it should be
understood that the treatment is general enough to be applied to
much larger group of "smart operations" beyond metal cutting systems.
Simply, the availability of the accumulated expertise of machining

- process makes it a good candidate to elaborate on.

AN APPLICATION PROBLEM: METAL CUTTING PROCESS ON A LATHE

An orthogonal turning process is depicted in Figure 4, with
the basic parametric quantifies. The structural support elements
k's and b's represent the spring stiffness and structural damping
features of the tool holding set-up. The cutting forces at the tool
tip vs. workpiece interface are also shown.

On this general 3-D lathe cutting mechanism a computerized
"smart" control operation can be stated as follows:

1. Assume that the process is controlled by the decisions on three
guantities:
a. The spindle speed of the lathe chuck, w(RPM)
b. The feed rate of the tool-bit, f(mm/sec)
c. The depth of cut variations, d(mm)
These elements can be controlled viou servomotor (or for
practical experiments stepping motor) drive mechanisms. Figure
5 depicts a lathe with the control actuating drive motors.

2. A sensory device: a 3-D dynamometer is utilized to monitor the
3-D force and displacement variations at the toop tip. As shown
in Figure 6 this sensing set-up is equipped with 3 LVDT's
(Linear Variable Differential Transducers) which produce the
signature of the displacements generated at the tool holder.
These signatures in turn represent a set of force variations in
the corresponding directions (i.e. the cutting, thrust and feed
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Drive #1 (RPH adjustment)

tool holder
(dynamometer)
Drive #2 (2z)
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Figure 5. A typical lathe with speed and (x,z)
position control drives

wor 1 Fe

LVOT #2
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Figure 6. The schematic of the dynamometer
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forces). Note that a linear relationships between these forces
Fo, F , and F¢ (respectively) vs. the tool tip displacements u,
v, w are assumed. Therefore the operation in hand is in"elastic
zone" for the purposes of simplification. 1Indeed if any plastic
deformation takes place the concept of precision cutting will be
terribly risked. Therefore the relationship between the forces
and the displacements can be stated as:

F't My @12 @13 u u
¥ = 21 G2z G2 v = A v (1)
Ff Q3 Qa2 Oa3 w w

where oj;, @22, @33 are the direct influence coefficients while
o 4 (i #j) are the cross coupling between the directions. The
matrix (A) is determined experimentally and assumed constant
after the initial calibration of LVDT's.

The fundamental problem is: How can the above described sensing
(feedback) and control systematic operate to achieve an optimal
machining? The optimality can be defined in different formats.
For the coverage of this report we pursue with:

- maximizing the metal removal rate, i.e.

max rw(t) b(d,f,t) d(t) = vi(mm?/sec) Figure 7 ()

(w,d,£)
- with a bounded tool force structure

Ftltl < Ft‘ max
F.(t) s F,, max (3)

Pf{t} s Fg, max
- for a dynamic system which is implicitly described as:
?lFt,Fc,Ff,w,d,f,tl = 0 (4)

= And the ultimate goal is to achieve a geometry shown in
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Figure 4. That is from d(z,t =0) =0 (the initial shape of the
piece), to d(z,t =tf) (the final shape of the piece) where

t = time (sec)

t final time (sec)

f =
rw(t) = linear cutting speed (mm/sec)
wl(t) = angular speed of the spindle (rad/sec)

b
Equivalent depiction.

f
l (mm/sec)

r
(mm/sec)

Figure 7. The depiction of the metal removal rate

This optimization problem is a very complicated one, due to
the lack of a sufficiently precise state equation (4). An analytical
model relating the control parameters (w,d,f) to the tocl forces
[Ft'Fc'Ff] has been the subject of many research programs.
Unfortunately there is no unified and precise analytical represen-
tation which fits the general turning mechanism. This is fundamen-
tally because of an extraordinarily large number of parameters which
do not appear in eq. (4) but have strong influence on the dynamic
structure. For instance the tool sharpness, rake angle, clearance,
chip forming notch geometry, etc. 1In the presence of a very
obscure relationship of this nature the solution to the problem
stated in eq.'s(2-4) becomes extremely difficult. This report
focuses on a solution technigque and suggests and extension as a
further research project.
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AN ADAPTIVE CONTROL VIA PROPORTIONAL FEEDBACK

The optimization problem as stated in equations (2-4) has
some extra constraints which are not included in the mathematical
formulation. First set of these constrains is about the "positive
cutting” (i.e. cutting with continuous removing of material). Simply

vit) 2 0

d{t) z 0 at all times 0 s t = tf (5]
£(t) 2 0

should be satisfied. Additionally the system capabilities become
limiting factors. Such as:

wit) s o dw(t) gg' spindle speed and its
max ’ at at|pas time rate of change
dd (t) dad the depth and its time
ate) s dpay ¢ dt 5 dt lmayx rate of change (6)
£(t) s £ df (t) $ ar the feed rate and its
max ‘ dt atlpax time rate of change

Noting that although an analytical representation is not available
the implicit relationship of (4) has all positive gradient vector
scalar products in the w, d, f space (Figure 8). That is the matrix

[SE]

T

of |[2F o 2F] . T .

aF [Bw 3 at] Frp rore " TFu,a,te (7)
i

L-aFf

has all positive components. Because if any one of the control
parameters w, d, t were increased (dw or dd or dt >0) the force
compenents would increase. Therefore, dFt or dFd or dFt >0
corresponding to the increases are expected intuitively, as well as
the objective function indicated in (2)

20 i.e Vv 2 0 (8)
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Metal removal rate
i '\7 < constant surface

N .

_—

max
F = constant surface
c

Figure 8. The constraints in w,d,f domain with fixed
force and metal removal rate surfaces

Since the v is to be maximized the steepest possible gradient
direction is to be followed as the optimal path, naturally without
violating the constraints (3, 5 and 6). For the sake of simplicity
in the following portion of discussions we worry about only one
force (instead of three) let's say the cutting force F_(t).

The equation (4) can be rewritten as:

FC = Fclhl!drfrt] {9]

The constant Fc curves in the w,d,f space (Figure 8) also have
positive gradients, following equation (7).

aF aF IF
B, =220, =220 i.e. VF_ 20 (10)
Jw ad 3f c

The optimal operatingconditions are located onthe surface described by

Fc(w,d,f,t} = F (see Figure 9) {(11)

c,max
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Optimum operating point.i.e.
oint of %angenc? gf the two
amilies of curves.

Max. metal removal rate
surface = constant.

Constant force
surfaces
Fc = constant .

¢i.:gj
ARMA Coefficients
(distributed over the
surfaces of Fc=cunstant.)

Figure 9. Fo =constant and v = constant curves
with optimal operating point

The optimal direction is determined, which is OP. The control
system should guide itself toward point P, by varying the parametric
cutting quantities (w, d and f), and stay there throughout the
cutting process.

A few difficulties arise at this point. First, the functional
relationship (9) is not explicitly given, consequently the optimal
point P is not well defined. On the other hand the family of curves
with

Fc(m,d,f,t} = constant
can be obtained through the experiments. Then, these practical

results are used to find point P. Since the optimal direction of
operation is known the problem seems to be solved.
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The second difficulty is to compensate for unexpected cutting
force variations. For instance, a segregated hardness on the
sur face or a corner type profile change may cause these and therefore
introducing a departure from the Fclm,d,f,tl =constant surface.
Since this type of dynamics is changing the system characteristics,
the remedial control systematic is to be "Adaptive". A proportional
feedback adaptive control loop is depicted in Figure 10 in a very
simple format.

CAD data l_ |
¢ i s Cutting —

F‘t.l‘l‘ldx 1 system Forces and
c,max | I displacements
Ff.max | |

l Model |

|| based on Sensor e
I sensory data | (dynamometer)
e e -

/ 0P the optimal direction

Control computer is determined in this blosk.

