ISSN 0100-7386

REVISTA BRASILEIRA DE CIÊNCIAS MECÂNICAS

PUBLICAÇÃO DA ABCM ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS MECÂNICAS

PROGRAMA DE APOIO A PUBLICAÇÕES CIENTÍFICAS

MCT (CNPq I finep

A Revista Brasileira de Ciências Mecânicas é uma publicação técnico-científica, da Associação Brasileira de Ciências Mecânicas. Destina-se a divulgar trabalhos significativos de pesquisa científica e/ou tecnológica nas áreas de Engenharia Civil, Mecânica, Metalurgia, Naval, Nuclear e Química e também em Física e Matemática Aplicada, Pequenas comunicações que apresentem resultados interessantes obtidos de teorias e técnicas bem conhecidas serão publicadas sob o título de Notas Técnicas.

Os Trabalhos submetidos devem ser inéditos, isto é, não devem ter sido publicados anteriormente em periódicos de circulação nacional ou internacional. Excetuam-se em alguns casos publicações em anais e congressos. A apreciação do trabalho levará em conta a originalidade, a contribuição à ciência e/ou tecnologia, a clareza de exposição, a propriedade do tema e a apresentação. A aceitação final é da responsabilidade dos Editores e do Conselho Editorial.

Os artigos devem ser escritos em português, ou espanhol ou em inglês, datiligrafados, acompanhados dos desenhos em papel vegetal, em tamanho reduzido que permita ainda a redução para as dimensões da Revista e enviados para o Editor Executivo no endereço abaixo.

> Editor Executivo da RBCM Secretaria da ABCM PUC/RJ – Rua Marquês de São Vicente, 225 – Gávea 22453 – Rio de Janeiro, RJ – Brasil

A composição datilográfica será processada pela própria secretaria da RBCM de acordo com as normas existentes.

The Revista Brasileira de Ciências Mecânicas (Brazilian Journal of Mechanical Sciences) is a technical-scientific publication, sponsored by the Brazilian Association of Mechanical Sciences. It is intended as a vehicle for the publication of Civil, Mechanical, Metallurgical, Naval, Nuclear and Chemical Engineering as well as in the areas of Physics and Applied Mathematics. Short communications presenting interesting results obtained from well-known theories and techniques will be published under heading of the Technical Notes.

Manuscripts for submission must contain unpublished material, i. e., material that has not yet been published in any national or international journal. Exception can be made in some cases of papers published in annals or proceedings of conferences. The decision on acceptance of papers will take into consideration their originality, contribution to science and/or technology. The Editors and the Editorial Committee are responsible for the final approval.

The papers must be written in Portuguese, Spanish or English, typed and with graphics done on transparent white drawing paper in reduced size in such a way as to permit further reduction to the dimensions of the Journal, and sent to the Executive Editor at the following address.

> Executive Editor of RBCM Secretary of ABCM PUC/RJ — Rua Marquês de São Vicente, 225 — Gávea 22453 — Rio de Janeiro, RJ — Brazil

The final typing will be done by the secretary of RBCM according to the journal

norms.

ISSN 0100-7386

Revista Brasileira de Cièncias Mecânicas

Patrocinada pela Associação Brasileira de Ciências Mecânicas

MEMBROS DA DIRETORIA DA ABCM Sidney Stuckenbruck (Presidente) Luiz Bevilacqua (Vice-Presidente) José Luiz de França Freire (Secretário Geral) Tito Luiz da Silveira (Secretário) José Augusto Ramos do Amaral (Diretor de Patrimônio)

TRANSFERÊNCIA DE CALOR GÁS-SÓLIDO EM LEITO DESLIZANTE E ESCOAMENTOS CONCORRENTES, CONTRACORRENTES E CRUZADOS

D.J.M. Sartori UFSCar/DEQ

J.T. Freire UFSCar/DEQ

G. Massarani – Membro da ABCM COPPE/UFRJ – Programa de Engenharia Química

ON THE EIGENVALEUS BASIC TO FORCED ONVECTION OF NON-NEWTONIAN FLUIDS INSIDE DUCTS

Renato Machado Cotta - Membro da ABCM Instituto Tecnológico da Aeronáutica - ITA Departamento de Energia

SOLUÇÃO NUMÉRICA DE PROBLEMAS DE CONTATO UNILATERAL COM ATRITO – APLICAÇÃO A UMA PLACA APOIADA SOBRE SOLO RÍGIDO –

Edgar Nobuo Mamiya – Membro da ABCM Universidade Federal de São Carlos PUC/RJ – Departamento de Engenharia Mecânica

Heraldo Silva da Costa Mattos – Membro da ABCM PUC/RJ – Departamento de Engenharia Mecânica

Michel Raous Laboratoire de Mécanique et d'Acoustique Marceille – France

Rubens Sampaio – Membro da ABCM PUC/RJ – Departamento de Engenharia Mecânica

DETERMINAÇÃO DE FATORES DE INTENSIDADE DE TENSÃO PARA TRINCAS PRÓXIMAS A JUNTAS T EM ESPÉCIMES PLANOS E TUBULARES SUBMETIDOS À TRAÇÃO VIA FOTOELASTICIDADE

José Luiz de França Freire – Membro da ABCM PUC/RJ – Departamento de Engenharia Mecânica

José Ricardo Rebello Metal Leve S/A – Insútria e Comércio

ANALOGY BETWEEN HEAT AND MASS TRANSFER FOR DIFFUSION DRIVEN NONISOTHERMAL EVAPORATION

Álvaro Toubes Prata – Membro da ABCM UFSC – Departamento de Engenharia Mecânica

45

25

3

71

87

Vol. X, nº 1 – Fev. 1988 EDITOR RESPONSÁVEL Rubens Sampaio

EXECUTIVO

CONSELHO

Abimael F. D. Loula Arthur J. V. Porto Berend Snoeiler Bernardo Horowitz C. S. Barcellos D. E. Zemoieri Duraid Mahrus E. O. Taroco Aliano F. Venâncio Filho F. E. Mourão Sabova Giulin Massarani Guilhermo Creuss Hans Ingo Weber Henner A. Gomide Jan Leon Scieszko Jerzy T. Sielawa J. J. Espíndola Liu Hsú Maurício N. Frota Miquel H. Hirata Nelson Back Nestor Zouain Nivaldo L. Cupini O. Maizza Neto Pedro Carajilescov Sergio Colle

73CU

De acordo com a Ata dos trabalhos de apuração das eleições da ABCM, informamos a composição do Conselho Diretor e do Conselho Deliberat<u>i</u> vo para o biênio 88-89:

CONSELHO DIRETOR

Presidente	Sidney Stuckenbruck (CENPES/PETROBRAS)
Vice-Presidente	Luiz Bevilacqua (COPPE/UFRJ)
Secretário Geral	José Luiz de França Freire (PUC/RJ)
Secretário	Tito Luiz da Silveira (FESM-COPPE/UFRJ)
Diretor de Patrimônio	José Augusto Ramos do Amaral (NUCLEN)

CONSELHO DELIBERATIVO

Carlos Alberto de Almeida	PUC/RJ
Carlos Alberto Marques Couto	FINEP
Edgardo Taroco	LNCC/CNPq
Francisco Eduardo Mourão Saboya	PUC/RJ
José de Mendonça Freire	PUC/RJ
Leonardo Goldstein Júnior	UNICAMP
Maurício Nogueira Frota	PUC/RJ
Raul Antonino Feijóo	LNCC/CNPq
Rubens Sampaio Filho	PUC/RJ
Valder Steffen Júnior	UFU
Suplentes:	
Mauro Sergio Pinto de Sampaio	NUCLEN
Orlando João A. Goncalves Filho	CNEN

TRANSFERÊNCIA DE CALOR GÁS-SÓLIDO EM LEITO DESLIZANTE E ESCOAMENTOS CONCORRENTES, CONTRACORRENTES E CRUZADOS

D. J. M. Sartori UFSCar/DEQ

J. T. Freire UFSCar/DEQ

G. Massarani – Membro da ABCM COPPE/UFRJ – Programa de Engenharia Química

RESUMO

Foram conduzidas determinações experimentais do coeficiente de transferência de calor gás-sólido em leito deslizante e escoamentos contr<u>a</u> correntes, concorrentes e cruzados, nas condições de aquecimento ou resfriamento de sólidos. A fase sólida era constituída de partículas de areia e vidro com diferentes diâmetros e grãos de soja, milho e arroz. Os experimentos foram realizados no intervalo de número de Reynolds entre 10² e 10³ e foi verificado que os resultados obtidos estão de acordo com os valores previstos pela literatura. Constatou--se que o coeficiente de troca térmica é crescente na ordem de escoamentos concorrentes, cruzados e contracorrentes, tendendo a um mesmo valor a elevados Re.

ABSTRACT

Experimental determination of the fluid-to-particle heat transfer coefficient in countercurrent, concurrent and crossflow moving beds under heating or cooling conditions has been carried out. Sand and glass with different diameters and corn, rice and soy beans were used as the solid phase, where as air was used as the fluid phase. The texts were carried out with particle Reynolds number ranging from 10² to 10³ and the results were in fair agreement with those predicted by current literature. It has been shown that the heat transfer coefficient increases in the sequence of the concurrent crossflow and countercurrent flow, tending to a common value at high Re.

Submetido em Janeiro/1987 Aceito em Janeiro/1988

NOMENCLATURA

- constante definida na equação (18), adimensional а $\psi T_{FO} - T_{FO}$, [0] A $-\psi Tf_{-T_{ro}}$, [0] Α' constante definida na equação (18), adimensional b 1-4. adimensional B 1+0, adimensional B' calor específico, [L'T'0'1] Ċ De diâmetro linear máximo da partícula, [L]. diâmetro médio de partícula definido na Tabela 1, [L] D densidade de fluxo de massa, $[ML^{-2}T^{-1}]$ G coeficiente de transferência de calor entre o gás e o sólido, h [MT-3 0-1] condutividade térmica, [MLT-30-1] k número de partículas com diâmetro d, N. hD_p/k_f, número de Nusselt, adimensional Nu µC_e/k_e, número de Prandtl, adimensional Pr coordenada radial, [L] r D_/2, [L] R G_fD_p/µ, número de Reynolds nos escoamentos cruzados, adimensio-Re $\frac{\rho_{f} \varepsilon D_{p}}{\mu} \begin{pmatrix} G_{f} \\ \rho_{f} \varepsilon \end{pmatrix}^{\epsilon} + \frac{G_{s}}{\rho_{s}(1-\varepsilon)} \end{pmatrix}, \quad \begin{array}{l} \text{número de Reynolds nos escoamentos con} \\ \text{``tracorrentes, adimensional} \end{pmatrix}$ $\frac{\rho_{\mathbf{f}} \varepsilon D_{\mathbf{p}}}{\mu} \begin{pmatrix} \mathbf{G}_{\mathbf{f}} & - \frac{\mathbf{G}_{\mathbf{s}}}{\rho_{\mathbf{s}} \varepsilon} \\ & \rho_{\mathbf{s}} (1-\varepsilon) \end{pmatrix}, \quad \text{numero de Reynolds nos escoamentos con}, \\ & \text{correntes, adimensional} \end{pmatrix}$ $6\,(1-\epsilon)\,/\phi D_p$ ârea da superfície das partículas por unidade de volume do leito, $[L^{-1}]$ S
 - T temperatura, [θ]

x coordenada na direção de escoamento do gás nos escoamentos contracorrentes e concorrentes, e coordenada na direção de escoa mento do sólido nos escoamentos cruzados, [L]

$$X = \frac{hS}{C_sG_s} x$$
, cruzados; $\frac{hS}{C_fG_f} x$, adimensional

y coordenada na direção de escoamento do gás nos escoamentos cruzados, [L]

Y
$$\frac{hS}{C_f G_f}$$
 y, adimensional

z coordenada na direção normal aos escoamentos do gás e do sólido nos escoamentos cruzados, [L]

Símbolos Gregos

- c porosidade, adimensional
- λ -hS(1- ψ)/C_eG_e, [L⁻¹]
- $\lambda' = -hS(1+\psi)/C_fG_f, [L^{-1}]$
- μ viscosidade, [ML⁻¹T⁻¹]
- ξ k_/h_R, adimensional
- ρ massa específica, [ML⁻³]
- $\psi = C_f G_f / C_g G_g$, adimensional

Indices

- f fluido
- s sólido
- o avaliado na região de alimentação do fluido no leito

INTRODUÇÃO

Entre as unidades industriais de secagem de produtos agrícolas, a técnica de leito deslizante tem sido uma das mais aplicadas. O seca dor ou resfriador nestas unidades podem operar em diferentes configurações de acordo com as direções de escoamentos do ar e do sólido. Os três tipos clássicos destes equipamentos apresentam escoamentos contracorrentes, escoamentos concorrentes e escoamentos cruzados. Nos es coamentos concorrentes, os escoamentos do ar e do sólido são na mesma direção e sentido, nos escoamentos contracorrentes são na mesma direção e sentidos opostos, e nos escoamentos cruzados as direções são per pendiculares.

O secador em escoamentos contracorrentes fornece um produto ho mogêneo em relação à umidade dos grãos [1]. A secagem em escoamentos concorrentes é relativamente uma nova técnica de secagem de grãos, а qual apenas recentemente tem se tornado comercial em alguns países. Segundo DALPASQUALE [1,2], neste tipo de secador a qualidade do produ to é uniforme. A configuração de escoamentos cruzados é a mais comum entre os secadores. Este tipo de secador apresenta uma menor eficiência térmica com relação aos outros dois, e fornece um produto heterogeneo em relação à umidade dos grãos, porém, possui algumas vantagens operacionais como, por exemplo, uma menor diferenca de pressão imposta ao escoamento do ar de secagem, permitindo o uso de sopradores de menor potência. Existem soluções conhecidas para reduzir as desvantagens do secador de escoamentos cruzados, como a reversão e o reciclo do escoamento de ar. Estas soluções foram estudadas através de simula cão [3,4] e demonstraram um desempenho superior ao da configuração con vencional.