{includes A/D and
D/A conversions)

Figure 10. Typical force-limitting-adaptive
control loop systematic

Figures 11 and 12 represent two experimental results. Note
that in Figure 12 the sudden departure from constant F, surface
takes place and an immediate adaptation is taken by the controller
(in this case directly through reducing d, i.e. single input-single
output adaptive control). 1In Figure 11 on the other hand the

expected smooth force variation is reached at the F, =F, s level.
r
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end of indentation

stabilized forcing

beginning of indentation

Figure 11. The cutting force variation in the case
of disturbing surface indentation

F Ytahle zone

- _. t-i me

Figure 12. The cutting force on a smooth surface

The entire control operation is governed via a digital
computer which has analogue to digital (A/D) and Digital to Analogue
(D/A) conversion capabilities (Figure 10). The time element becomes
very important in this operation in the "on-line control" situation.
The "smart machine" is in hand, but the speed should be enhanced to
the level in which the control actuations can be manipulated in a
timely manner. As we approach toward higher speed machining this
problem becomes a more substantial one. This question is under
investigation by a group including the author.
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FUTURE RESEARCH DIRECTIONS AND FORECASTING

Being aware of the above mentioned difficulties the following
problem formulation is suggested in a parallelism to [8]). Given the
optimal control problem of equations (2-10) is there an on-line
method which will enable the controller to forecast the onset of the
future states? The answer to this question is "no". But, if we
consider that for some given w, d and £ with the other cutting
parameters fixed, a data-base force signature Fc(t] registration
and forecasting can be made.

The method named ARMA (auto regressive moving average) is
utilized in such an effort (9] where the Fc(t} vs. t data
registrations with variety of w, d, f points are made. For each one
of these points a discrete time linear Stochastic model is found
following [10] in the form of ARMA (n,m)

Fo(t) = ¢ F (t=1) =$,F (t=2) =... -¢ F_(t-n) =

a(t) -8,a(t-1) -8,a(t-2) ... -8 a(t-m) (12)

where
Pc(t-i): the force measurement at the time t-i (At)

At the time interval of force measurement

¢i : Auto Regression Coefficients

a{t-i) : normally, independently distributed (NID) moving
average parameter at time t-i(At). This term
represents the stochastic variation between the
actual and calculated (via equation 12} Fc(t-i&tl

values.
By : moving average coefficients
n : the degree of auto regression
m : the degree of moving average

The equation (12} is an iterative one if ¢,, Bj's are known and the
first n data points from t-n to t-l1 are registered. Consequently
Fc(t), Pc{t+1l... can be calculated provided that the other system
parameters (such as w, d, f, etc.) are all kept unchanged.
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The important point in (12) is that the n +m coefficients ¢, and
ej's should be calculated based on the largest possible data
preferably off-line and prior to the actual controlled cutting
process. BSo, as Figure 9 indicates there exists a descriptive set
of ¢; and Bj's for each and every point in the w, d, f space (i.e. a
library of ¢'s and 6's}.

Being equipped with the ARMA (n,m) coefficient library the
dynamic characteristics of Fc{t,w,d,f} can-now be predicted on-line
and the direction of optimally as described in the previous section
can be enhanced under the light of the knowledge of the future state
values.

There are number of problems associated with the proposed
line:

1. To establish a large library of coefficients ¢i, Bj's for
individual points in w, 4, f space. Note that this is an off-
-line process.

2. To rapidly search for the appropriate ¢;, ej's for a given F.
registration in real-time (which is a very difficult task to
handle}).

3. To develop the decisions over the control parameters w, d and f
(as defined earlier) and implement them.

4. To continue the rapid data registrations for the next step of
control application..

These 4 items have different faucets of research arenas of their
own. Author's group and various others are currently pursuing these
lines. The most important issue is to develop a systematic which is
simple enough to employ in real-time, an yet sufficiently
sophisticated to address all types of possible sensor signatures.

ACKNOWLEDGEMENT

Author wishes to acknowledge the financial support from the
National Science Foundation wvia the grant numbered NSF MEA 8300236
which made the studies on some of the above mentioned issues
possible. At the least sincere thanks are due for the University of
Connecticut, Mechanical Engineering Department staff and machine
shop personnel for their assistance and Mrs. Joanne Moore for her
determined efforts in typing this manuscript.



218

RevBrMec. Rio de Janeiro, V. Vi1, n® 3 — 1986

REFERENCES

(1]

(2]

[ 3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

Mitchell, R.K. — Involvement and integration -A Route to CAD/
/CAM. Mechanical Engineering, June 1985.

Edson, D.V. — Giving robot hands a human touch. High Technolo
gy, September 1985.

Olgac, N. and Devin, M. — A study on the computer modelling of

the lathe cutting mechanism. International Journal of Model
ing and Simulation, March 1984.

Boothroyd, G. — Fundamentals of metal machining and machine
tools. McGraw-Hill (1975).

Tobias, S.A. — Machine tool vibration. Wiley (1975).

Ulsoy, A.G.; Koren, Y. and Rasmussen, F. —Principle developments
in the adaptive control of machine tools. ASME Trans., J. of
Dynamic Systems, Measurement and Control, v.105, June 1983.

Eman, K.F. and Wu, S.M. — Forecasting control of machining
chatter. The Winter Annual Meeting of ASME, Chicago, November
1980 ..

Olgac, N. and Kazerounian, K. — Development of smart algorithms

for on-line-optimal control of computer integrated systems,
a grant proposal to the federal agencies. University of
Connecticut, September 1985.

Olgac, N. and Guoguan, Z. — A computer modelling study for the
general turning mechanisms. to appear.

Wu, S.M. and Pandit, S.M. — Time series and system analysis,
modelling and application. John Wiley (1983).




RevBrMec, Rio de Janeiro. V. VIII, n9 3 - 1986 219
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RESUMO
Neste trabalho procura-se, através de exemplos simples, apresentar
uma interpretagdo fisica para alguns elementos gue surgem naturalmen
te na analise de fendmenos fisicos, sob o ponto de vista da Teoria
Continua de Misturas. Aqui buscamos as interpretac¢des partindo da
Mecanica dos Meios Continuos Classica echegando até a Teoria de Mis
turas.

ABSTRACT

On the Physical Interpretation of the Partial Stress Tensor and
Diffusive Force in Sclid-Fluid Mixtures.

In this work we are interested, through simple examples, in showing
a physical interpretation for some elements that arise naturally in
the analysis of physical phenomena under the Continuum Theory of
Mixtures viewpoint. Here we take the interpretations going from
Classical Continuum Mechanics to Theory of Mixtures.

INTRODUGCAO

Quando um fluido escoa através de um meio poroso, ou gquando
temos um escoamento bifdsico, ou uma outra situacdo similar & em ge
ral inviavel a tentativa de obtencdo de campos de velocidade e ten-
sdo locais com a utilizagdo de uma descrigdo local para cada um dos
materiais em questdo, como & feito em Mecanica do Continuo Classica.

e
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A Teoria de Misturas surge entdo como uma ferramenta que pro
cura viabilizar a solugao de problemas, que'n&o poderiam ser resol-
vidos com Mecanica do Continuc Classica, através de um ponto de vis
ta diferente, onde se admite a superposicdo de continuos dotados de
cinematica independente. Este tipo de hipétese introduzira novos
termos nas equagdes de balango de forma a manter uma coeréncia en-
tre o fendmeno fisico e a hipbtese de superposicédo.

A primeira necessidade de uma nova defini¢do aparece gquando,
admitindo gue num mesmo ponto temos mais do gque um continuo, deseja
mos determinar a forga exercida sobre uma certa superficie. Por exem
plo seja um escoamento de agua e ar num duto circular. Qual & a for
ca exercida sobre a parede do duto? Classicamente, para efetuar es
te calculo, precisariamos conhecer os tensores tensdo na agua e no
ar e aplica-los as normais & superficie em questdo, nos pontos onde
existisse agua ou ar respectivamente. Ja considerando a agua eo ar
como uma mistura teremos que em cada ponto sobre a parede do dutoha
vera tanto a agua guanto o ar. Assim, como a area banhada por cada
um dos constituintes da mistura sera toda a area da parede do duto,
para que a forca calculada seja a forga real os tensores tensdo con
siderados na agua e no ar ndo podem ser os mesmos utilizados na Me-
cdnica do Continuo Classica. Os tensores que serdo considerados pa
ra a agua e para o ar, neste caso, sdo chamados "Tensores Parciais
de Tensio", sobre os quais voltaremos a falar.

Suponhamos agora que um fluido escoa em um meio poroso. £ sa
bido que a matriz porosa altera o movimento do fluido uma vez que es
ta em contato fisico com este. Assim, uma vez gue a Teoria de Mis-
turas admite cinematica independente para os constituintes da mistu
ra (s6lido e fluido neste caso) é preciso que se leve em conta, na
dinamica, a interacao entre os constituintes. Esta interacdc sera
dada pela chamada "Forga Difusiva", que encontra sua mais claraeco
nhecida interpretagdo flsica na classica experiéncia de Darcy quere
laciona o gradiente de pressdes com a velocidade de percolacdo emum
meio poroso. Aqui a forga de interagdo representa o arraste do flui
do sobre a matriz porosa.

Neste trabalho estamos interessados em analisar o comportamen
to de um fluido Newtoniano que satura um certo meio poroso. vamos
procurar dar uma visdo qualitativa e quantitativa para as grandezas
que surgem naturalmente guando formulamos o problema & luz de Teoria
de Misturas, utilizando para isto um paralelo com os conceitos clas
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sicos de Mecanica do Continuo. Este paralelo sera baseado em situa
coes fisicas que podem ser tratadas tanto sob o ponto de vista de
Teoria de Misturas guanto sob o ponto de vista de Mecdnica do Conti
nuo Classica.

EQUACOES DE BALANCO

Apresentaremos agui, de forma sumaria, as equagles da conti-
nuidade e da guantidade de movimentc para um continuo simples e pa
ra cada constituinte de uma mistura.

Uma discussao detalhada pode ser encontrada em [1] para um
meioc continuo e em [2] para misturas.

Equacao da Continuidade e da Quantidade de Movimento para Um

Meic Continuo

Considerando p, v, T e g como sendo respectivamente a densi-
dade, o vetor velocidade, o tensor tensao e o vetor forgca de corpo
por unidade de massa, definidos localmente para algum movimento de
um material continuo isotrdpico, podemos escrever, parauma regido R
fixa no espago (e 3R sua fronteira)

f_&adv+fp3.ﬂdg=u M
R ot 3R
p[-a—v + (gradv)v) d¥ = T n ds + f pg 4dv (2)
it e 3R R

ou, localmente

e i &
T div(pv} 0 (3)
p (3L + (grady)y) = div T + pg (4)

Aqui, o tensor tensdc T é simétrico para garantir o balango
de momento angular,

Equacdo da Continuidade e da Quantidade de Movimento para Ca

da Constituinte de uma Mistura Bifasica

Vejamos agora que equagdes devem ser obedecidas paramisturas
bifasicas (fluido+sélido, liquido+gas, etc.). Sejam entdo py, ¥y,
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Ei’ m, e gy respectivamente a densidade do constituinte i na mistu-
ra (massa do constituinte i/volume de mistura), sua velocidade, seu
tensor parcial de tensdes, a forga difusiva exercida pelo outrocons
tituinte e uma forga de corpo por unidade de massa doconstituinte i.
Se agora tomarmos uma regido fixa no espago R teremos que, para ca-—

da constituinte

--—'varf p, v, nas =0 i=1,2 (5)
3R =k =

v,
=
o _..__d'e'+fﬁ(gradgig.d’9=f T, n ds +
./I;iat Ri i'—=i aR-i

+ md?-tfpg_dv i=1,2 (6)
_4;—1 R i <i

onde estamos assumindo a ndo existéncia de reagdes quimicas. Local-
mente podemos escrever gue

Bpi

< + divip,v) = 0 1=1,2 (7
vy

Di': = * [gradgi)gij = div ?i +myo+py gy 1 =1,2 (8)

Suporemos que os tensores parciais de tensao sao simetricos.
Na equacao (8) consideramos m, =m e m, =-m, sendo m a forga exerci-
da pelo constituinte 2 sobre 1. Uma vez que m, e m, sdo forgas in-
ternas & necessario que sua soma seja nula em todos os pontos damis
tura, por isto a definigdo acima.

MISTURA BIFASICA ESTATICA

Primeiramente vamos estudar uma situagdo estatica envolvendo
um arranjo formado por um cilindro gue possui uma regiio preenchida
por um fluido e por esferas sélidas formadas pelo mesmo material e
do mesmo tamanho. Suporemos que ndo existe agdoc gravitacional e gue
4 pressac nas segdes A e B € a mesma.

Se assumirmos que forcas intermoleculares sdo despreziveis se
comparadas com as forcas classicas de pressdo podemos aplicar aequa
cdo (4) para um fluido estatico a regiac entre as diversas esferas
obtendo

grad pi(x,y,2) =0 => p=c= => Pp = Pg = P (9)
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i)

Lo el s c ks S

Figura 1. Cilindro cheio de fluido com esferas elasticas

Logo em cada ponto do fluido a pressdo € a mesma e 0 tensor
tensao no fluido & dado por

™ = -1 (10)

Isto faz com que cada uma das esferas esteja sujeita a um es
tado isotropico de compressdoc radial (uma vez que estamos assumindo
que as esferas ndo se tocam). Se pensarmos que as esferas sdo com-
postas por um material elastico homogénec e isotrépico teremos gque o
tensor tensdo em cada ponto de cada esfera serd dado por

T** = A(tr €)1 + 2u ¢ (11

onde o tensor & e o tensor deformagdo cujas componentes fisicas sio
dadas em funcgdo do vetor deslocamento u como (peqg.def.)

Ju
<r>
E(rr) = a3 [12)

du u
1 <8> <r>
Efee;‘, = T 38 + —r— {13]
1 8u<¢) Uops u.ns cotg @
€ = + + (14)
R r senf LT r r
E = foiy> 8¢y> @ e4> (15}

e, pela simetria das deformagdes €eid> = 0 se i=#j. Também pela

|
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simetria teremos gue
du,., U

<rr> dr r Cega> T E<¢¢> N r

£ (16)

Uma vez que temos uma situagdo estatica e sem forgas de corpo
temos que a equacao (4) fica reduzida a

div ™** = 0 (17)
onde ?*‘ & 0 tensor tensdoc em cada esfera.

Uma vez gque o tensor T** é funcdo apenas da posigdo radial a
equacao (17) pode ser escrita como

*w * %

1 4d 2 *x T<Gﬂb * T<$Q>

o T - = -0 (18)

cotg B . cotg B _an

- e T e 7 0 (19)

o gue leva a
dr**
2 L. ok <Crr>
5 tTCrr) -T<EB>) + _dr_ =0 (20)

ou seja, substituinde (16) em (20)

2 du. . 2u.,  dlug, d {1 d
. 7 - R (A
2”(: = = Tl S A 2 (rfu, M= 0 (21)

com as seguintes condi¢bes de contorno

U, = 0 em r =0
duﬂr) = p em r R e
dr
A solucao é u,., =€r 0 que nos leva a afirmar que
& e *k
ou Terrs = Tepos = T<¢¢> 5, =B (23)

** 2 op (24)

ou seja, os tensores tensac no fluido e no s6lido s3o iguais.
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Vamos agora transformar os resultados escrevendo-os sob opon
to de vista de teoria de misturas, '

0 problema aqui & o seguinte: Como escrever neste caso osten
sores parciais de tensac no fluido e no sd6lido para assim determi-
nar a pressac do fluido e do sdlido na mistura e definir a pressdo
do poro ?