Os estudos sobre a transferência de calor entre sólido e gásem leito deslizante encontram-se em um pequeno número de trabalhos consi derados relevantes, tais como LOVELL e KARNOFSKY [5] que além da formulação do problema apresentam uma técnica de solução gráfica para a situação de escoamentos contracorrentes. Neste mesmo problema, MUNRO e AMUNDSON [6] determinam a solução analítica exata, obtendo assim os perfis de temperatura para o sólido e fluido. Mais recentemente, VIOLLAZ e SUAREZ [7] obtiveram a solução das equações diferenciais através de técnica numérica e compararam seus resultados com os de

MUNRO e AMUNDSON [6].

Neste trabalho, apresenta-se um modelo matemático e determinase a solução analítica das equações diferenciais de conservação de energia de fluido e de sólido, com as condições dos perfis das temperaturas iniciais nos escoamentos de fluido e de sólido no trocador de calor em leito deslizante. Dá-se ênfase à determinação do coeficiente de transferência de calor gás-sólido, h, nas três configurações de es coamentos. Realizam-se estudos em unidades de laboratório em leito des lizante contínuo, operando nas situações de aquecimento ou resfriamen to de grãos, visando determinar a relação entre o coeficiente de troca térmica gás-sólido e as condições de operação nas configurações de escoamentos contracorrentes, concorrentes e cruzados.

Cabe observar que os trabalhos existentes na literatura utilizam diferentes definições para o coeficiente de transferência de calor [8] nas diferentes situações de escoamentos, sendo que, neste tr<u>a</u> balho é seguida uma única definição para o coeficiente h para as três configurações de escoamentos, permitindo assim uma comparação numérica entre eles.

DESENVOLVIMENTO E RESOLUÇÃO DO MODELO

O desenvolvimento do modelo matemático do processo nos diferen tes trocadores de calor, nas três condições de escoamentos, considera a convecção através das superfícies das partículas sólidas como o mecanismo dominante na transferência de calor entre as fases.

Além desta suposição básica são adotadas as seguintes simplifi cações:

- i) perfis planos de velocidade em ambas as fases,
- ii) perda de calor através das paredes do sistema desprezivel,
- iii) transferência de calor na direção normal cos escoamentos desprezível em relação à transferência de calor nas direções dos escoa mentos,
- iv) leito com propriedades homogêneas,
- v) escoamento unidirecional de gás e de sólido, e
- vi) propriedades físico-químicas constantes ao longo do leito.

Levando em conta as condições de contorno na região de entrada do gás, nos escoamentos contracorrentes e concorrentes, as condições de contorno nas regiões de entrada do sólido e do gás, nos escoamen tos cruzados, a geometria dos diferentes leitos, conforme as coordena das indicadas na Figura 1, e adotando as suposições descritas anteriormente, as equações diferenciais que descrevem a transferência de calor em regime permanente no interior do sistema são:

a) Escoamentos contracorrentes

Nesta configuração, tem-se o seguinte sistema de equações dife renciais:

- Fase fluida:
$$C_f G_f \frac{dT_f}{dx} + hS(T_f - T_s) = 0$$
 (1)

- Fase solida:
$$C_s G_s \frac{dT_s}{dx} + hS(T_f - T_s) = 0$$
 (2)

sujeito às condições na região de entrada do fluido:

$$T_f(0) = T_{fo}$$
(3a)

$$T_{B}(0) = T_{SO}$$
 (3b)

FURNAS [9] obteve os perfis de temperaturas do fluido e do sólido nos seguintes casos:

i) para ψ≠1,

$$\frac{A+B T_{f}(x)}{A+B T_{fo}} = \exp(\lambda x)$$
(4)

$$\frac{A+B T_{s}(x)}{A+B T_{fo}} = \psi \exp (\lambda x)$$
(5)

ii) para $\psi=1$,

$$\frac{T_{fo}-T_{f}(x)}{T_{fo}-T_{so}} = \frac{hS}{C_{f}G_{f}} x$$
(6)

$$\frac{T_{so}-T_{s}(x)}{T_{fo}-T_{so}} = \frac{hS}{C_{f}G_{f}} x$$
(7)

b) Escoamentos Concorrentes

Na situação de escoamentos concorrentes, as equações que des crevem a transferência de calor são:

- Fase fluida:
$$C_f G_f \frac{dT_f}{dx} + hS(T_f, T_s) = 0$$
 (8)

- Fase solida:
$$C_s G_s \frac{dT_s}{dx} - hS(T_f - T_s) = 0$$
 (9)

sujeitas às condições de contorno:

$$T_f(0) = T_{fo}$$
(10a)

$$T_{s}(0) = T_{so}$$
 (10b)

SARTORI et al [10], por meio de procedimento análogo ao desenvolvido na configuração de escoamentos contracorrentes, determinaram a seguinte solução:

- Perfil de temperatura do fluido,

$$\frac{A'+B'T_{f}(x)}{A'+B'T_{fO}} = \exp((\lambda'x)$$
(11)

- Perfil de temperatura do sólido,

$$\frac{A'+B'T_{s}(x)}{A'+B'T_{fo}} = -\psi \exp(\lambda'x)$$
(12)

c) Escoamentos Cruzados

O problema no leito deslizante e escoamentos cruzados consiste no seguinte sistema hiperbólico de equações diferenciais:

- Fase fluida:
$$C_f G_f \frac{\partial T_f}{\partial y} + hS(T_f - T_s) = 0$$
 (13)

- Fase sólida:
$$C_s G_s = \frac{\partial T_s}{\partial x} - hS(T_f - T_s) = 0$$
 (14)

sujeito às condições de contorno,

$$T_{f}(x,0) = T_{f0}$$
$$T_{s}(0,y) = T_{s0}$$

Figura 1a - Esquema para os escoamentos contracorrentes

Figura 1c - Esquema para os escoamentos cruzados

(15a)

(15b)

A solução analítica deste problema foi obtida por SARTORI e BISCAIA JR. [11] que determinaram os seguintes perfis de temperatura para os dois constituintes:

$$\frac{T_{f}(X,Y)-T_{fo}}{T_{so}-T_{fo}} = e^{-X} \int_{0}^{Y} e^{-\xi} I_{o}(2\sqrt{X\xi}) d\xi$$
(16)

$$\frac{T_{s}(X,Y) - T_{fo}}{T_{so} - T_{fo}} = 1 - e^{-Y} \int_{0}^{X} e^{-\xi} I_{o}(2\sqrt{Y\xi}) d\xi$$
(17)

DETERMINAÇÃO DO COEFICIENTE h

A partir dos valores experimentais de vazões do gás e do sólido, T_{so} , a distribuição de temperatura do gás ao longo do leito e o perfil de temperatura do gás, equação (4), ou T_{fo} , a distribuição de temperatura do sólido ao longo do leito e o perfil de temperatura do sólido, equação (5), determina-se por meio da técnica de mínimos quadrados o coeficiente h nos escoamentos contracorrentes. Nos escoamentos concorrentes a determinação de h é baseada nos dados experimentais de vazões do gás e do sólido T_{so} , distribuição de temperatura do gás ao longo do leito e o perfil de temperatura do gás, equação (11), ou T_{fo} , a distribuição de temperatura do sólido ao longo do leito e o perfil de temperatura do sólido, equação (12). Nestas duas configurações o valor de h que melhor ajusta os dados experimentais de acordo com as soluções analíticas é obtido através de um programa computaci<u>o</u> nal simples.

O valor do coeficiente h, nos escoamentos cruzados, é calculado mediante a aplicação de regressão não linear, fundamentada na min<u>i</u> mização dos quadrados dos desvios entre os valores mensurados e os va lores preditos pela solução analítica do problema, equações (16) e (17). Este procedimento é efetuado adotando como variável dependente as diferenças de temperaturas $(T_s - T_f)/(T_{so} - T_{fo})$, algoritmo-1, e outra forma de variável dependente baseada no perfil adimensional de temperatu ra do fluido $(T_f - T_{fo})/(T_{so} - T_{fo})$, algoritmo-2.

Nos dois algoritmos é aplicado o Método de COGGINS de busca uni

variável (algoritmo de POWELL) [12,13]. Estes dois algoritmos originam dois programas computacionais, conforme as listagens apresentadas por SARTORI [8].

Estes programas computacionais implementados em um micro-computador NEXUS-1600 da SCOPUS-Tecnologia, permitem calcular valores do coeficiente h para diversas condições operacionais do leito e diferen tes materiais.

ENSAIOS NAS UNIDADES DE LABORATÓRIO

Partículas Sólidas

As medidas são realizadas nos processos de aquecimento ou resfriamento de sete tipos de meios porosos percolados por ar. São usadas partículas de areia, vidro, grãos de soja, milho e arroz.

As principais propriedades destes materiais encontram-se na T<u>a</u> bela 1.

5õlido	Dp* (cm)	Dp* (cm) ^{\$⁺}		C _s ^x (cal/g. ^o C)	
soja	0,60	0,90	1,17	0,53	
milho	0,62	0,76	1,23	0,50	
arroz	0,38	0,65	1,21	0,48	
vidro-I	0,17	1	2,59	0,18	
vidro-II	0,28	1	2,59	0,18	
areia-II	0,12	0,68	2,65	0,19	
areia-III	0,30	0,68	2,65	0,19	

Tabela 1. Propriedades dos Sólidos

Método de medida:

* picnometria

 D_{p} definido pela equação: $\sum_{i} N_{i}d_{i} = D_{p} \sum_{i} N_{i}$

^x calorimetria

 $\phi = D_D/D_{\ell}$

Método

a) Equipamentos

As unidades de leito deslizante e escoamentos contracorrentes, concorrentes e cruzados encontram-se esquematizadas nas Figuras 2, 3 e 4, respectivamente.

A unidade experimental é constituída por um conjunto de instalações típicas em equipamentos usados nos estudos sobre transferência de calor em sistemas particulados, ou seja,

- sistema de escoamento de sólido;
- sistema de escoamento de ar;
- sistema de aquecimento de ar e de sólido;
- circuito de medida de temperatura; e
- seção de testes (célula de medida).

A célula de medida do equipamento de leito deslizante e escoamentos contracorrentes é construída em tubo de cimento amianto de 50mm de diâmetro interno e 900mm de comprimento. A extremidade inferior possui um flange que permite o acoplamento com um distribuidordo ar de alímentação e um equalizador de pressão.

A célula de medida, nos escoamentos concorrentes, é construída em tubo de cimento amianto de 50mm de diâmetro interno e 900mm de com primento. Na parte superior é instalado um distribuidor de ar, de 250mm de comprimento, acoplado ao sistema de alimentação de sólido.

Nos escoamentos cruzados, a célula de medida é construída em chapa de alumínio e tubo de ferro galvanizado, sem costura, de 50mm de diâmetro interno. As regiões de entrada e saída de ar no leito são protegidas com tela metálica, malha de 1,1mm de abertura. A célula tem 1m de comprimento possuindo uma seção retangular de 200mm de largura de 110mm de espessura, na direção do escoamento de ar. O distribuidor de ar é de geometria cônica, 590mm de comprimento, e seção retangular. Um conjunto de placas defletoras de ar é convenientemente instalado em seu interior a fim de facilitar a distribuição do ar no leito. As extremidades superior e inferior da célula são fixadas em equalizadores de pressão.

Figura 2 - Esquema da unidade de leito deslizante e escoamentos contracorrentes

Figura 3 - Esquema da unidade de leito deslizante e escoamentos concorrentes

Figura 4 - Esquema da unidade de leito deslicante e escoamentos cruzados

Figura 5 — Coeficiente de transferência de calor gás-sólido em leito deslizante

O equalizador de pressão permite direcionar o escoamento de ar no interior da célula de medida, possibilitando obter as diferentes configurações de escoamentos. Os detalhes referentes às outras instalações podem ser vistos em SARTORI [8].

As medidas de temperatura são realizadas com termopares de cobre-constantan, diâmetro de 1,5mm; aproximadamente, revestidos com uma pequena tela, formato "gaiola", para não permitir o impacto das part<u>I</u> culas com os elementos sensores. Os termopares são ligados por meio de fios de compensação a um sistema composto de 2 chaves seletoras,um milivoltímetro digital e ponto frio.

b) Técnica de medida de temperatura

A medida de temperatura do ar é feita em regime permanente de troca térmica usando a técnica de termopar com revestimento, introduzida por LEVA ["in" 8].

A técnica de medida de temperatura do sólido é a mesma utiliza da por SISSOM e JACKSON [14]. Os escoamentos do ar e do sólido são si multaneamente interrompidos enquanto que o valor registrado no mili voltímetro é imediatamente anotado e atribuído à temperatura do sólido.

c) Ensaios

Inicialmente, são realizados testes preliminares tendo em vista as calibrações dos termopares e dos medidores de vazão, a verifica ção da técnica de medida de temperatura e a determinação das medidas de porosidade. São determinadas as temperaturas dos constituintes em diferentes posições normais aos escoamentos de ar e de sólido e anal<u>i</u> sada a reprodutibilidade dos dados experimentais.

APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS

A quantidade de energia transferida na direção normal aos es coamentos é, aproximadamente, igual a 2,8% da quantidade de calor transferida entre os dois constituintes.

A incerteza no valor obtido para o coeficiente h é, aproximada mente, igual a 5%. Determinado a partir da análise da propagação do erro envolvido na obtenção das variáveis que compõem as equações de obtenção de h, partindo da calibração do termopar com desvio aproxima do de 0,5[°]C.