Vejamos qual seria a forga exercida sobre um plano imagina-
rio que cortasse a regiao compreendida entre A e B.

AN

O

E]]

N\

Figura 2. Planco imaginaric cortando a mistura

g:f T**335+f'T*gds (25)
As Ap

5 F
Se agora introduzimos o conceito continuo demisturas podemos
assumir gue cada ponto entre A e B e ocupado simultaneamente por sé
lido e fluideo. Assumindo uma distribuicac uniforme das esferas te-
mos que a fragdoc em volume do fluido € iqual a razdo em area do mes
me, ou seja
Volume do Fluido Area do Fluido

= = (26)
Volume da Mistura Area da Mistura

Definamos os tensores parciais de tensdo no sélido e no flui
do como sendo os tensores gque agindo num continuoc que ocupasse toda
a mistura causariam o mesmo efeito causado pelo respective censtitu
inte (s6lido ou fluido). Denotando entao por ?f e T . os tensores

parciais de tensdo no fluido e no sélido respectivamente temos gque

for_md5=f ™ n 4as (27)
By ~ By 7

f 'gsgd5=f ™% n ds (28)
Ay A
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Podemos agora definir a pressac no fluido e no sélido como
Pg ® Py, sendo dadas atraves da aplicagac das egquagoes (25), (26),
(27) e (30) ao exemplo apresentado

‘/];H-ps_quff -Pg n dS (29)

Euf-pﬂds-i-f-pﬂds (30)
A

F As

onde Ay € a area real do plano onde existe o fluido, Ag é a area

real do plano onde existe o sdlido e Ay € a area total (ou area de

F

mistura) gue representa a soma das outras duas.

Sendo Ap, Ag e Ay como definidos acima, entéao
¢ Ay = A (31)
(1-¢)ay = Ag (32)

Tomando (29), (30), (31) e (32) podemos escrever que

g:f ps_r_ads-f pfgds=-f opp_ds-f (1-¢)p nds
P P P P (33)

Definimos entdo, por sugestdo da equacgado {33)
p. = (1-¢)p (34) }
s |

|
Pg = ¢ p

Neste caso:

pressao do s6lide na mistura

el
]

Pe = pressio do fluido na mistura

P pressdo do poro

Os tensores parciais de tensdo no fluido e no sélido sdo nes
te caso dados por

Tg » ~$ 9] (36)
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Tg = -(1-¢)p 1 (37)

e deve ser notado gue
Pg * Pg =P (38)

MISTURA BIFASICA COM MOVIMENTO RELATIVO

Vamos estudar agora o escoamento de um fluido Newtoniano in-
compressivel através de um meio poroso idealizado com o objetivo de
dar uma visao qualitativa e quantitativa do que é a forga difusiva
neste caso.

Seja entdo um meio formado por um numero infinito de placas
paralelas infinitas, de mesma espessura, espacadas de como mostra a
figura. Entre estas placas faremos escoar, por efeito de um gradien
te de pressces, um fluido Newtoniano incompressivel com viscosidade
constante. Entre cada duas placas teremos um escoamento de Couette.

/ ¥
[ 4
Figura 3. Meio poroso idealizado

Definindo V. x> Como sendo a componente fisica do campo de ve
locidades na diregdo x para o fluido (sob o ponto de vista de meca-
nica dos fluidos classica) obtemos de (4) que

. -1dp | A2 2
Vex> T 2n ax [‘2] y] L

Para a obtencdoc de (39) foi assumido que a pressdo s6 depen-
de de x e gue V. x> 86 depende de y, onde esta ultima variavel & con



228 RevBrMec. Rio de Janeiro. V. VIII, n®3 — 1986

tada a partir do plano que equidista de cada duas placas na direcio
perpendicular a estas. Em (39) n & a viscosidade do fluido.

Vamos agora analisar o problema sob o ponto de vista de Teo-
rema de Misturas.

Definindo a componente fisica do campo de velocidade do flui

do na mistura como v temos que

<x>f

f# Vexog @S - S Ve 88 (40)
Ay Ap

Fagamos agora um paralelo com a experiéncia de Darcy. Esta
experiéncia mostra que um fluido Newtoniano escoando por um meio po
roso homogéneo por efeito de um gradiente de pressoes obedece a

K |dp
Ve=- - [E;] (41)

onde K é a permeabilidade da matriz porosa e n sua porosidade. A ve
locidade V é chamada de velocidade de percolagdo, sendo calculada co
me a razao entre a vazao real de fluido e a area total (area de es-
coamento + area de solidos).

Considerando agora o meio poroso ideal com o qual estamostra
balhando podemos calcular analiticamente sua porosidade e sua per-
meabilidade, sendo a primeira dada por

A

e W
Se combinarmos a equacgao (41) com a média da eguacdo (39), levando
em conta que esta Gltima deve ser tomada sobre a area total de mis-
tura, temos que

v =1 dp (ﬁL}z

Yexr T 35 ax | 2 (43)
V=6V, (44)

0 gque nos permite escrever gue
A (46)

T T12(a+8)
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Uma vez gue sob o ponto de vista de Teoria de Mistura ndo e-
xistem, para o escoamento estudado, variag¢des na direcao (perpendi

cular as placas) entido

= 3( = constante (47)

V<x>f X>

0 gue nos permite escrever, com o auxilio de (41), (43) e (44)

v ﬂ—dégt-g—)’-——“- (48)

Wexor = e © 3n dx n

0-|n.
ER L]

A forga de interacdo s6lido-fluido neste caso e a forga queo
s6lido exerce sobre o fluido através do cisalhamento nasparedes. Es
ta forga & dada por

F, = =2 L T &.ys 98 (49)
dav
x> dp
Ets-2 ay Rg{x)sﬂa-;hg.:x) (50)
Yo=g

onde A & a area lateral de cada placa considerada. Como o escoamen
to se processa na direg@o x a forga cisalhante atua namesma direcao.

Sob o ponto de vista de misturas esta forga é dada pela inte
gral do vetor m (que aparece em (8) representando a forcga de intera
cdo, ou difusiva, que o sélido exerca sobre o fluido) sobre um volu
me de mistura correspondente a area A considerada em (49) e (50).
Assim

F, .f m dv (51)
vH

Uma vez gue para o caso considerado a forca de interagao, ou
difusiva, € a mesma em todos o0s pontos da mistura, temos

dp
Et’ﬂvn’“&“&w (52)
onde
V. = (A+8)A (53)
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o gue implica em

a_ ap ap
BEges %o "

& 2o (54)

Combinando (54) com (48) chegamos a

2
n
Mexs = 7 }T Vexsf (35)
onde m_ . € a componente fisica do vetor m na direcao x.

Conseguimos ent@o uma expressac para a forga difusiva em fun
gac da velocidade do fluido na mistura que poderia ser extrapolada
para

(56)

A equagdo (54) combinada com (8), dentro das hipoteses do pro
blema, levaria a
dp

(div ?f} .5‘713 = =g -é-; (57)

ou seja
T(IX) = =P P = -—pf (58)

onde novamente aqui pg; € a pressdo do fluido na mistura.

Se assumirmos que as componentes fisicas dotensor parcial de

tensao no fluido T eT dependem linearmente do gra-

<xy>' T<yz> <xXz>
diente de velocidade do fluido na mistura podemos dizer gue, neste

caso

Tes-pgl--epl (59)

0 que foi desenvolvido agui da uma motivacdo para se empre-
gar a classica relacao mayve em escoamentos em meios porosos e para
termos definido Pg COMO na segao anterior.
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COMENTARIOS FINAIS

Neste trabalho apresentou-se uma interpretagao fisica para o
tensor parcial de tensao e para a forga de interacaoc sélido-fluido,
assim como uma motivagao para seus empregos em certos casos.

A discussdo aqui ficou restrita a misturas binarias sdlido-
-fluido e a casos bem particulares. Sao estes casos simples, porém,

que nos permitem visualizar entidades como T, e m,, as quais dife-

rem muito daquelas comumente usadas nas teorias classicas.

Sdoc situagbes simples, como as agui discutidas, que nos per
mitem estender os conceitos associados a teoria continua de mistu-
ras, possibilitando a descrigdo de fendmenos mais complexos sobeste

ponto de vista.
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ABSTRACT

Much recent progress in the study of stability of nonlinear dynami-
cal systems is related to the use of computers. Fortunately most
technical dynamical systems are dissipative. In general, in a dis-
sipative system, the set of all orbits converge as time passes to a
compact set of the phase space, a so-called attractor, and remain
there. Thus, the relevant objects in the stability analysis of dis
sipative systems are attractors. Using Lyapunov exponents, the di-
mension of attractors, the cell mapping approach, and the entropy
concept we are in a position to analyze numerically +the longtime
behavior of nonlinear dynamical systems.

INTRODUCTION

Many new problems in nonlinear dynamics have emerged in the
analysis and design of even simple dynamical systems. Since for
most technical devices and control systems the relevant factors are
naturally described by nonlinear mathematical models, there is a
growing interest in the analysis of nonlinear dynamics in applied
dynamics. Nonlinear dynamics are in many ways guite different from
linear dynamics.

One advantage of technical systems is that they are usually
dissipative. For such systems exist subsets of the phase space
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which attract neighboring points. These subsets are called
attracting sets or attractors. If we do not care about the transient
behavior of orbits, but only about the behavior that will persist
eventually, then knowledge of attractors is of major cencern. Hence,
the typical behavior of dissipative systems is described in terms of
a system. What happens near an attractor or sink is of special
interest in applications. On the other hand, in engineering we can
find many problems where different kinds of attractors coexist in a
domain of interest of the phase space. Hence, we would like to know
the set of initial states from which a certain attractor is
attainable. This set of initial states forms the basin of attraction
of an attractor.

Simplest of all is the steady-state case (fixed point of the
dynamical systems), then the oscillation (or periodic behavior); but
recent studies have shown how easy it is to have far more complicated
attractors appear. 1In particular, even the structurally stable
attractors in rather simple examples contain a vast mixture of
pericdic, quasiperiodic, homoclinic, and other kinds of phenomena.
These varieties of behavior and related attractors occur due to
parameter changes, that is: as a parameter slowly changes, the
motion may change from regular to chaotic and vice versa. Analytical
solutions for such motions are rarely available. Modern computer
technology allows us to simulate systems more or less easily and
together with geometrical considerations we may gain essential
insights.

But to locate an attractor of a nonlinear dynamical system
and to determine its basin of attraction may be quite time consuming.
This is particularly true if small differences in the initial
conditions produce very great ones in the final behavior. Then,
conventional methods or even choosing many initial states at random
may be unsatisfactory. The complexity of nonlinear dynamical
systems suggests, especially for systems exhibiting chaotic motions,
that a statistical description may be of more use than the actual
knowledge of the time evolution,

In view of the above considerations, it seems desirable to
give a precise mathematical definition of attractors. One would
like the definition to satisfy various requirements, and it turns
out in the following section, that the requirements may be somewhat
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conflicting. 1In the subsequent section we shall classify dynamical
systems by means of attractors commonly found in mechanics and
describe different features characterizing them. Following we

shall introduce the cell mapping theory for analysis of nonlinear
dvnamical systems. Thereupon, the relationship of cell mappings to
Poincare maps is described and some mathematical details are given.
Using the cell mapping approach the location of attractors and
their domains of attraction are found in a very efficient manner.
Next section we shall introduce the concept of entropy and argue
that, under suitable conditions, this concept allows the prediction
of the asymptotic behavior depending on initial conditions. We shall
then treat an example and in the last section conclude with some
further remarks.

A DEFINITION OF ATTRACTORS

The evolution of a system, for fixed value of the parameter,
will be described by N first-order differential equations of the
form

x = fix) |, ()

where x and f are vectors in R' and f is explicity independent of
time. Hence, the phase space for this system is N-dimensional, with
coordinates Xy i=1,...,N. Autonomous systems often have an even
dimension N. A non-autonomous mechanical system can be written in
form (1) by extending the number of coordinates by one; the
dimension is therefore no longer even.

When dealing with a dissipative dynamical system we may start
in a Euclidean phase space of initial conditions of large dimension
N; after some time passes, the transients relax, some modes may
damp out, and the state of the system approaches a lower dimensional

subspace nf the RY with a volume contracting rate defined as
N afy
b o IR R . (2)
i=1 9%4

The number of degrees of freedom is thereby reduced. We call
the subspace of the ®RY to which the solution of the dynamical
system asymptotes for large time an attractor. An elaborate
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description of requirements an attractor must satisfy, with
definitions and proofs, is given in Ruelle [1]. There is, however,
no overall accepted definition of attractors; werely onEckmann (2].

Definition: An attractor for the flow of (1) is a compact set A
satisfying

(1) A is invariant under the flow.

(4i) A has a shrinking neighborhood, i.e., there is an open
neighborhood around A that shrinks down to A under the flow.

(iii) The flow on A is recurrent, i.e., no part of A is transient.
L ]

(iv) A cannot be decomposed into two nontrivial closed invariant
pieces.

If A is an attractor, its basin of attraction is defined to be the
set of all initial points x such that the flow approaches A as

t+e,

For one-dimensional flows, the only possible attractors are
stable fixed points or sinks. For a two-dimensional flow within a
finite section of a plane, the Poincare-Bendixson Theorem shows that
the only possible attractors are fixed points or sinks, and periodic
solutions (simple closed curves) ggilimit cycles. In three-
-dimensional phase space where E 3;; is not everywhere negative or
in more than three-dimensional phase space torus attractors are
possible.

Remarks: Of course, there may be systems where a torus can be
attractive but where it is not an attractor. E.g., a doubly
periodic motion on a torus, defined by a rational winding number,
does not fullfil property (iv) and is thus not a torus attractor but
rather a complicated periodic cycle. On the other hand if the
winding number is irrational, the motion on the attractor may be
quasiperiodic and a trajectory will eventually cover the torus
completely, then we speak of a torus attractor. Consequently, when
we say a set is an attractor, we do not only mean that it is
attractive, but also that it is transitive: that is, most
trajectories on it wander all over it.
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Torus attractors of more than two dimensions are extremely
rare and will therefore not be considered here. They give way to
attractors with unpredictable or chaotic behavior which are neither
fixed points nor periodic orbits, so-called strange attractors.
These are asymptotic limit sets in phase space which also have
lower dimension than the phase space and which have an additional
property: the motion on the attractor is characterized by an
exponential divergence of neighboring states in some direction.
This effects a sensitive dependence on initial conditions and is
the cause for their strange appearance. It also practically
prevents long-term predictions since the initial conditions are
usually not known exactly. Similarly, for a chaotic system, the
information one can gain about its state from information about an
initial state decays (until zero) roughly linearly in time.

It is important to note that the irregular behavior is self-
-generated by a purely deterministic system. It is even more
important to emphasize, that systems of deterministic differential
equations exhibiting chaotic behavior are a striking contrast to
random motions produced by Gaussian noise. Chaotic systems provide
a very different notion of randomness. For a thorough description
of this difference, especially the peaceful coexistence between
chaos and order, see Farmer [3].