O número de Nusselt, Nu, em função do número de Reynolds, Re, para os diversos sistemas analisados, nas diferentes situações de escoamentos encontram-se reunidos na Figura 5. O conjunto completo dos resultados experimentais encontram-se reunidos em SARTORI [8].

A troca térmica, nos escoamentos cruzados é predominante na região mais próxima das regiões de entrada de ar e de sólido, tanto no processo de aquecimento como no processo de resfriamento de sólido. Na direção do escoamento de ar nem sempre as temperaturas $T_f \in T_s$ se igualam na região de saída de ar. O mesmo comportamento não é verificado na direção do escoamento de sólido onde o equilíbrio entre as tem peraturas $T_f \in T_s$ é atingido sempre antes do sólido deixar a célula

de medida, em todos os casos analisados. É constatado ainda que este equilíbrio térmico ocorre mais próximo às regiões de entrada de sól<u>i</u> do no processo de aquecimento de sólido quando comparado ao processo de resfriamento de sólido nas mesmas condições de vazões de fluido e sólido.

A determinação do coeficiente de transferência de calor entre gás e sólido baseada no perfil de temperatura do fluido serviu para a comprovação da técnica de medida de temperatura de sólido. A partir do perfil de temperatura de gás é determinado o coeficiente de troca térmica que é usado na solução analítica do perfil de temperatura do sólido, equações (5), (12) e (17), visando à comparação entre os perfis experimental e estimado. Face à boa concordância entre os perfis, é constatado que as medidas das temperaturas de sólido são satisfatórias.

A quase totalidade dos resultados fornecidos pelos algoritmos 1 e 2 indicam uma convergência entre os valores de Nu estimados por ambos os algoritmos; levando em conta que no algoritmo 2 não são necessárias as medidas de temperatura do sólido ao longo do leito, mais passíveis de erros experimentais, optou-se por utilizá-lo na caract<u>e</u> rização da dependência de Nu em função de Re.

Verificou-se, em todos os sistemas analisados, uma convergência entre os valores de Nu obtidos nos processos de aquecimento ou de resfriamento do sólido, para um mesmo valor de Re. Certamente, de vido o processo estar ocorrendo a elevados Re, onde os efeitos de turbulência são predominantes.

Para as três configurações de escoamentos, foi possível um ajuste do tipo,

 $Nu = a Pr^{1/3} Re^{b}$

como proposto por BOWERS e REINTJES [15]. As curvas referentes a cada situação de escoamentos encontram-se traçadas na Figura 5.

Considerando a Figura 5, observa-se a localização coerente da região dos dados obtidos em confronto com os dados e modelos da lit<u>e</u> ratura que representam o comportamento em leito deslizante, fixo,dis

tendido, fluidizado, transporte penumático e partícula única. É cons tatado que o conjunto de curvas referente à correlação de BOWERS e REINTJES [15] encontra-se na mesma região dos dados obtidos nos escoamentos contracorrentes. Entretanto, estes valores estão distantes da curva apresentada por SISSOM e JACSON [14], pois os resultados des tes autores correspondem aos dados obtidos em partículas de alumínio muito pequenas e baixos Re. Observação análoga é feita, nos escoamen tos cruzados, em relação aos dados de COUTINHO et al [16], que deter minaram h na secagem de soja em escoamentos cruzados a baixos Re. Nos escoamentos concorrentes não é possível a comparação em relação a ou tros trabalhos, pois não foi localizada referência na literatura sobre a determinação do coeficiente h nesta configuração.

Os valores de Nu, para Re próximo de 10³, são independentes das configurações de escoamentos. Para baixos Re, da ordem de 10²,os valores de Nu nos escoamentos cruzados são intermediários aos Nu nos escoamentos contracorrentes e concorrentes; os maiores valores cor respondem aos escoamentos contracorrentes.

CONCLUSÕES

O coeficiente de transferência de calor gás-grão em leito des lizante operando na configuração de escoamentos contracorrentes, con correntes ou cruzados independe da condição de operação de aquecimen to ou resfriamento de grãos, para Re variando de 10² a 10³.

Os valores de Nu mostraram-se independentes da forma de part<u>í</u> cula, para todos os sistemas analisados.

A dependência do coeficiente h em relação às condições de op<u>e</u> ração é representada pela correlação entre Nu e Re. Para cada configuração de escoamentos, nas condições de operação utilizadas, os resultados indicam,

- Escoamentos contracorrentes:

$$Nu = 1.54 \text{ Pr}^{1/3} \text{ Re}^{0.57} ; \tag{19}$$

1.1

- Escoamentos concorrentes:

$$Nu = 0.84 Pr^{1/3} Re^{0.65};$$
(20)

- Escoamentos cruzados:

$$Nu = 1.31 Pr^{1/3} Re^{0.59} .$$
 (21)

Os valores de Nu nas três configurações de escoamentos são dis tintos, crescentes na ordem dos escoamentos concorrentes, cruzados e contracorrentes, tendendo assintóticamente para um mesmo valor a altos Re.

AGRADECIMENTOS

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo apoio financeiro e à DISOLO pela doação de grãos de soja e de milho.

REFERÊNCIAS

- [1] DALPASQUALE, V.A., Continuous-flow drying of soybeans, M.Sc. Thesis, Michigan State University, Michigan, USA, 1979.
- [2] DALPASQUALE, V.A., Drying of soybeans in continuous flow dryers and fixed-bed drying systems, Ph.D. Thesis, Michigan State University, Michigan, USA, 1981.
- [3] MEDEIROS, J.L. & MASSARANI, G., Secagem de bagaço de cana IV, Anais do IV Encontro Nacional de Secagem, Viçosa, MG, 1983.
- [4] MEDEIROS, J.L.; MASSARANI, G.; ASSUMPÇÃO, G.B., Secagem de grãos em secador de fluxos cruzados II, Anais do XI ENEMP, I: 177-191, Rio de Janeiro, RJ, 1983.
- [5] LOVELL, C.L. & KARNOFSKY, G. Design of solid-fluid heat exchangers, Ind.Eng.Chem., 35(4): 391-397, 1943.
- [6] MUNRO, W.D. & AMUNDSON, N.R., Solid-fluid heat exchangers in moving beds, Ind.Eng.Chem., 42(8): 1481-1489, 1950.

- [7] VIOLLAZ, P.E. & SUAREZ, C., Transferência de calor sólido-gás en lecho movil: solución mediante el teorema de Duhamel, Rev. Latingam.Transf.Cal.Mat., 4: 47-54, 1980.
- [8] SARTORI, D.J.M., Transferência de calor em leito deslizante, Tese de Doutorado, COPPE/UFRJ, 1986.
- [9] FURNAS, C.C., Heat transfer from a gas stream to a bed of broken solids, AIChE Journal, 24: 142-193, 1930.
- [10] SARTORI, D.J.M.; FREIRE, J.T.; MASSARANI, G., Transferência calor gás-grão em leito deslizante. II. Anais do V Encontro Nacional de Secagem, Lavras, MG, 1985.
- [11] SARTORI, D.J.M. & BISCAIA JR., E.C., Transferência de calor gássólido em leito deslizante III: escoamentos cruzados, Anais do XIII ENEMP, São Paulo, SP, 1985.
- [12] KUESTER, J.L. & MIZE, J.H., Optimization Techniques with Fortran, McGraw Hill, New York, N.Y., 18 ed., 1973.
- [13] POWELL, M.J.D., An efficient method for finding the minimum of a function of several variables without calculating derivatives, Computer J., 7: 155-162, 1964.
- [14] SISSOM, L.E. & JACKSON, T.W., Heat exchange in fluid-dense particle moving beds, Trans. ASME: Journal of Heat Transfer, 89: 1-6, 1967.
- [15] BOWERS, T.G. & REINTJES, H., A review of fluid-to-particle heat transfer in packed and moving beds, Chem.Eng.Progr. Symposium Ser., 57(32): 69-74, 1961.
- [16] COUTINHO, P.L.A.; MEDEIROS, J.L.; MASSARANI, G., Secagem de grãos em fluxo cruzado, Anais do X ENEMP, <u>1</u>: 206-221, São Carlos, SP, 1982.
- [17] WAKAO, N.; KAGUEI, S.; FUMAZKRI, T., Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds, Chem.Eng.Sci., 34: 325-336, 1979.
- [18] SEN GUPTA, A. & THODOS, G., Mass and heat transfer in the flow of fluids through fixed and fluidized beds of spherical particles, AIChE Journal, 8(5): 608-610, 1962.

- [19] TORREZAN, L.B.M.; SARTORI, D.J.M.; SANTANA, C.C., Coeficiente global de transferência de calor gás-sólido no transporte pneu mático, Anais do XI ENEMP, I: 94-106, Rio de Janeiro, RJ, 1983.
- [20] RANZ, W.E. & MARSHALL, W.R., Evaporation from drops part I, Chem.Eng.Progr., 48(3): 141-146, 1952.
- [21] CHANG, T.M. & WEN, C.Y., Fluid-to-particle heat transfer in airfluidized beds, Chem.Eng.Progr.Symposium Ser., <u>62</u> (67): 111-117, 1966.
- [22] COUTINHO, P.L.A.; MEDEIROS, J.L.; MASSARANI, G., Resfriador de grãos em leito deslizante e fluxos contracorrentes, Anais do IV Encontac Nacional de Secagem, 129-137, Vicosa, MG, 1983.

ON THE EIGENVALUES BASIC TO FORCED CONVECTION OF NON-NEWTONIAN FLUIDS INSIDE DUCTS

Renato Machado Cotta – Membro da ABCM Instituto Tecnológico da Aeronáutica – ITA Departamento de Energia

ŀ

ABSTRACT

The recently advanced sign-count method is used to automatically and accurately determine the eigenvalues basic to the solution of forced convection problems of non-newtonian fluids inside conduits. Special cases of laminar forced flow of power-law, Bingham, and Prandtl-Eyring fluids, inside ducts such as circular tube and parallel-plates channel, are considered for illustration. The first ten eigenvalues for each case are sistematically tabulated for several values of the Biot number and representative values of the velocity fields parameters. These benchmark results are also used to critically examine results presented in previous works available in the open literature, which considered approximate methods of solution.

RESUMO

O método de "contagem do sinal" recentemente introduzido é usado na determinação precisa e automática dos autovalores básicos à solução de problemas de convecção forçada de fluidos não-newtonianos no inte rior de dutos. Casos especiais de escoamento laminar forçado de flui dos de lei de potência, Bingham e Prandtl-Eyring, no interior de dutos como tubo circular e canal de placas planas, são considerados pa ra ilustração. Os primeiros dez autovalores para cada caso são siste maticamente tabelados para diversos valores do número de Biot e valo res representativos dos parâmetros nos campos de velocidade. Esses resultados de "benchmark" são também utilizados para examinar criticamente os resultados apresentados em trabalhos anteriores disponíveis na literatura aberta, que consideram métodos aproximados de solução.

Submetido em Maio/1987 Aceito em Julho/1987

INTRODUCTION

Heat transfer problems in channel flow of non-newtonian fluids have been considered very frequently in recent years. The review works by Cho and Hartnett [1] and Winter [2] list most of the contributions in related fields and compile most problems of interest. Among these, forced convection problems of non-newtonian fluids inside conduits such as circular duct and parallel-plate channel have received special consideration. It is clearly noticeable, from the available literature, that difficulties were encountered for the proper analytical treatment of this class of problems, related to difficulties in the accurate solution of the associated eigenvalue problems. In recent works [3,15], Cotta & Özisik considered laminar forced convection problems of power-law fluids and reported results for a very wide range of the dimensionless axial coordinate, which allowed for a critical inspection of previously reported approximate solutions for the thermal entry region. To properly obtain these results, the authors made use of the recently advanced Sign-count method [4,5,6], to accurately and automatically solve the related eigenvalue problem, determining as many eigenvalues, eigenfunctions, and norms as needed, without any noticeable loss of accuracy for higher order eigenquantities.

In this work we want to briefly show how the Sign-count method can be applied to the solution of the eigenvalue problems basic to forced convection problems of non-newtonian fluids inside conduits such as a circular duct and parallel-plate channel. Then, we consider the special cases of power-law, Bingham, and Prandtl-Eyring fluids in laminar flow more closely. These choices are related to the interest demonstrated in the open literature, which also allows for a critical investigation on the accuracy of previously reported approximate results [7,13]. Furthermore, due to the apparent unavailability of benchmark results, opposed to the case of newtonian fluids [14], we sistematically tabulate the first ten eigenvalues for each case considering several values of the Biot number, including first and second kind boundary conditions, and representative values for the parameters in each velocity field.

ANALYSIS

We consider the appropriate eigenvalue problem for forced convection in channel flow of non-newtonian fluids, given in dimensionless form as:

$$\frac{1}{R^{P}}\frac{d}{dR}\left[R^{P}\gamma(R)\frac{d\psi(\beta_{i},R)}{dR}\right]+\beta_{i}^{2}U(R)\psi(\beta_{i},R)=0, \text{ in } 0< R< R_{W} (1.a)$$

$$\frac{d\psi(\beta_{i},R)}{dR} = 0, \quad \text{at } R=0$$
(1.b)

$$\frac{d\psi(\beta_{i},R)}{dR} + B_{i}\psi(\beta_{i},R) = 0, \text{ at } R=R_{W}$$
(1.c)

where various quantities are defined as:

 $P = \begin{pmatrix} 0 & , \text{ for parallel-plate channel} \\ \\ 1 & , \text{ for circular duct} \end{pmatrix}$

$$\gamma(R) = 1 + \frac{\epsilon_{\rm H}(R)}{\alpha}$$

 $\varepsilon_u(R)$: turbulent diffusivity of heat

U(R) : dimensionless flow velocity

R : dimensionless radial or normal distance

B; : Biot number

R_W : dimensionless wall distance, i.e., dimensionless tube radius for a circular duct and half the spacing between plates for a parallel-plate channel

 $\psi(\beta_i, R)$: eigenfunction

β, : ith eigenvalue

a : thermal diffusivity

and boundary condition (1.b) denotes symmetry condition at the channel centerline. Also, the boundary conditions of the first and second kind can be recovered in equation (1.c) by setting Bi equal to infinity or zero, respectively, corresponding to the physical situations of prescribed wall temperature and prescribed wall heat flux.