Deterministic systems can generate a variety of different
types of irregularity, with a variety of manifestations of internal
order. Thus, neither an external noise, nor complexity is required
to produce chaos. Procedures which are able to distinguish between
chaos and randomness are suggested by Guckenheimer [4]. These
procedures are based on the assumption that randomness means
unpredictability in the short-term evolution of a system. Chaos,
however, is characterized by an exponential divergence of neighboring
states in phase space which prevents long-term prediction.

CLASSIFICATION OF DISSIPATIVE DYNAMICAL SYSTEMS

The initial hope in the study of dynamical systems was to
classify dynamical equations up to equivalence in some gualitative
sense, Smale [5]. Although this goal can be achieved for certain
restricted classes of systems, an appropriate and useful equivalence
relation has not been found for which it can be achieved in general.
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One would like to classify dynamical systems so as to include
gualitative features of their behavior, though which features one
should consider is not a priori known and may even depend on the
specific problem. Most interest is focussed on longtime behavior of
orbits, in dissipative systems characterized by attractors. However,
a physical system might not reach its attractor on a practical time
scale, hence, a classification of dynamical systems should also
cover transient motions. Although we are far from a complete
classification of dynamical systems, we will describe at least four
basic features of an attractor.

Time history is a common way to classify a system. The single
trajectories may be either regqular or irregular and unpredictable,
Furthermore, when an irreqular time series is observed in an
experiment one may ask whether the irregularity is due to chaos or
to randomness as distinguished above. When little is known about
the system, one can only hope that the time series prossesses
intrinsic properties which make this distinction possible. It may
often be difficult to detect periodicity, bifurcations, etc.

Power spectra of time histories indicate reqular or chaotic motion.
A discrete power spectrum, i.e., one that consists of discrete
vertical line segments, is characteristic for periodic and
quasiperiodic attractors. A continuous or noisy power spectrum
implies the existence of a strange attractor. Since the power
spectrum is easily studied experimentally, the prediction about
systems behavior can be tested by physical experiments. But in
general, power spectra analysis is of little help in distinguishing
between chaotic behavior and irregular behavior produced by
external noise.

Lyapunov exponents measure how fast nearby orbits diverge or
converge. Or in other words, the Lyapunov exponents are an average
of the local stability properties of an attrhctor. For a fixed
point, for example, the Lyapunov exponents are the real parts of the
eigenvalues. The Lyapunov exponents are generalized stability
exponents, defined for any type of attractor. For an N-dimensional
phase space, there are N real exponents that can be ordered as
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A1 2X2 2... 2y and one of the exponents representing the direction
along the flow, being zero. If )A; >0 then the system is chaotic.
Hence, the sensitive dependence and the degree of unpredictability
are measured by a positive Lyapunov exponent. For dissipative
systems the spectrum of Lyapunov exponents describes not only the
stability behavior of single orbits but characterizes the dynamics
of the whole domain of attraction. Lyapunov exponents can only be
determined if the system's equations are available.

Dimension is perhaps the most basic property of an attractor. We
may think of the dimension as giving, in some way, the amount of
information necessary to specify the position of a point on the
;ttractor to within a given accuracy. Then, dimension says
something about the amount of information necessary to characterize
the attractor. The dimension is also a lower bound on the number
of essential variable needed to model the dynamics. We define
dimension in terms of Lyapunov exponents because they provide the
only known efficient method to compute dimension:

k
5
D. = k + (3)
L B
where k is the largest integer so that A, +X, +... +) 20. This

definition was introduced by Kaplan and Yorke (6] and is called
Lyapunov dimension.
In the literature other different definitions of dimension may be
found. For simple, predictable attractors such as fixed points,
limit cyecles, or 2-tori, the separate notions of dimension converge;
by any reasonable definition these attractors are of dimension 0, 1
or 2, respectively. It is because their structure is very regular
that the dimension of these attractors take on integer values.
Strange attractors, however, often have a structure that is not
simple; they are often not manifolds, and frequently have a highly
fractured character. Hence for a strange attractor D; isnoninteger
so that the volume of the attractor is zero. Conseguently,
attractors of zero volume need not only dimension zero, one or two,
but can in fact have a noninteger dimension.

Table 1 gives a summary of the attractors presented, with
sketches of their characteristic output, their Lyapunov exponents,
and their dimension.
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Table 1. Attractors and their basic properties

Phase Portrait Time History | Power Spectrum L{?:mﬁzfxg; Dimension

5 X,

!
0o - - |
o o0 - 2
+ 0 - 2<d<3

STABILITY ANALYSIS USING THE CELL MAPPING APPROACH

Basic questions in the stability analysis of dissipative
dynamical systems are: where is an attractor located in the phase
space, what does the attractor look like, what is its basin of
attraction. We are often obliged to answer these guestions with the
aid of a computer. The engineering systems, however, have become
very complex and variation of parameters may often change behavior
so essentially that trial and error may often fail. Thedifficulties
can sometimes be overcome by sophisticated analytic methods.
Furthermore, not only the form of an attractor can be complicated,
but also its basin of attraction, even if the attractor is simple.
Hence, there is a need for a method to solve at least some of the
problems mentioned. Hsu [7,8] proposed the cell mapping theory as
a mean for analysis of nonlinear dynamical systems.
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Computer programs are described by Hsu and Guttalu [9] and Hsu,
Guttalu, and Zhu [10]. Modifications and extensions of a cell
mapping algorithm may be found in Bestle and Kreuzer [11] and a
thorough description is given in [12]. The method is still under
development, but has already proved its applicability in many
problems. A cell mapping is essentially a discretization of a
Poincaré mapping.

It is often helpful to tteat time as if it were discrete.
This is particularly true for autonomous systems or for systems
affected by conditions varying periodically with time. The continuous
system (1) is consequently replaced by difference equations designed
;o model the Poincaré map of (1). An orbit is replaced by a set of
points obtained by repeated application of the mapping. Such a
mapping can be explored more quickly and extensively than the
continuous system, since the essential properties of the orbits are
preserved as corresponding properties of the set of points. Sometimes
we can guess at an appropriate mapping or find analytic approxima-
tions; however, usually only numerical integration methods will
provide us with a Poincaré map. The definition of a Poincaré map is
based on a so-called surface of section £ . For a non-autonomous
mechanical system of one degree of freedom, the construction is
rather obvious, if the system is forced by an input with a certain
period. Then, we normally plot the intersection of an orbit with
the phase plane at the instants of time given by the period of the
input. In this way we construct the map

y(n+1) = g{y(n)) , g: R + R (4)
where y and g are vectors in R¥ ! and one should think of n as
the discrete time. If £ of (1) is smooth and the surface Z:=R" '
is everywhere transverse to f, then it can be shown that the
Poincaré map g is also smooth.

Although the determination of basins of attraction by means
of a Poincaré mapping is greatly improved, the method alsc has its
drawbacks. Numbers in a computer are represented only within a
finite accuracy. Hence, it is not possible to consider a Poincaré
map as a continuum of points. It turns out that for practical
purposes approximating a Poincaré map by a collection of very small
cells describes the dynamical system sufficiently well.
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After choosing a domain of interest § ¢ I we partition this
domain in N subdomains R, c . The ,'s are the socalled regular
cells numbered 1 to N. . The region Qo- I/Q forms one single cell,
the so-called sink cell or Oth cell. Regular cells and the sink
cell form the cell space §=1{0, 1, ..., Nr} . Setting up a cell
space in this manner we replace the continuous Poincaré map by a
discrete cell map. Consequently, this leads to a new discrete
state or random variable E defined by

E(n) = 1 €58 o> yin) €a, . (5)

Hence, the state of the system at time n is no longer described by
a point y(n) in I but by the probability z, (n) of which the point
y(n) is found in cell ni at time n:

;iln} = PrE{n) = 1] ¥ 188 . (6)

Summarizing all probabilities Ciin) by a cell probability
vector Z(n), the evolution of the system is described by a finite,
discrete, stationary Markov chain defined as

t(n+1) = P ¢in) , n =0 1 25 wwe (7)
where P is the matrix of transition probabilities with components

p.. = Pr(E(n+1) = 1 | E(m) = §) , 1,568 . (8)

ij
The pij's define the one-step transition probabilities for the
system moving from cell j to cell i. Together with an initial
probability distribution the transition probability matrix P
completely describes the evolution process of a dynamical system.