In order to apply the sign-count method [5,6,7], we consider a more general Sturm-Liouville problem given in the form

$$\frac{d}{dR}\left[K(R) \frac{d\psi(\beta_{i},R)}{dR}\right] + \beta_{i}^{2} W(R)\psi(\beta_{i},R) = 0, \text{ in } 0 < R < R_{W} \quad (2.a)$$

$$\alpha_{0} \psi(\beta_{i}, R) - \lambda_{0} K(R) \frac{d\psi(\beta_{i}, R)}{dR} = 0 , \text{ at } R=0$$
 (2.b)

$$\alpha_1 \psi(\beta_1, R) + \lambda_1 K(R) \frac{d\psi(\beta_1, R)}{dR} = 0 , at R=R_W$$
 (2.c)

where α_j and λ_j (j=0 or 1) are real and independent of β , and can be chosen to match the boundary conditions (l.b,c). The correspondence between our specific system (l) and the more general system above is given by:

- $K(R) = R^{P} \gamma(R)$ (3.a)
- $W(R) = R^{P} U(R)$ (3.b)
- $\alpha_{0} = 0 ; \quad \lambda_{0} = 1 \quad (3.c,d)$

$$\alpha_1 = 1 ; \quad \lambda_1 = \frac{1}{\text{Bi } K(R_W)}$$
(3.e,f)

Following the formalism of the sign-count method, we let the coefficients K(R) and W(R) be approximated by stepwise functions as:

$$K(R) = K_k$$
; $W(R) = W_k$

for
$$R_k < R < R_{k+1}$$
; $k = 0, 1, ..., N-1$

where N is the number of subdivisions in the spacial domain considered for problem (2).

The stepwise functions K_k and W_k are evaluated by some averaging process in each subinterval $R_{k+1}-R_k$, k=0,1,...,N-1, in which equation (2) is replaced by:

$$\frac{d^2 \psi_k(\beta_1, R)}{dR^2} + \omega_k^2 \psi_k(\beta_1, R) = 0 , \text{ in } R_k < R < R_{k+1}$$
 (5.a)

where

$$\omega_{\mathbf{k}}^{2} = \beta_{\mathbf{i}}^{2} W_{\mathbf{k}} / K_{\mathbf{k}}$$
(5.b)

The function $\psi_k(\theta_i, R)$ and its first derivatives at the end points of each subinterval should satisfy continuity conditions:

$$\psi_k(\beta_1, R) = \psi_{k+1}(\beta_1, R)$$
, at $R=R_k$, $k=1, 2, \dots, N-1$ (5.c)

$$K_{k} \frac{d\psi_{k}(\beta_{1},R)}{dR} = K_{k+1} \frac{d\psi_{k+1}(\beta_{1},R)}{dR} , \text{ at } R = R_{k} , k = 1, 2, \dots, N-1$$
(5.d)

The boundary conditions (2.b,c), respectively, take the form:

$$\alpha_{0}\psi_{1}(\beta_{1},R) - \lambda_{0}K_{1}\frac{d\psi_{1}(\beta_{1},R)}{dR} = 0 , \text{ at } R=0$$
 (5.e)

$$\alpha_{N}\psi_{N}(\beta_{1},R) + \lambda_{N}K_{N} \frac{d\psi_{N}(\beta_{1},R)}{dR} = 0 , \text{ at } R=R_{W}$$
 (5.f)

where in equation (6.d) a_1 and λ_1 are replaced by a_N and λ_N since this boundary condition now belongs to the end point of the last subinterval.

In this way, the eigenvalue problem defined by equations (2)

is replaced by the problem (5), and the eigenvalues of the latter will represent the eigenvalues of problem (2) if sufficiently small subintervals are chosen. From now on, we follow the rest of the procedure for the sign-count method, including the straightforward computation of eigenfunctions and norms, that has been described somewhere else [5,6,7] and will not be repeated here.

We now proceed to consider a few special cases, for which some approximate techniques were used for the solution of the related eigenvalue problem.

LAMINAR FORCED CONVECTION OF POWER-LAW FLUIDS INSIDE CIRCULAR DUCTS AND PARALLEL-PLATE CHANNELS

For this case, functions and coefficients in problem (1) are given by:

$$\gamma(R) = 1$$
 U(R) = 1 - Rⁿ; R_W = 1 (6.a,b,c)

where n is the power-law flow index.

Among others, we should mention the work of Michiyoshi and Matsumoto [8], who considered the cases $B_i=0$ and $B_i=^{\infty}$ in a circular tube, and the most recent works by Ybarra and Eckert [9], and Dinh and Armstrong [10], both for parallel-plates channel. In reference [8], a solution is tied by expanding the eigenfunction into a power series of the eigenvalue, followed by an iterative procedure. In [9], the differential equation was discretized by finite differences and required to satisfy a simultaneous system of algebraic equations. Finally, in reference [10], the approximate solution is obtained by using the WKB-J method to establish asymptotically valid solutions. Results obtained in these works shall be critically examined by comparison with the benchmark results here generated.

LAMINAR FORCED CONVECTION OF A BINGHAM PLASTIC INSIDE A CIRCULAR DUCT

For this case, the functions in problem (1) are given by [11]:

$$\gamma(R) = 1; U(R) = \begin{vmatrix} 1 & , & \text{for } 0 \le R \le c \\ \frac{[(1-R^2)-2c(1-R)]}{(1-c)} & , & \text{for } c \le R \le R_W \end{vmatrix}$$
(7.a,b,c

where c is the ratio of yield and wall stress.

The works by Schechter and Wissler [11], where the case of $B_i=0$ and circular duct geometry was considered, Wissler and Schechter [12], for $B_i=\infty$, and Michiyoshi et al [13], for both $B_i=0$ and $B_i=\infty$, seem to be the most frequently referenced works on Bingham fluids. In both [11] and [12] the eigenvalues were determined numerically by the Runge-Kutta method, coupled to an iterative procedure. In [13], once more, a power series representation of the eigenfunction was considered, with the appropriate iterative scheme to determine the eigenvalues. We shall also examine the accuracy of these works.

LAMINAR FORCED CONVECTION OF A PRANDTL-EYRING FLUID INSIDE A CIRCULAR DUCT

In this case, the functions in problem (1) are given by [14]:

$$Y(R) = 1$$
; $U(R) = \frac{1}{B} \left[1 - \frac{\cosh(2bR)}{\cosh b}\right]$; $R_w = 0.5$ (8.a,b,c)

where,

$$B = 1 - \frac{2 \sinh b}{b \cosh b} + \frac{2}{b^2} - \frac{2}{b^2 \cosh b}$$
(8.d)

The work of Schenk and Van Laar [14] seems to be the most classical one for this type of fluids, where the case of $B_i^{\pm\infty}$ was numerically considered, for flow inside a circular duct. The eigenvalue problem was solved numerically by representing the eigen-functions as power series of R and finding the eigenvalues by trial and error.

RESULTS AND DISCUSSION

To present a few results, we have chosen to consider the three special cases defined above. The Sign-count method was used, in all these cases, with a number of subdivisions N \leq 4000. As usual, the results obtained and tabulated are expected to be accurate to ± 1 in the last digit given.

In Table I we consider the case of a power-law fluid in laminar flow inside a circular tube. Results are presented as a comparison between the exact results here obtained and the approximate ones from reference [7], for $B_i=0$ and ∞ . It seems that the approximation based on the power series expansion of the eigenvalues is in error, even for the first eigenvalue, in the first or second decimal places, being slightly better for the case of $B_i=\infty$. Therefore, if the calculations in [7] have been carried out properly, this approximation technique should not be recommended for situations when accuracy is at a premium.

Bi	NB1	n=1/3		n=0.	5	n=1.	.0	n=2.0	
	i	EXACT*	APPROX.**	EXACT	APPROX.**	EXACT*	APPROX.**	EXACT*	APPROX.**
	1	20.7534	20.7623	22.4275	22.4370	25.6796	25.6908	28.9058	28.9189
0	2	67.6771	67.7523	73.1017	73.1842	83.8617	83.9600	94.5850	94.7004
	3	140.559	140,8654	151.781	152.1159	174.167	174.5720	196.538	197.0071
	4	239.340	240.1917	258.408	259.4213	296.536	297.5701	334.694	336.1762
	5	363.999	366.0957	392.963	393.3498	450.947	455.8727	509.025	509.0236
	11	6.2630	6.2637	6.5824	6,5832	7,3136	7.3146	8.1103	8.1115
	2	36.3596	36.3798	39.0934	39.1157	44.6095	44.6364	50.1649	50.1968
00	3	92.3260	92.4514	99.4962	99.6356	113,921	114.0884	128.398	128.5962
	4	174.141	174.5812	187.795	188.2761	215,240	215.8417	242.776	243.4759
	5	281.798	282.9461	303.986	305.5325	348.564	349.9022	393.289	394.9749

TABLE I. Comparison of exact and approximate eigenvalues for a power-law fluid in a circular duct

(*) Present work

(**) Reference (7)

In Table II we look at a power-law fluid in laminar flow inside a parallel-plate channel. Two alternative solutions [8,9] are compared to the exact results. In reference [9], an asymptotic solution for the eigenvalue problem was obtained by using the WKB-J method and used to evaluate lower order eigenvalues, although the solution is valid only for asymptotically higher orders. These results, specially for the first eigenvalue, involve too much error to allow further accurate calculations, since the lowest eigenvalue determines the fundamental mode in the solution for the temperature profile. As expected, the results are improved for higher orders but, specially for the case of Bi=0, up to the sixth eigenvalue at least, they are not yet as accurate as the finite differences approximation

TABLE	II.	Comparison	of	exac	t	and	approximate	eigenvalues	for
		a power-law	v fl	Luid	in	a	parallel-plat	tes channel	

Bi	β ₁ ²		n=0.5		n=1.0				
	i	EXACT*	APPROX.**	APPROX.	EXACT*	APPROX.**	APPROX.***		
	1	0,0000	0.0968	0.0000	0.0000	0.1111	0.0000		
	2	15.8283	16.365	15.837	18.3803	18.778	18.388		
0	3	59.8186	60.521	59.856	68.9518	69.444	68.951		
	4	131.753	132.57	131.84	151.551	152.11	151.63		
	5	231.598	232.50	231.77	266.164	266.78	266.31		
	6	359.346	360.32	359.62	412.784	413.44	413.03		
	1	2.6466	2.4208	2.6466	2.8278	2.7778	2.8278		
	2	28.1320	27.985	28.132	32.1473	32.111	32.147		
80	3	81.5671	81.437	81.566	93.4749	93.444	93.473		
	4	162,900	162.78	162.89	186.805	186.78	186.80		
	5	272,125	272.07	272.11	312.136	312.11	312.12		
	6	409.239	409.12	409.20	469.468	469.44	469.42		

(*) Present work

(**) Reference [9] (WKB-J)

(***) Reference [8] (Finite differences)

in [8]. Therefore, if we need to consider much higher order for an accurate evaluation by this asymptotic technique, it would be more

convenient to consider the much simpler asymptotic formulae for Sturm-Liouville problems. In [8], problem was discretized by a simple finite differences scheme and restricted to satisfy a system of algebraic equations. The results, although more accurate than those in reference [9], would still require a much finer mesh for a more accurate evaluation of the eigenvalues, specially for higher order eigenvalues, and the system of equations might become prohibitively large for practical purposes, since loss of accuracy occurs as the order is increased. Again, for both alternative solutions, the results for $Bi=\infty$ are in general better.

In Table III we consider a Bingham fluid in laminar flow inside a circular tube. Here, we compare the results of Michiyoshi [12] and Wissler & Schechter [10,11], for both Bi=0 and ∞, with the exact results from the Sign-count method. Again, from this table, we notice that the results from the power series approximations [12] are in error even for the first eigenvalues, and sometimes inaccurate to the first decimal place. In references [10,11], the Runge-Kutta method was used for the numerical solution of the eigenvalue problem, coupled with the appropriate iterative procedure for the determination of eigenvalues. These results, at least up to the second decimal place in higher order eigenvalues, are in excellent agreement with the exact results. However, we know from previous experience [5], that the Runge-Kutta method involves a loss of accuracy for higher order eigenvalues, although it can be accurate enough for lower order eigenvalues; it also involves the risk of missing eigenvalues, specially the first one, and calculation has to proceed with care when there is no previous indication of the location of the roots.

Finally, in Tables IV to VII, we present the first ten eigenvalues of the four special cases here considered, for Bi=0, 0.01, 0.1, 1.0, 10.0, 100.0, and ∞ , and representative values of the parameters in the dimensionless velocity fields. These tables correspond, respectively, to the cases of laminar flow of power-law fluids inside parallel-plate channel, laminar flow of power-law fluids inside circular duct, laminar flow of Bingham plastics inside circular duct, and laminar flow of Prandtl-Eyring fluids inside circular duct. These results are presented mainly for

	B	¢, c=0.25				c=0.50		c≈0.75		
Bi	i	EXACT*	APPROX.**	APPROX.	EXACT*	APPROX.**	APPROX.	EXACT*	APPROX.**	APPROX.
-	1	4.7645	4.7655	4.7645	4.4857	4.4866	4.4857	4.1643	4.1653	4.1644
	2	8.5811	8.5860	8.5811	8.0688	8.0732	8.0688	7.5971	7.6013	7.5971
	3	12.3568	12.371	12.357	11.6160	11.628	11.616	10.9664	10.978	10.966
0	4	16,1231	16.155	16.123	15.1577	15.183	15.158	14.3005	14.326	14.301
	5	19.813	19.890	19.882	18.6858	18.783	18.686	17.6228	17.644	17.623
	6	23.6345	-	23.64	22.2166	-	22.22	20.9485	-	20.95
	7	27.3863	-	27.39	25.7409	-	25.74	24.2784	-	24.28
	1	2.5522	2.5524	2,552	2.4545	2.4547	2.455	2.4117	2.4119	2 412
	2	6.2689	6.2707	6.269	5.8827	5.8843	5.883	5.5901	5.5915	5.590
	3	9.9972	10.004	9.997	9.4073	9.4136	9.407	8.8610	8.8667	8.861
50	4	13.7368	14.692	13.74	12.9127	12.929	12.91	12.1791	12,194	12,18
	5	17.4806	18,706	17.48	16.4336	16.462	16.43	15.5070	15.539	15.51
	6	21.2230	-	21.22	19.9488	-	19.95	18.8272	-	18.83
	7	24.9657	-	24.97	23.4676	-	23.47	22.1406	-	22.14

TABLE III. Comparison of exact and approximate eigenvalues for a Bingham fluid in a circular duct

(*) Present work

(**) Reference [12]

(***) References [10,11]
		EIGENVALUES											
n	81	β <u>1</u>	8 ₂	83	84	\$5	Be	87	Ba	ßg	B1 0		
1/3	0	0.0000	3.8057	7.4301	11.0374	14.6392	18.2386	21.8366	25.4337	29.0303	32.6265		
	0.01	0.1116	3.8096	7.4325	11.0392	14.6407	18.2398	21.8377	25.4347	29.0312	32.6273		
	0.1	0.3460	3.8441	7.4539	11.0554	14.6540	18.2513	21.8478	25.4438	29.0396	32.6350		
	1.0	0.9279	4.1212	7.6421	11.2030	14.7776	18.3587	21.9435	25.5306	29.1191	32.7088		
	10.0	1.4716	4.8307	8.3224	11.8439	15.3817	18.9301	22.4860	26.0474	29.6132	33.1825		
	100.0	1.5889	5.0803	8.6514	12.2302	15.8120	19.3954	22.9799	26.5652	30.1511	33.7375		
	~	1.6035	5.1138	8.6514	12.2894	15.8818	19.4750	23.0686	26.6624	30.2563	33.8504		
1/2	0	0.0000	3.9785	7.7342	11.4784	15.2184	18.9564	22.6734	26.4297	30.1656	33.9011		
	0.01	0.1152	3.9827	7.7369	11.4804	15.2200	18.9578	22.6746	26.4308	30.1666	33.9021		
	0.1	0.3571	4.0197	7.7602	11.4982	15.2347	18.9705	22.7058	26.4409	30.1758	33.9106		
	1.0	0.9520	4.3125	7.9633	11.6587	15.3697	19.0882	22.8107	26.5363	30.2635	33.9919		
	10.0	1.4964	5.0284	8.6632	12.3254	16.0030	19.6906	23.3854	27.0858	30.7904	34.4985		
	100.0	1.6125	5.2716	8.9856	12.7058	16.4284	20.1524	23.8773	27.6028	31.3289	35.0553		
	~	1.6268	5.3040	9.0315	12.7632	16.4762	20.2296	23.7633	27.6971	31.4311	25.1650		
1	0	0.0000	4.2872	B.3037	12.3106	16.3145	20.3171	24.3189	28.3203	32.3214	36.3223		
	0.01	0.1222	4.2920	B.3067	12.3129	16.3164	20.3187	24.3204	28.3216	32.3226	36.3234		
	0.1	0.3782	4.3336	B.3334	12.3333	16.3333	20.3333	24.3333	28.3333	32.3333	36.3333		
	1.0	1.0000	4.6561	B.5620	12.5158	16.4876	20.4684	24.4542	28.4432	32.4345	36.4273		
	10.0	1.5518	5.3978	9.3026	13.2308	17.1731	21.1250	25.0840	29.0484	33.0171	36.9892		
	100.0	1.6673	5.6381	9.6233	13.6113	17.6009	21.5714	25.5825	29.5743	33.5665	37.5590		
	∞	1.6816	5.5699	9.6682	13.6677	17.6674	21.6672	25.6671	29.6670	33.6670	37.6569		
2	0	0.0000	4.5648	8.8317	13.0881	17.3416	21.5938	25.8453	30.0965	24.3475	38.5983		
	0.01	0.1289	4.5700	B.8351	13.0907	17.3437	21.5956	25.8470	30.0980	24.3488	38.5995		
	0.1	0.3983	4.6158	B.8646	13.1134	17.3625	21.6119	25.8614	30.1111	34.3608	38.4106		
	1.0	1.0470	4.9654	9.1154	13.3147	17.5333	21.7616	25.9956	20.2333	34.4734	38.7152		
	10.0	1.6106	5.7381	9.8964	14.0745	18.2658	22.4664	26.6739	30.8868	35.1041	39.3248		
	100.0	1.7270	5.9811	10.2218	14.4619	18.7026	22.9437	27.1854	31.4274	35.6699	39.9126		
	∞	1.7414	6.0130	10.2670	14.5186	18.7026	23.0201	27.2705	31.5208	35.7711	40.0214		
3	0 0.01 0.1 1.0 10.0 100.0	0.0000 0.1319 0.4079 1.0700 1.6404 1.7576 1.7721	4.6955 4.7009 4.7486 5.1109 5.8997 6.1449 6.1770	9.0830 9.0865 9.1173 9.3784 10.1791 10.5080 10.5535	13.4594 13.4621 13.4859 13.6938 14.4771 14.8691 14.9262	17.8328 17.8350 17.8547 18.0330 18.7878 19.2301 19.2301	22.2049 22.2068 22.2239 22.3803 23.1076 23.5915 23.6685	26.5764 26.5781 26.5932 26.7335 27.4343 27.9533 28.0391	30,9475 30,9490 30,9627 31,0905 31,7665 32,3154 32,4096	35,3184 35,3198 35,3323 35,4500 36,1030 36,6779 36,7799	37.6890 37.6903 39.7019 39.8114 40.4430 41.0407 41.1502		

TABLE IV. First ten eigenvalues for a power-law fluid inside a parallel-plate channel for several values of $B_{\underline{i}}$ and n

		EIGENVALUES										
n	51	β1	Bz	β3	B4	85	ße	β7	Be	₿g	β1 0	
.1/3	0 0.01 1.0 10.0 100.0	0.0000 0.1729 0.5371 1.4544 2.3090 2.4817 2.5026	4.5556 4.5595 4.5942 4.8871 5.7054 5.9923 6.0299	8.2266 8.2291 8.2510 8.4481 9.1966 9.5578 9.6086	11.8558 11.8576 11.8743 12.0279 12.7185 13.1338 13.1962	15.4706 15.4722 15.4859 15.6139 16.2569 16.7140 16.7868	19.0788 19.0801 19.0918 19.2028 19.8059 20.2964 20.3789	22.6831 22.6843 22.6947 22.7933 23.3625 23.8802 23.9716	26.2851 26.2862 26.2955 26.3847 26.9246 27.4650 27.5648	29.8856 29.8865 29.8951 29.9768 30.4911 31.0505 31.1583	33,4849 33,4858 33,4937 33,5693 34,0609 34,6366 34,7520	
1/2	0- 0.01 0.1 1.0 10.0 100.0	0.0000 0.1822 0.5455 1.5186 2.3758 2.5452 2.5452 2.5656	4.7358 4.7401 4.7783 5.0962 5.9353 6.2160 6.2525	8.5500 8.5527 8.5769 8.7924 9.5705 9.9254 9.9748	12.3199 12.3220 12.3405 12.5091 13.2333 13.6433 13.7038	16.0751 16.0768 16.0920 16.2329 16.9115 17.3645 17,4352	19.8233 19.8247 19.8378 19.9601 20.5998 21.0876 21.1676	23.5676 23.5689 23.5804 23.6893 24.2953 24.8119 24.9006	27.3095 27.3107 27.3211 27.4196 27.9963 28.5370 28.6339	31.0498 31.0509 31.0604 31.1508 31.7016 32.2627 32.3674	34.7890 34.7900 34.7988 34.8825 35.4102 35.9889 36.1010	
1	0 0.01 0.1 1.0 10.0 100.0 50	0.0000 0.1995 0.6183 1.6412 2.5168 2.6843 2.7044	5.0675 5.0725 5.1169 5.4783 6.3646 6.6432 6.6432 6.6790	9.1576 9.1608 9.1889 9.4360 10.2707 10.6249 10.6734	13.1972 13.1976 13.2211 13.4152 14.2002 14.6116 14.6711	17.2202 17.2222 17.2399 17.4026 18.1437 18.6004 18.6699	21.2355 21.2372 21.2524 21.3939 22.0966 22.5905 22.6691	25.2465 25.2480 25.2615 25.3875 26.0565 26.5815 26.6687	29.2549 29.2562 29.2693 29.3826 30.0218 30.5730 30.6683	33.2615 33.2627 33.2738 33.3787 33.9912 34.5651 34.6681	37.2669 37.2680 37.2782 37.3754 37.9641 38.5575 38.6679	
Z	0 0.01 0.1 1.0 10.0 100.0 ∞	0.0000 0.2155 0.6671 1.7566 2.6588 2.8277 2.8479	5.3764 5.3820 5.4317 5.8307 6.7644 7.0467 7.0827	9.7255 9.7290 9.7605 10.0346 10.9224 11.2825 11.3313	14.0192 14.0219 14.0459 14.2619 15.1018 15.5214 15.5813	18.2946 18.2969 18.3167 18.4979 19.2945 19.7616 19.8315	22.5616 22.5635 22.5805 22.7383 23.4963 24.0027 24.0818	26.8238 26.8255 26.8405 26.9812 27.7050 28.2443 28.3321	31.0831 31.0846 31.0982 31.2258 31.9189 32.4864 32.5824	35.3405 35,3419 35.3542 35.4714 36.1371 36.7289 36.8327	39.5965 39.5978 39.6092 39.7179 40.3587 40.9718 41.0829	
3	0 0.01 0.1 1.0 10.0 100.0 ~	0.0000 0.2231 0.6901 1.8118 2.7288 2.8790 2.9193	5.5246 5.5305 5.5825 5.9988 6.9557 7.2408 7.2771	9.9974 10.0011 10.0341 10.3206 11.2337 11.5979 11.6470	14.4129 14.4157 14.4409 14.6668 15.5326 15.9575 16.0178	18.8093 18.8117 18.8324 19.0222 19.8446 20.3181 20.3885	23.1970 23.1990 23.2168 23.3821 24.1657 24.6794 24.7592	27.5797 27.5814 27.5972 27.7446 28.4936 29.0412 29.1297	31.9593 31.9609 31.9751 32.1088 32.8269 33.4034 33.5002	36.3370 36.3384 36.3514 36.4742 37.1643 37.7660 37.8706	40.7132 40.7146 40.7266 40.8404 41.5052 42.1289 42.2409	

TABLE V. First ten eigenvalues for a power-law fluid inside a circular duct for several values of Bi and n

		EIGENVALUES											
¢	B1	β1	β2	· 83	B4	85	ßę	87	68	ßg	β1 0		
0.10	0	0.0000	4.9383	8.9188	12.8500	16.7650	20.6727	24.5764	28,4778	32.3777	36.2766		
	0.01	0.5980	4.9855	8.9487	12.8728	16.7838	20.6888	24.5907	28.4907	32, 3895	36.2874		
	1.0	1.5915	5.3325	9.1856	13.0589	16.9397	20,8244	24.7115	28.6002	32.4900	36.3805		
	10.0	2.4520	6.1762	10 2441	13.8202	18 1072	21, 5045	25,3584	29.2179	33.0816	36.9488		
	∞ 100.0	2.6380	6.5070	10.3941	14.2844	18.1759	22.0681	25,9607	29.8537	33.7470	37.6404		
. 25	0	0.0000	4,7545	8,5811	12.3568	16.1231	19.8813	23.6345	27.3863	31.1369	34.8857		
100	0.01	0.1831	4.7689	8.5839	12.3589	16.1249	17.8828	23.6358	27.3875	31.1380	34.9867		
	0.1	0.5681	4.8081	8.6089	12.3/80	16.1406	19.8964	23.6477	27.3983	31.1478	34.8957		
	1.0	2 2660	5 9414	9 4050	13, 2784	14 9498	20.0228	23.7602	27.3002	31.2413	34+9824		
	100.0	2.5322	6.2337	9.9496	13.6782	17.4122	21.1457	24,8799	28,6160	32,3523	36.0886		
	00.0	2.5522	6.2689	9.9972	13.7368	17.4806	21.2230	24.9657	28.7097	32.4536	36.1971		
50	0	0.0000	4.4857	8.0688	11.6160	15.1577	18.6858	22.2166	25.7409	29.2665	32,7897		
	0.01	0.1677	4.4894	8,0712	11.6178	15.1592	18,6871	22.2177	25.7419	29,2675	32,7906		
	0.1	0.5212	4.5221	8,0928	11.6341	15.1727	18.6987	22.2280	25.7511	29.2/59	32.7984		
	1.0	1.4149	4.7977	8,2853	11.7836	15.2781	18.80/5	22,3248	20.8389	27,3063	32.0/27		
	10.0	2.2599	5.5/11	9.0076	12.4010	14 2422	10 0401	22.0773	24, 9994	30,4000	33 9120		
	200.0	2.4545	5,8827	9.4073	12.9127	16.4336	19.9488	23.4676	26.9860	30.5040	34.0234		
75	a	0.0000	4.1643	7.5971	10.9664	14.3005	17.6228	20.9485	24.2784	27.6066	30,9300		
	0.01	0.1537	4.1673	7.5989	10.9678	14,3017	17,6239	20.9494	24.2792	27.6073	30,9306		
	0.1	0.4790	4.1939	7.6151	10.9804	14.3122	17.6330	20,9574	24.2864	27.6139	30.9367		
	1.0	1.32/2	4.4290	7.7535	11,09/6	14,4121	17.7199	21.0340	24.3553	27.67/1	30.9955		
	10.0	2.2007	5,5459	8.8034	12,1109	15, 4278	18.7366	22.0398	25.3440	28.1047	31.9713		
	@	2.4117	5.5901	8.8610	12.1791	15.5070	18.8272	22.1406	25.4555	28.7753	32.0970		
90	0	0.0000	3.9623	7.2530	10.5141	13.7636	17.0050	20.2395	23.4677	26.6902	29,9078		
	0.01	0,1460	3.7650	7.2545	10.5152	13,7644	17.0057	20.2402	23,4683	26.6907	29,9083		
	0.1	0.4561	3.9893	7.2681	10.0248	13.7721	17.0747	20,2459	23,4/30	20+0700	27.7128		
	1.0	2 1944	5 0927	B 0974	11 1976	14.3367	17.5085	20. 6954	23,8898	27.0872	30, 2850		
	10.0	2.3816	5.4734	8.5971	11,7419	14,9050	18,0834	21.2732	24.4711	27.6738	30.8788		
	00	2,4053	5.5254	8.6732	11.8370	15.0149	18.2047	21.4043	24.6109	27.8221	31.0358		