The long term behavior of a Markov chain is classified by
means of a partitioning of the cell space S into a closed subset
of cells forming persistent groups and an open subset of cells
forming the transient group. A persistent group cannot be further
decomposed. Hence, it is obvious that attractors of dynamical
systems are represented by persistent groups for which a period and
a limiting probability gistrlbution can be defined.
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If the system starts in the group of transient cells it will
leave them with the probability one. It will be absorbed in
different persistent groups with certain absorption probabilities
and within certain expected absorption times. Hence, transient
cells form the basins of attraction.

ENTROPY AND SHORT-TERM PREDICTIONS

The entropy concept is related to familiar properties of a
dynamical system and is a natural way to study statistical
.properties: probability leads to entropy, or in other terms, to
information, e.g., Farmer [13]). We will review these matters below.

The amount of information gained in making an observation of
a physical system depends on the a priori knowledge of the observer
making the measurement. Our knowledge is the eguations of motion
and all information that can be extracted from them. A measurement
can never be made with infinite precision, i.e., in practice,
positions are given approximately to within € . Thus, at best a
highly localized probability distribution can be prescribed.
Therefore, prediction must be discussed in terms of ensembles of
initial conditions rather than in terms of the behavior of individual
points.

A natural way to do this is to partition the attractor by
dividing it into many discrete cells as.was described in section 4.
For an attractor A, let M(e) be the minimum number of cells that
can be chosen so that the cubes of size € cover the attractor.

T F: Pi(e], i=1,...,M(e), describes the probability contained within
the ith cube we have

M(e)

L

P,(e) =1 . (9)
1=1 1

The amount of information necessary to specify the state of the
system to within an accuracy € is defined as

M(e)
I(e) == L Pyle) In P;yle) . (10)
i=1
It is also the information obtained in making a measurement that
is uncertain by an amount e .
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Using this definition, the information dimension is given by

D. = lim ———5151——— . (11)

T~ ¢20 1n(1/e)
It tells us how the information grows as € shrinks to zero. Since
for small e

I(e) = Dy In(1/e) (12)
we may view D, as telling how fast the information necessary to
specify a point on the attractor increases as ¢ decreases.

So far we have been concerned with the amount of information
gained by an observer in making a single, isolated measurement. But
how much new information is gained about an initial condition with
successive extra measurements. For a predictable system new
measurements provide no further information. For a chaotic system,
however, on the average trajectories diverge locally at an
exponential rate, and each successive measurement provides new
information. The Kolomogorov-Sinai entropy (KS entropy) provides
an upper bound on the information acquisition rate; Lichtenbergqg,
Lieberman [14].

The KS entropy is defined by using a partition of phase space
as described above. By definition, the KS entropy 1s positive for
a chaotic attractor, i.e., when there 1s an exponential decrease in
the average measure of an element of the partition. Hence, it is
not surprising to learn, that the KS entropy is related to the
average rate of exponential divergence of nearby orbits, i.e., to
the Lyapunov exponents. The following relation was found by Pesin
[15) for Lyapunov exponents depending on initial conditions:

h = z Aj(x)} pix)dx (13)
o 1; %Ai(xl>0 t f ’

where h; is the metric entropy, pi{x) is the probability density,
the sum is that of all positive Lyapunov exponents and the integral
is for a specified region of phase space. The KS entropy is
generally understood to be a measure applied to a single region of
chaotic behavior, excluding reqular regions, embeddéd islands etc.
In this case the )A's are independent of x and (13) results in
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hu = 1:;0 Ay (14)

The information I (t) decreases initially at a linear rate,
Figure 1. Thus, at a given level of precision the metric entropy
and information dimension can be used to estimate I(t) for short
times. Let the information associated with the initial distribution
of points be I(0) =D, 1n 1/e . Then the time-dependence of the
information is given by

1
1n i hut . (15)

I

I(t) = I1(0) = hut =D

Figure 1. Typical behavior of I(t) for a chaotic attractor

Thus, information about initial state is lost after a characteristic
time

Dy 1n 1/¢e
R Rl LB (16)
u

It is clear that increasing the accuracy of a measurement
increases the information obtainable. Consequently, as we increase
our resolution, we increase the information, and we could think of
an arbitrary high value if we decrease the cell size to zero. But,
as has already been discussed in section 4, reality limits the
information we can obtain from a system to a certain degree.
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Kaplan and Yorke [6] conjecture that for all but exceptional
cases DL.'DI ( area conserving flows are an exceptional case). The
Lyanupov exponents and hence the Lyanupov dimension are much easier
to compute than the information dimension. Thus, with the Lyanupov
exponent at hand we have also an efficient tool to study information

decay.

A nonlinear oscillator with a cubic stiffness term to model
the progressive springeffect observed in many mechanical systems is
described by Duffing's equation. We will use a modification of the
conventional Duffing equation in which the linear stiffness term is
neglected. Hence we use the Duffing equation in the form

X +ax + x' =bcos t , {(17)

where x, X represent the displacement and velocity, the dissipation
is modeled by a linear velocity dependent term with parameter a, and
the forcing term on the right hand side is characterized by an
amplitude b. Such an equation was studied at some length by Ueda
[16], using analog and digital computers, for the parameters

a€ (0.,0.8) and b € (0.,25.).

For low force amplitudes b we observe periodic motions. As b
is slowly increased, a point comes at which the system suddenly
begins to jump back and forth in an irregular, chaotic manner.
These phenomena are summarized in Figure 2. Chaotic motions take
place in the shaded regions. In the area hatched by full lines,
chaotic motion occurs uniquely, while in the area hatched by broken
lines, two different types are observed, i.e., chaotic and regular
motions. Which one occurs depends on the initial conditions.

Without performing a detailed analysis of all phenomena
occuring in this simple example we will calculate Lyapunov exponents
only for parameter valus where b = 7.5 and a € (0.04,0.25). These
parameters are indicated in Figure 2 by the heavy line.
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Figure 2. Regions of different dynamical properties of
{(17) in the parameter plane, from Ueda [16)

For numerical simulations (17) is rewritten as an autonomous

system of three first order equations letting y; = X ,y: = X%, and
Y3 t

i’:“yz r

Yy, = -y, - ay, + bcos y, , (y,,¥,.¥,) € R x s* . (18)

y!‘t r

Here, S = R/T is the circle of length T=2n. The surface
of section we define as I : {(y,,y,,y¥,) |y, =0}. The Poincaré map
P:L » I is globally defined. Clearly, P depends upon the parameters
a and b.

We first describe the results of the computed Lyanupov

exponents. In Figure 3 is shown the spectrum of Lyanupov exponents.
The results presented here are taken from Kleczka [17]. The
following phenomena are observed:

— Chaotic behavior: a € (0.04,0.09) , (0.15,0.22)

(0.23,0.25)
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- Regular windows: a € (0.09,0.19) , (0.22,0.23)
- Bifurcations: at a « 0.115, 0.096, 0.0925

- Coexistence of chaotic and regular behavior:
a€ (0.15,0.19)

0.0

S

k

=4 . . L
0.00 .05 .10 A5 .20 .25

a
Figure 3. Spectrum of Lyapunov exponents depending on a

Of course, the Poincaré map for this example can only be
found numerically. From that the cell mapping is automatically
constructed by means of a computer program, e.g., [12]., Asmentioned
above, system (18) shows regular behavior with harmonic and
subharmonic solutions for a wide range of parameters. For some
parameters, however, the system exhibits chaotic behavior and for
others both periodic and chaotic behavior. For such parameter
values, here a=0.1 and b=12.0, where chaotic and periodic
solutions coexist, we show the cell mapping results.