TABLE VI. First ten eigenvalues for a Bingham fluid inside a circular duct for several values of $B_{\rm i}$ and c

FABLE	VII.	First	ten	eigenva	alues	for	a I	Prandtl-Eyring	fluid	inside	ā	circular
		duct	for	several	value	s of	B	and b				

	nt.	EIGENVALUES										
D	51	β1	ßz	β3	84	ßs	86	B7	βe	ßg	B1 0	
U.4	0	0.0000	7.1700	12.9575	18.6736	24.3661	30.0478	35.7234	41.3952	47.0645	52.7321	
	0,01	0.1998	7.1735	12.9597	18.6753	24.3675	30.0490	35.7244	41.3961	47.0654	52.7330	
	0,1	0.6253	7.2052	12.9797	18.6905	24.3801	30.0597	35.7339	41.4047	47.0732	52.7402	
	1,0	1.7988	7.4914	13.1675	18.8355	24.5004	30.1637	35.8261	41.4880	47.1494	52.8106	
	10,0	3.3357	8.6801	14.1675	19.7117	25.2868	30.8811	36.4883	42.1049	47.7283	53.3569	
	100,0	3.7722	9.3515	14.9686	20.5954	26.2269	31.8615	37.4983	43.1367	48.7766	54.4176	
		3.8288	9.4518	15.1034	20.7600	26.4182	32.0770	37.7363	43.3957	49.0553	54.7150	
1.0	0	0.0000	7.1875	12.9914	18.723	24.4321	30.1297	25.8212	41.5089	47.1942	52.8776	
	0.01	0.1998	7.1911	12.9936	18.7253	24.4325	30.1309	35.8223	41.5099	47.1950	52.8784	
	0.1	0.6254	7.2224	13.0134	18.7403	24.4459	30.1416	35.8317	41.5184	47.2027	52.8955	
	1.0	1.8010	7.5068	13.1995	18.8839	24.5650	30.2444	35.9228	41.6007	47.2781	52.9552	
	10.0	3.3503	8.6997	14.1997	19.7583	25.3486	30.9584	36.5814	42.2137	47.8530	53.4975	
	100.0	3.7929	9.3811	15.0115	20.6526	26.2990	31.9485	37.6005	43.2541	48.9093	54.5656	
	∞	3.8503	9.4831	15.1488	20.8203	26.4937	32.1680	37.8428	43.5178	49.1930	54.8683	
4.0	0	0.0000	7.3860	13.3671	19.2744	25.1571	31.0283	36.8930	42.7537	48.6118	54.4679	
	0.01	0.1998	7.3892	13.3691	19.2759	25.1583	31.0293	36.8939	42.7546	48.6125	54.4586	
	0.1	0.6263	7.4179	13.3870	19.2894	25.1694	31.0388	36.9023	42.7621	48.6194	54.4749	
	1.0	1.8226	7.6825	13.5570	19.4195	25.2767	31.1312	36.9840	42.8357	48.6866	54.5370	
	10.0	3.5025	8.9092	14.5507	20.2703	26.0284	31.8091	37.6043	43.4095	49.2220	55.0399	
	100.0	4.0133	9.6986	15.4754	21.2739	27.0819	32.8956	38.7129	44.5331	50.3553	56.1793	
	~	4.0803	9.8207	15.6401	21.4750	27.3153	33.1582	39.0026	44.8478	50.6935	56.5397	
10.	0	0.0000	7.5994	13.8124	19.9435	26.0456	32.1346	38.2162	44.2932	50.3672	56.4389	
	0.01	0.1998	7.6023	12.8151	19.9448	26.0466	32.1355	38.2170	44.2939	50.3678	56.4395	
	0.1	0.6273	7.6278	13.8305	19.9563	26.0560	32.1435	38.2240	44.3003	50.3736	56.4448	
	1.0	1.8485	7.8685	13.9794	20.0685	26.1478	32.2220	38.2932	44.3624	50.4302	56.4970	
	10.0	3.7046	9.1440	14.9526	20.8740	26.8441	32.8403	38.8525	44.8751	50.9051	56.9404	
	100.0	4.3149	10.1134	16.0575	22.0436	28.0476	34.0615	40.0817	46.1066	52.1348	58.1658	
		4.3956	10.2700	16.2705	22.3038	28.3491	34.4001	40.4543	46.5104	52.5678	58.6260	
20.	0	0.0000	7.6525	13.9786	20.2262	26.4422	32.6423	39.8334	45.0189	51.2006	57.3795	
	0.01	0.1999	7.6552	13.9801	20.2273	26.4431	32.6431	38.8341	45.0195	51.2011	57.3800	
	0.1	0.6278	7.6793	13.9941	20.2375	26.4513	32.6500	38.8402	45.0249	51.2060	57.3845	
	1.0	1.8630	7.9102	14.1296	20.3370	26.5316	32.7182	38.8999	45.0783	51.2545	57.4291	
	10.0	3.8246	9.2493	15.0965	21.1063	27.1803	33.2847	39.4062	45.5383	51.6776	57.8218	
	100.0	4.4935	10.3778	16.3763	22.4323	28.5176	34.6194	40.7313	46.8504	52,9747	59.1030	
	∞	4.5817	10.5628	16.6363	22.7525	28.8893	35.0364	41.1893	47.3457	53.5044	59.6647	

benchmarking purposes, since to our knowledge none seem to be readily available in the open literature, as opposed to the special case of newtonian fluids [14].

We conclude that the Sign-count method [4,5,6] also allows a quite straightforward evaluation of other quantities such as eigenfunctions and normalization integrals. It should be preferred to other solution techniques, such as those here mentionned, since we are able to automatically and accurately determine as many eigenvalues as needed, without loss of accuracy for higher order eigenvalues and without the risk of missing eigenvalues. The accurate evaluation of a large number of eigenquantities, on the other hand, allows the establishment of reference quality results for heat transfer problems like those here considered [3], without the need to consider approximate solutions for the region close to the inlet.

ACKNOWLEDGEMENT

The author wishes to acknowledge the finantial support of CNPq through grant n9 407319/86 - EM.

REFERENCES

- [1] CHO, Y.I. and HARTNETT, J.P., Non-newtonian fluids in circular pipe flow, Advances in Heat Transfer, vol. 15, 1982.
- [2] WINTER, H.H., Viscous dissipation in shear flows of molten polymers, Advances in Heat Transfer, 1977.
- [3] COTTA, R.M. and ÖZISIK, M.N., Laminar forced convection of power-law non-newtonian fluids inside ducts, Warme-und-Stoff., vol. 20, pp. 211-218, 1986.
- [4] MIKHAILOV, M.D.; ÖZISIK, M.N. and VULCHANOV, N.L., Transient heat diffusion in one-dimensional composite media and automatic solution of the eigenvalue problem, Int.J. Heat and Mass Transfer, vol. 26, pp. 1131-1141, 1983.

- [5] MIKHAILOV, M.D. and ÖZISIK, M.N., Unified Analysis and Solutions of Heat and Mass Diffusion, John Wiley & Sons, New York, 1984.
- [6] MIKHAILOV, M.D. and VULCHANOV, N.L., A Computational procedure for Sturm-Liouville problems, J.Comp.Phys., vol. <u>50</u>, pp. 323-336, 1983.
- [7] MICHIYOSHI, I. and MATSUMOTO, R., Heat transfer of slurry flow with internal heat generation, Bulletin of JSME, vol. 7, no 26, pp. 376-384, 1964.
- [8] YBARRA, R.M. and ECKERT, R.E., Viscous heat generation in slit flow, AIChE Journal, vol. 26, nº 5, pp. 751-762, 1980.
- [9] DINH, S.M. and ARMSTRONG, R.C., Non-isothermal channel flow of non-newtonian fluids with viscous heating, AIChE Journal, vol. 28, no 2, pp. 294-301, 1982.
- [10] SCHECHTER, R.S. and WISSLER, E.H., Heat transfer to Bingham plastics in laminar flow through circular tubes with internal heat generation, Nucl. Science & Eng., vol. <u>6</u>, pp. 371-375, 1959.
- [11] WISSLER, E.H. and SCHECHTER, R.S., The Graetz-Nusselt problem (with extension) for a Bingham plastic, Chem.Eng.Progr.Symp. Series, vol. 55, nº 29, pp. 203-208, 1959.
- [12] MICHIYOSHI, I.; MATSUMOTO, R. and HOZUMI, M., Heat transfer of slurry flow with internal heat generation, Bulletin of JSME, vol. 6, nº 23, pp. 496-504, 1963.
- [13] SCHENK, J. and VAN LAAR, J., Heat transfer in non-newtonian laminar flow in tubes, Appl.Sci.Res., section A, vol. 7, pp. 449-462, 1958.
- [14] SHAH, R.K. and LONDON, A.L., Laminar flow forced convection in ducts, Advances in Heat Transfer, Supplement 1, 1978.
- [15] COTTA, R.M. and ÖZISIK, M.N., Laminar forced convection to nonnewtonian fluids in ducts with prescribed wall heat flux, Int. Comm. Heat's Mass Thansp., vol. 13, nº 3, May-June, 1986.

Computational Mechanics Institute

WESSEX INSTITUTE OF TECHNOLOGY

Advanced Conference Information

The following Conferences are being organised by the Computational Mechanics Institute for 1988/89.

Computer Methods and Water Resources in Developing Countries 14-18 March 1988, Rabat, Morocco

The Conference will constitute a forum for review of the state of the art, the presentation of new research results and exchange of ideas between leading scientists, young researchers and engineers with special emphasis on the benefit of computer hardware and software in water resources to developing countries.

CADCOMP 88 - International Conference on Computer Aided Design in Composite Material Technology

13-15 April 1988, Southampton University, UK

The conference aims to achieve a critical assessment and enhancement of the applications of computer aided engineering techniques in composite materials and structures and will focus on the use of computers in the analysis, design and manufacture of composite materials. Simulation of manufacturing processes will also be covered.

CMWR 88 - Computational Methods in Water Resources

13-17 June 1988, MIT, Boston, USA

The 7th Water Resources Conference held since 1976, formerly called Finite Elements in Water Resources, now reflects the emergence of new techniques such as boundary elements and new developments in classical numerical methods which are of relevance to scientists specializing in the computer simulation of groundwater and surface water flow problems.

AI 88 3rd International Conference on the Applications of Artificial Intelligence in Engineering

August 1988, Los Angeles, CA, USA

The aim of the Conference is to provide an international forum for the presentation of the latest research and developments in the applications of Artificial Intelligence in Engineering. The areas covered by the Conference include design, diagnosis, planning, control, sensing and interpretation, user interface/explanations in all branches of engineering.

BEM 10 - Boundary Element Method Conference

6-8 September 1988, Southampton University, UK

This conference is the next in a successful series held since 1978, when the meeting was convened for the first time at Southampton University. The 1988 Conference will celebrate a decade of boundary element research and industrial applications in the engineering field.

CADMO 88 - International Conference on Computer Aided Design, Manufacture and Operation in the Marine and Offshore Industries 20-22 September 1988, Southampton University, UK

The aim of the conference is to show how designers, builders and operators involved in shipping and offshore structures can benefit from the latest developments in computer applications.

ENVIROSOFT 88 - Development and Application of Computer Techniques to Environmental Studies

27-29 September 1988, Porto Carras, Greece

The Conference will present the most recent developments and practical implementations in the theoretical, numerical and applicable aspects of computer analysis, simulation, modelling, control and forecasting for environmental applications.

STREMA 89 - Structural Studies, Repairs and Maintenance of Historical Buildings

5-7 April 1989, Florence, Italy

This Conference is organized to bring together scientists, engineers and architects interested in Structural Studies, Repairs and Maintenance of Historical Buildings. The meeting will discuss case studies in addition to the more scientific aspects, trying to learn from past experiences and mistakes.

CMEM 89 - Computational Methods and Experimental Measurements May 1989, Capri, Italy

The 4th Conference in this series will provide a forum for presentation and exchange of innovative approaches in the fields of numerical methods and experimental studies, with emphasis on their interaction and application in engineering problems.

BETECH 89

June 1989, Windsor, Canada

The fourth annual conference in the successful Betech series of conferences which presents the growing industrial applications of boundary element techniques as well as relevant academic research.