Figure 4 and 5 show the results obtained for (18) by using
the generalized cell mapping procedure. In both figures the number
of intervals in each direction is N_, = Nop = 100 covering
-1.5 £y, <4.5 and -10.0 =y, <8.0 .

The expected absorption probability of transient cells into
the cells of the two persistent groups denoted by is shown in
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Figure 4. The small persistent group replaces the strange attractor.
The absorption probability is 100% for transient cells shown; cells
signified by { are absorbed into the periodic solution and cells
signified by are absorbed by the chaotic attractor.

Figure 4. Absorption probability of transient

cells into persistent groups
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The expected absorption time of transient cells being
absorbed into cells m of the persistend groups is illustrated by

For both groups the cells are indicated again by

different symbols to characterize the various absorption times

Figure 5.

-

§i583 , (6,9] steps 2

{1,3] steps , (3,6] steps

258
EH

Figure 5. Expected absorption times of transient
cells into persistent groups
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For a complete understanding of the properties of dissipative
nonlinear dynamical systems one has to use a variety of methods as
described in this paper. If one would like to know more about the
statistic behavior of the attractor one may lock also at the
limiting probability distribution. For a more detailed discussion
of statistical properties of attractors, see Hsu, Kim [18] and [19].

CONCLUSION

The large number of possible motions of which a dissipative
nonlinear system is capable has been studied in terms of attractors.
A classification can be made based on fundamental properties of
attractors. The global behavior of nonlinear dynamical systems can
be analyzed by using the cell mapping theory. The probabilistic
formulation led to a description of the dynamics by means of a
Markov chain. By assuming that the probability distribution of the
initial states is known, we can determine, as time increases, how
the trajectories are distributed in the phase space. In this way
the attractors of the dynamical systems are found and analyzed.
Because of gr&wing interest in nonlinear problems in mechanical
systems the cell mapping theory may become more widely used as a

tool for analysis.
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NOTICIARIO

11 ENCONTRO DE EDITORES DE REVISTAS CIENTIFICAS

PROMOCAO: CNPQ E FINEP
SAO PAULO, SP, 27 E 28 DE NOVEMBRO DE 1985

DOCUMENTO FINAL

A.

Premissas

1. A politica de divulgagdo cientifica e tecnoldgica € parte in
tegrante da politica global de ciéncia e tecnologia do pais e,
por consequéncia, o financiamento desta atividade devera cons-
tar nos orgamentos e nos programas de Pesquisa e Desenvolvimen
to das agéncias financiadoras e outras instituigdes.

Para adequar os recursos as reais necessidades do setor, se-
riam necessarios, no minimo, 2% dos recursos efetivamente alo-
cados a Pesquisa e Desenvolvimento pelas agéncias financiado-
ras e pelas instituigdes de pesguisa.

2. O pesquisador brasileiro deve ser conscientizado de sua res-—
ponsabilidade na publicacdc ampla dos resultados de seu traba-
lho em revistas cientificas nacionais.

3. Os progressos da pesquisa cientifica e tecnolégica do pais,
estao exigindo um salto qualitativo e guantitativo na informa-
gdo cientifica e tecnoldgica.

4. Deve ser reconhecida a importancia das revistas cientificas
como espelho da produgao cientifica nacional.

Recomendacdes as Agéncias Financiadoras e Orgdos Publicos

1. Que as agéncias financiadoras estudem mecanismos de pagamen
to de salarios as equipes de editoracdo cientifica, visando criar
estruturas profissionais;

2.gque o Ministério da Educacgdoc destine recursos as bibliotecas
universitarias para assinatura de revistas cientificas nacio-
nais de boa qualidade;
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3.que as agéncias coordenadoras do Programa Setorial de Publica-
coes em Ciéncia e Tecnologia concedam — por tempo determinado -
um adicional de 15% sobre o total de recursos fornecidos a ca-
da revista, para que a entidade responsavel pela publicagdo en
vie 200 exemplares a bibliotecas, entidades e grupos desua area
de especializacdc localizados no Brasil e 100 exemplares para
bibliotecas congéneres no exterior. Tais recursos adicionais
destinam-se a cobrir os custos com manipulacao, embalagem e pos
tagem dos exemplares. Os editores propordc as entidades a se-
rem contempladas, para referendo pela agéncia financiadoraj;

4.que haja maior pontualidade na liberagdo dos recursos pelos 65
gaos financiadores. A notificacac da aprovacao e valor do fi-
nanciamento deve ser imediata, para fins de planejamento;

5.que a avaliacdo de revistas cientificas da mesma area por par-
te das agéncias financiadoras seja feito em conjunto para me-
lhor julgamento;

6.que as agéncias financiadoras criem mecanismos de estimulo apu
blicagao, em revistas cientificas nacionais, dos resultados dos
projetos de pesquisa por elas financiados. Tal estimuloc deve
ser estendido & publicacdo de resumos e/ou artigos baseados em
teses de pds-graduacao;

7.que a Finep estimule as peguenas e médias empresas nacionais,
por ela financiadas, a veicular anQncios de seus produtos nas
revistas cientificas nacionais, e

8.que haja uma maior articulacdo entre as agéncias financiadoras

C. Recomendacgbes aos Editores

1. Que as revistas cientificas procurem ter uma abrangéncia na-
cional;

2.que sejam obedecidos certos padrdes editoriais minimos e normas
técnicas, tais como: titulos, legendas, resumos,palavras-chave
em portugués e inglés, bibliografias com dados completos etc;

3.que a Associacao Brasileira de Editores Cientificos (ABEC) di-
funda as revistas cientificas nacionais em eventos como feitas
de livros, congréssos e reunides;
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4.que haja intercambio de anincios padronizados entre as revistas
nacionais, bem como as congéneres do exterior. A ABEC deve es
tudar a criacac de um pool de publicidade;

5.que os referees recebam os pareceres de outros referees guando
da apreciacdo de um mesmo trabalho;

6.que haja uma maior promogac das revistas nacionais nos palses
do terceiro mundo, particularmente nos de lingua portuguesa e
espanhola;

7.que se organize a administracdo das revistas e racionalize o
trabalho de editoracdo, com a progressiva profissiocnalizacao
das equipes, e

8.que as revistas publiquem o documento final do II Encontroc de
Editores de Revistas Cientificas.

D. Recomendagbes as Agéncias e aos Editores

1. Estimular a existéncia de pelo menos uma revista cientifica
de bom nivel em cada area do conhecimento;

2.maior agressividade e profissionalizacdo na difusdo das revis-
tas;

3.no processo de avaliagdo de pesquisadores, técnicos e professo
res devem ser considerados em pé de igualdade suas contribui-
¢des em revistas nacionais de bom nivel e em revistas interna-
cionais;

4.a reqularidade das publicacdes & uma meta a ser atingida pelas
revistas para aumentar sua credibilidade e possibilitar sua in
dexacao nos org3os nacionais e estrangeiros;

5.para melhor adequacao do percentual financiado pelas agéncias,
08 orcamentos devem passar a incluir todos os custos, entre os
guais a remuneracao dos editores e equipes;

6.08 alunos de graduacao e de pos-graduacao devem ser considera-
dos como um piblico a ser também atingido pela comunicagdo ci-
entifica e tecnologica;

7.0 II Encontro recomenda que seja constituida noprazo de 60 dias
uma comissdo composta de representantes das agéncias financia-
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doras e da ABEC com o objetivo de elaborar um documento sobre
politica de publicacdao técnico-cientifica no Brasil, a ser am-
plamente divulgade, e

8.0s participantes do II Encontro apoiam o projeto de mensaliza-

¢do de revista Ciéncia Hoje.
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