Computer Aided Optimum Design of Structures

20-23 June 1989, Southampton, UK

The object of the Conference is to bring together researchers and engineers using optimum design techniques in order to demonstrate how optimization can be applied in engineering practice. Recent advances in structural optimization theory coupled to new hardware power has resulted in the techniques being applied to solve a large variety of engineering problems. These topics together with the relationship of optimization to computer aided design will be discussed at the conference.

SUSI 89 - Structures under Shock and Impact

11-13 July 1989, Boston, USA

The purpose of this Conference is to bring together experts in many areas of structural response to explosive shock and high-speed impact, with particular reference to the behaviour of military installations and combat structures. The Conference theme will underline the importance of the cross-fertilisation of ideas between military and civilian experts in the design of static and transportable structures subjected to impact loading of all types.

ASE 89 - International Conference on Applications of Supercomputers in Engineering

5-7 September 1989, Southampton University, UK

This conference is intended to increase the awareness amongst scientists and engineers of the potential of the new supercomputers, which not only solve larger problems, but also require a different computational approach to obtain the most efficient results.

Engineering Aspects of Marina Design and Operation

26-28 September 1989, Southampton University, UK

The engineering works associated with all aspects of Marina Design and Operation from the initial feasibility studies through to the environmental considerations are all topics which should be discussed at this important meeting. The most fundamental point for discussion will be the change from straightforward berthing requirements to the integral village complex, which has proved to be the most striking development in recent times.

Soil Dynamics & Earthquake Engineering IV

21st - 24th October 1989, Mexico City, Mexico

This will be the fourth conference in the series of biennial conferences which have grown in attendance by the academic community concerned with the worldwide problems of geotechnical earthquake engineering.

COMPUTATIONAL MECHANICS CONFERENCE DISPLAY SERVICE

If you would like to exhibit any material (eg books, journals, hardware, software) at the above conferences, table-top space is available at a cost of £250 per table.

FOR FURTHER INFORMATION ON THE ABOVE CONFERENCES, PLEASE CONTACT:

Liz Newman, Conference Secretary Computational Mechanics Institute, Ashurst Lodgé, Ashurst, Southampton, SO4 2AA. England Tel. (042 129) 3223 Teles: 47388 Arth COMPMECH Fax. (042 129) 2853

VISIA (Patrocinada pela ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS MECÂNICA
BRASILEIRA DE	Secretaria Executiva de ABCM
CIÈNCIAS	PUC-RJ Rua Marqués de São Vicente, 225 – Gávea
mecánicas	22453 — Rio de Janeiro — RJ — Brasil Tel.: (021) 529-9437 - Talex: 31048 PURC BR
	PEDIDO DE ASSINATURA
	Nº
EMITIR RECIBO PARA:	
Kazao Social:	
Endereço:	
Fone: ()	CGC:
ENVIAR EXEMPLARES P	ARA:
Nome:	
Fodostan	
Endereço:	
Free 1 N	
Fone: ()	
Fone: ()	_
Fone: () Estamos emitindo cheque	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME-
Estamos emitindo cheque CÂNICAS no valor de 4,0 0	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME- OTN's, correspondente ao mês de
Estamos emitindo cheque CÂNICAS no valor de 4,0 C (Cz\$	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME- OTN's, correspondente ao mês de), referente a assinaturas da RBCM por ano
Fone: () Estamos emitindo cheque CÂNICAS no valor de 4,0 0 (Cz\$)	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME- OTN's, correspondente ao mês de
Fone: () Estamos emitindo cheque CÂNICAS no valor de 4,0 C (Cz\$	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME- OTN's, correspondente ao mês de
Fone: () Estamos emitindo cheque CÂNICAS no valor de 4,0 C (Cz\$ Local	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME- OTN's, correspondente ao mês de
Fone: () Estamos emitindo cheque CÁNICAS no valor de 4,0 C (Cz\$	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME- OTN's, correspondente ao mês de
Fone: () Estamos emitindo cheque CÂNICAS no valor de 4,0 C (Cz\$	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME- OTN's, correspondente ao mês de
Fone: () Estamos emitindo cheque CÂNICAS no valor de 4,0 C (Cz\$	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME- OTN's, correspondente ao mês de
Fone: () Estamos emitindo cheque CÂNICAS no valor de 4,0 C (Cz\$	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME- OTN's, correspondente ao mês de
Fone: () Estamos emitindo cheque CÂNICAS no valor de 4,0 C (Cz\$	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME- OTN's, correspondente ao mês de
Fone: () Estamos emitindo cheque CÂNICAS no valor de 4,0 C (Cz\$ Local OBSERVAÇÕES: 1 - Preencher todos os camp 2 - Destacar e enviar juntam SECRETARIA EXECUT	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME- OTN's, correspondente ao mês de
Fone: () Estamos emitindo cheque CÂNICAS no valor de 4,0 C (Cz\$	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME- OTN's, correspondente ao mês de
Estamos emitindo cheque CÂNICAS no valor de 4,0 C (C2\$	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME- OTN's, correspondente ao mês de
Fone: () Estamos emitindo cheque CÀNICAS no valor de 4,0 ((Cz\$	nominal à ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS ME- OTN's, correspondente ao mês de

SOLUÇÃO NUMÉRICA DE PROBLEMAS DE CONTATO UNILATERAL COM ATRITO – APLICAÇÃO A UMA PLACA APOIADA SOBRE SOLO RÍGIDO –

Edgar Nobuo Mamiya – Membro da ABCM Universidade Federal de São Carlos

PUC/RJ - Departamento de Engenharia Mecânica

Heraldo Silva da Costa Mattos – Membro da ABCM PUC/RJ – Departamento de Engenharia Mecânica

Michel Raous Laboratoire de Mécanique et d'Acoustique Marceille – France

Rubens Sampaio – Membro da ABCM PUC/RJ – Departamento de Engenharia Mecânica

RESUMO

A modelagem de um corpo elástico linear em contato unilateral com uma superfície rígida e submetido a condições de atrito de Coulomb dá ori gem a um problema de Signorini com atrito. Este trabalho apresenta um método numérico de resolução aproximada deste tipo de problema. O modelo, descrito em termos variacionais, é discretizado via elementos finitos e a minimização do funcional é feita utilizando-se o algoritmo de Gauss-Seidel com Relaxação e Projeção sobre um convexo. Uma téc nica de condensação de matrizes permite que o tempo computacional des pendido seja reduzido, tornando o código computacional econômico. Este algoritmo é analisado e o seu desempenho é ilustrado através de exemplos envolvendo a interação entre uma placa espessa e seus suportes.

ABSTRACT

The modelling of a linear, elastic body under unilateral contact with a rigid surface and subjected to conditions of Coulomb friction gives rise to a Signorini's problem with friction. This work presents a numerical method for an approximate solution of this type of problem. The model, which is described in a variational way, is discretized by the use of finite elements techniques and the minimization of the functional is carried out utilizing the Gauss-Seidel algorithm with Relaxation and Projection over the convex set. A matrix condensation technique allows the reduction of the computational time spent, making the computational code more economical. This algorithm is analysed and its performance is, illustrated by examples involving the interaction between a thick plate and its supports.

Submetido em Julho/1987 Aceito em Outubro/1987

INTRODUÇÃO

Neste trabalho, apresenta-se um tratamento numérico para o pro blema de Signorini considerando o atrito de Coulomb.

A existência deste problema, na sua forma geral, está em aberto. Para uma forma regularizada do problema, considerando atrito não local e com coeficiente de atrito muito pequeno, DUVAUT [1] e COCU[2] mostraram existência e unicidade. Questões de unicidade ainda são debatidas, mas acredita-se que a solução não é única no caso geral.

A adoção de uma aproximação interna para o espaço de funções considerado e a utilização do método de relaxação pontual levam a uma discretização e a um desmembramento do problema original em três outros, para os quais a existência, a unicidade e a convergência das so luções são garantidas.

O desenvolvimento deste tratamento numérico é apresentado a se guir, descrevendo-se detalhadamente as etapas envolvidas. Alguns exem plos de aplicação são apresentados:

- Placa espessa apoiada sobre superfície rígida e sujeita a carregamento transversal (estado plano de deformação).
- 2) Interação entre uma placa espessa bi-apoiada e seus suportes.

Em ambos os problemas, as condições de unilateralidade e atrito utilizadas no modelo matemático permitem uma melhor avaliação da área efetiva de contato, a qual determina um conhecimento mais correto da distribuição dos esforços reativos.

Os resultados são apresentados graficamente.

FORMULAÇÃO DO PROBLEMA

O problema de contato unilateral com atrito é aqui formulado no contexto da elasticidade infinitesimal, considerando-se uma rela ção constitutiva linear. Seja uma estrutura qualquer definida como sen do uma região $\Omega \subset \mathbb{R}^n$, n≤3, com contorno $\Gamma = \Gamma_1 \bigcup \Gamma_2 \bigcup \Gamma_3$ tal que: sobre Γ_1 os deslocamentos sejam prescritos, sobre Γ_2 sejam aplicadas forças

externas t e sobre Γ , os pontos sejam impedidos de se deslocar no sen tido da normal externa unitária. Seja a estrutura sujeita a forças de campo b sobre Ω .

Fig. 1. Modelo de estrutura sobre o E²

O problema de Signorini (contato unilateral) com atrito de Cou lomb para o caso quasi estático e com carregamento monótono pode ser descrito como:

Problema 1: Determine o campo de deslocamentos pertencente ao espaço de Hilbert H(G) tal que satisfaça as seguintes equações e condições:

div
$$\sigma$$
 + b = 0
 σ = E ε (u) sobre Ω
u| _{Γ_1} = 0
(σ · n) _{Γ_2} = t

$$\begin{aligned} u_{n}|_{\Gamma_{3}} &\leq 0 \\ \sigma_{n}|_{\Gamma_{3}} &\leq 0 \\ |\sigma_{t}|_{\Gamma_{3}} &\leq \mu |\sigma_{n}|_{\Gamma_{3}} \text{ tal que:} \\ se \quad |\sigma_{t}|_{\Gamma_{3}} &\leq \mu |\sigma_{n}|_{\Gamma_{3}} \text{ tal que:} \\ |\sigma_{t}|_{\Gamma_{3}} &\leq \mu |\sigma_{n}|_{\Gamma_{3}} \implies u_{t} = 0 \\ |\sigma_{t}|_{\Gamma_{3}} &= \mu |\sigma_{n}|_{\Gamma_{3}} \implies \exists \lambda \geq 0 ; u_{t}|_{\Gamma_{3}} = -\lambda \sigma_{t}|_{\Gamma_{3}} \end{aligned}$$

Nas expressões acima, $\sigma \in \phi$ tensor tensão, E é o tensor de elas ticidade, $\varepsilon \in \phi$ tensor deformação, u é o campo de deslocamento e μ é coeficiente de atrito. Na área de contato o deslocamento e os esforcos são decompostos da forma: $u=u_nn+u_+$, $\sigma_n=\sigma_nn+\sigma_+$.

À estrutura carregada, isotermicamente e segundo um processo quasi-estático, se associa uma energia de deformação independente de<u>s</u> te processo e representada pela forma bilinear $\frac{1}{2} a(\cdot, \cdot): [H(\Omega)]^2 \rightarrow \mathbb{R}$ tal que:

i) a(u,v) = a(v,u) (simetria) ii) $\exists K \in \mathbb{R}^{+}$; $a(u,u) \leq K ||u||_{H(\Omega)}$ (continuidade) iii) $\exists C \in \mathbb{R}^{+}$; $a(u,u) \geq C ||u||_{H(\Omega)}$ (coercividade) $\forall u, v \in H(\Omega)$

O trabalho dos esforços externos $t \in H^{1}(\Omega)$ (dual topológico de $H(\Omega)$) é representado pelo funcional linear $\langle t, v \rangle$: $H(\Omega) \rightarrow \mathbb{R}$, $v \in H(\Omega)$, onde $\langle \cdot, \cdot \rangle$ é o produto de dualidade entre H e H¹.

É possível mostrar [3,4,5,6] que o Problema I é equivalente ao seguinte problema de ponto fixo incluindo a resolução de um problema de minimização.

Problema 2: Determine a força g ponto fixo da aplicação do co-

ne {h≥0}

 $h \neq \mu | \sigma_n(u(h)) |$,

onde u(h) é a solução do problema (2 bis)

Problema 2 bis: Determine o campo de deslocamentos u pertencen te ao convexo $K \subseteq H(\Omega)$ tal que:

$$J(u) \leq J(v)$$
, $\forall v \in K$

onde

$$J(v) = \frac{1}{2} a(v,v) - \langle t,v \rangle_{\Gamma_2} - \langle b,v \rangle + j(v)$$
$$j(v) = \int_{\Gamma_3} h |v_t| d\Gamma$$
$$K = \{v \in H(\Omega); v_n |_{\Gamma_3} \leq 0\}$$

 $v_n|_{\Gamma}$ = componente normal de v em cada ponto de Γ_3

Nesta formulação, pode se observar que J(v) é um funcional não diferenciável, que o termo não diferenciável j(v) está associado à com dição de atrito e que o convexo K define a condição de contato unil<u>a</u> teral.

APROXIMAÇÃO INTERNA

O processo usual de obtenção desta solução é o de se substituir o espaço original H por um espaço H_h de dimensão finita N(h). O modo como se escolhe este espaço H_h é muito importante, determinando o método numérico a se empregar na resolução do problema.

Considerando-se aproximações internas, o Problema 2 bis pode ser reescrito como: Problema 3: Determine o campo de deslocamento u_h pertencente ao convexo $K_h \subseteq H_h(\Omega)$ tal que:

$$J(u_h) \leq J(v_h)$$
, $\forall v_h \in \mathbb{K}_h$

onde:

$$J(\mathbf{v}_{h}) = \frac{1}{2} a(\mathbf{v}_{h}, \mathbf{v}_{h}) - \langle t, \mathbf{v}_{h} \rangle_{\Gamma_{2}} - \langle b, \mathbf{v}_{h} \rangle + j(\mathbf{v}_{h})$$
$$j(\mathbf{v}_{h}) = \int_{\Gamma_{3}} h_{h} |\mathbf{v}_{h}| d\Gamma$$
$$K_{h} = \{ \mathbf{v} \in H_{h}(\Omega) ; \mathbf{v}_{n_{h}} \leq 0 \text{ sobre } \Gamma_{3} \}$$

A questão da convergência do Problema 3 para o Problema 2, à medida que $h=1/N \rightarrow 0$, encontra-se em aberto. Entretanto, o método numérico de relaxação pontual aqui empregado conduz a formas discretizadas de três problemas para os quais são conhecidos os teoremas de existência, unicidade e convergência das soluções.

O MÉTODO DOS ELEMENTOS FINITOS

Uma maneira conveniente de se discretizar o problema de minimização consiste em se utilizar o procedimento de Galerkin via Método dos Elementos Finitos. Seja o domínio Ω dividido em regiões de contor nos simples, denominados elementos e seja também definido um certo número N de nós sobre Ω . A cada nó se associa uma função $w_i \in H(\Omega)$ com suporte nos elementos adjacentes ao mesmo. O conjunto das funções w_i forma a base do espaço de dimensão finita $H_{\rm b}$.

Assim, tem-se:

$$u_h \in H_h \iff u_h = \sum_{i=1}^M u_i^n w_i^h$$

onde M é a dimensão do espaço discretizado.

PROBLEMA PARTICULAR

No desenvolvimento que se segue será considerado que o desloca mento seja um campo vetorial bidimensional. No problema discretizado, os termos de Índice Ímpar da base estarão associados à primeira compo nente do campo de deslocamento, enquanto os termos de Índice par esta rão associados à outra componente. Para efeito de simplificação do pro blema, será considerado que o convexo K restrinja apenas a segunda com ponente do deslocamento sobre Γ,, conforme ilustra a Figura 2.

Fig. 2. Convexo K no problema bidimensional

Seja então o convexo K_h caracterizado como:

$$\mathbf{K}_{h} = \frac{2N}{\pi} \mathbf{K}_{i}$$

onde:

Se
$$i \in I_h \longrightarrow K_{2i-1} = R$$

 $K_{2i} = R^{-1}$
Se $i \notin I_h \longrightarrow K_{2i-1} = R$
 $K_{2i} = R$

I_h = conjunto de indices correspondentes aos nós que pertencem a l',

Nestas condições, o problema discretizado pode ser enunciado.

como:

Problema 4: Determine o conjunto $u_{\underline{i}} \in \mathbb{K}_{h} \subset \mathbb{R}^{2N}$ tal que:

$$J(u_1, u_2, \dots, u_{2N}) \leq J(v_1, v_2, \dots, v_{2N}) \quad \forall v_j \in \mathbb{K}_h$$

onde:

$$J(u_{1}, u_{2}, \dots, u_{2N}) = \frac{1}{2} \sum_{i=1}^{2N} \sum_{j=1}^{2N} a_{ij} u_{i} u_{j} - \sum_{i=1}^{2N} (t_{i} u_{i} + b_{i} u_{i}) + \sum_{i=1}^{M} G_{i} |u_{T_{i}}|$$

$$a_{ij} = a(w_i, w_j)$$
$$t_i = \langle t, w_i \rangle$$
$$b_i = \langle b, w_i \rangle$$
$$G_i = \int_{\Gamma_i} g w_i d\Gamma_i$$

adotando-se a aproximação grosseira

$$|u_{T}| = \sum_{i=1}^{M} |u_{T_{i}}| |w_{i}$$
, onde M é o número de nós de contato

onde M é o número de nós de contato.

Observa-se que esta aproximação é pobre somente quando u_T muda de sinal. Como esta é uma situação raramente verificada adotou-se a aprox<u>i</u> mação, que tem como vantagem a sua simplicidade.

RELAXAÇÃO PONTUAL

Este método de otimização considera a minimização do funcional, componente a componente. Suponha que uma aproximação uⁿ da solução se ja conhecida. Calcula-se a componente u_i^{n+1} como solução de problema:

Problema 5: Determine $u_i^{n+1} \in \mathbb{K}_i$; tal que:

$$J(u_{1}^{n+1}, u_{2}^{n+1}, \dots, u_{\underline{i}}^{n+1}, u_{\underline{i+1}}^{n}, \dots, u_{2N}^{n}) \leq \\ \leq J(u_{1}^{n+1}, u_{2}^{n+1}, \dots, v, u_{\underline{i+1}}^{n}, \dots, u_{2N}^{n}) , \quad \forall v \in \mathbb{K}_{\underline{i}}, \ \underline{i=1, 2, \dots, 2N}$$

onde J e K, são definidos conforme o Problema 4.

Obtém-se, por este procedimento, uma sucessão de problemas de minimização em R, em um processo iterativo cuja convergência deve ser estudada.

Antes de se estudar a convergência do processo iterativo, entretanto, é interessante se notar que dependendo da componente a se minimizar, o Problema 5 pode ser especializado conforme os três problemas seguintes:

Problema 6.a: (Pontos nodais não pertencentes a Γ_3). Determine $u_4^{n+1} \in \mathbb{R}$ tal que:

$$\begin{split} J(u_{1}^{n+1}, u_{2}^{n+1}, \dots, u_{i}^{n+1}, u_{i+1}^{n}, \dots, u_{2N}^{n}) & \leq \\ & \leq J(u_{1}^{n+1}, u_{2}^{n+1}, \dots, v, u_{i+1}^{n}, \dots, u_{2N}^{n}) \quad , \quad \forall v \in \mathbb{K}_{i} (=\mathbb{R}) \quad , \quad i \notin \mathbb{I}_{h} \end{split}$$

onde:

$$J(u_{1}^{n},...,u_{2N}^{n}) = \frac{1}{2} \sum_{i=1}^{2N} \sum_{j=1}^{2N} a_{ij} u_{i}^{n} u_{j}^{n} - \sum_{i=1}^{2N} (t_{i} u_{i}^{n} - b_{i} u_{i}^{n})$$

Problema 6.b: (Componentes sujeitas a restrição de contato un<u>i</u> lateral). Determine $u_i^{n+1} \in K_i$ tal que:

$$\begin{array}{l} J\left(u_{1}^{n+1},u_{2}^{n+1},\ldots,u_{1}^{n+1},u_{1+1}^{n},\ldots,u_{2N}^{n}\right) \leq \\ \\ \leq J\left(u_{1}^{n+1},u_{2}^{n+1},\ldots,v,u_{1+1}^{n},\ldots,u_{2N}^{n}\right) \quad , \quad \forall v \in \mathbb{K}_{i}(=\mathbb{R}^{-}), \text{ i par} \end{array}$$

onde:

$$J(u_{1}^{n},...,u_{2N}^{n}) = \frac{1}{2} \sum_{i=1}^{2N} \sum_{j=1}^{2N} a_{ij}u_{1}^{n}u_{j}^{n} - \sum_{i=1}^{2N} (t_{i}u_{1}^{n}+b_{i}u_{1}^{n})$$

Problema 6.c: (Componentes sujeitas a condição de atrito). De termine $u_i^{n+1}\in \mathbb{K}_i$ tal que:

$$J(u_{1}^{n+1}, u_{2}^{n+1}, \dots, u_{1}^{n+1}, \dots, u_{2N}^{n}) \leq J(u_{1}^{n+1}, u_{2}^{n+1}, \dots, v, u_{1}^{n}, \dots, u_{2N}^{n})$$

 $\forall v \in \ {\tt K}_{\underline{i}} \, (= \! {\tt R})$, i impar

onde:

$$J(u_{1}^{n}, \dots, u_{2N}^{n}) = \frac{1}{2} \sum_{i=1}^{2N} \sum_{j=1}^{2N} a_{ij} u_{i}^{n} u_{j}^{n} - \sum_{i=1}^{2N} (t_{i} u_{i}^{n} + b_{i} u_{i}^{n}) + \sum_{i=1}^{M} G_{i} |v_{T_{i}}|$$

Os Problemas 6.a, 6.b e 6.c constituem, respectivamente, mini mização sobre R de funcionais diferenciáveis, minimizações sobre con vexos de R de funcionais diferenciáveis e minimizações sobre R de funcionais não diferenciáveis. A existência e a unicidade das soluções destes problemas em espaços de Hilbert de dimensão infinita são discutidas em [1,2,3]. É fácil verificar que as hipóteses sobre as quais os teoremas correspondentes se apoiam são verificadas para estes problemas discretizados.

Garante-se, portanto, a existência e a unicidade da solução de cada problema em R gerado pelo esquema de relaxação pontual.

É possível mostrar [4] que o processo de relaxação pontual con verge para uma solução do problema no espaço discretizado U_h e que as soluções sobre uma família de espaços U_h fornecem uma sequência convergente para a solução sobre H.

ALGORITMO DE CRYER-CHRISTOPHERSON

No caso em que o convexo K_h é definido como:

 $\mathbf{K}_{h} = \prod_{i=1}^{M} \mathbf{K}_{i}$, $\mathbf{K}_{i} = [\alpha_{i}, \dot{\beta}_{i}]$ (no nosso caso $\mathbf{K}_{i} = \mathbf{R}$ ou \mathbf{R}^{-})

a minimização do funcional J sobre o convexo K_h é bastante simples, podendo ser efetuada em duas etapas:

a) Minimização do funcional J, diferenciável em u_i^{n+1} , sobre R.

b) Projeção P_K, sobre o convexo K_i .

A diferenciabilidade de J em cada u_i^{n+1} garante a possibilida de de se utilizar o método de Gauss-Seidel para a minimização pontual de J. Se, após a etapa (a) acima, proceder-se a uma relaxação, tem-se o algoritmo de Cryer-Christopherson (ou Gauss-Seidel com Relaxação e Projeção GSRP), formalmente descrito por:

. Para cada i:

$$u_{i}^{n+1/2} = \frac{1}{a_{ii}} (t_{i}+b_{i}-\frac{j_{i}-1}{j=1} a_{ij}u_{j}^{n+1}+\sum_{j=i+1}^{M} a_{ij}u_{j}^{n})$$
$$u_{i}^{n+1} = P_{K_{i}} ((1-w)u_{i}^{n}+w u_{i}^{n+1/2})$$

MINIMIZAÇÃO DO FUNCIONAL NÃO DIFERENCIÁVEL

No presente caso, a minimização do funcional não diferenciável é relativamente simples, pois pode ser desmembrada em dois problemas de minimização de funcional diferenciável. Seja o funcional J na for ma:

$$J(u_1, \dots, u_{\underline{i}}, \dots, u_N) = \frac{1}{2} \sum_{\underline{i}=1}^M a_{\underline{i}\underline{j}} u_{\underline{i}} u_{\underline{j}} - \sum_{\underline{i}=1}^M (t_{\underline{i}} u_{\underline{i}} + b_{\underline{i}} u_{\underline{i}}) - \\ - \sum_{\underline{i}=1}^M G_{\underline{i}} |u_{\underline{i}}|$$

A pesquisa do mínimo deste funcional é feita da seguinte forma:

i) Supõe-se, inicialmente, que o mínimo $\tilde{u}_{\underline{i}}$ seja positivo. Neste ca so tem-se $|\tilde{u}_{\underline{i}}|=\tilde{u}_{\underline{i}}$, J é diferenciável para $u_{\underline{i}}>0$ e o método de Gauss-Seidel pode ser aplicado sobre o funcional. Se o valor de

 \tilde{u}_i calculado é efetivamente positivo, tem-se $u_i^{n+1} = \tilde{u}_i$.

- ii) Caso contrário, supõe-se que $\tilde{u}_i < 0$. Neste caso, tem-se que $|\tilde{u}_i| = = -\tilde{u}_i$, J é diferenciável para $u_i < 0$ e novamente é possível aplicar se o método de Gauss-Seidel sobre o funcional. Se \tilde{u}_i calculado é efetivamente negativo, faz-se $u_i^{n+1} = \tilde{u}_i$.
- iii) Se nenhuma das hipóteses anteriores é satisfatória, tem-se que o ponto de mínimo é dado por u_iⁿ⁺¹=0.

ALGORITMO PARA O PROBLEMA COM O ATRITO DE COULOMB

A resolução do Problema 2 bis na forma do Problema 4, após dis cretização, é na realidade a resolução de um problema de Tresca onde o valor limite de atrito g (para saber se há deslocamento ou não) é prescrito. O caso de atrito de Coulomb é determinado via um método de ponto fixo, que é o Problema 2. Obviamente, o ponto fixo do Problema 2 satisfaz a relação:

 $g = \mu |\sigma_n|$

Esta é a relação de Coulomb onde a força de atrito depende do esforço normal que por sua vez depende do deslocamento u.

O algoritmo é descrito por um método de ponto fixo onde em cada interação se resolve um problema de Tresca:

i) considere um conjunto inicial (G;)

 ii) resolva um problema de Signorini com atrito de Tresca associado (Problema 5) usando o método de Cryer-Christopherson.

iii) calcule as forças nodais ${\rm F}_{\rm n}$ sobre os pontos nodais de $\Gamma_{\rm s}$

iv) considere um novo conjunto (G_i^n) calculado como:

$$G_{i}^{n} = \mu |F_{n_{i}}|$$

v) retorno ao passo (ii) até satisfação do critério de convergência $\big|\big|\; G_i^{n+1} - G_i^n \big|\big| \ < \ G \ .$

Nos casos práticos, observa-se, em geral, uma convergência rápida para este algoritmo. Não se dispõe, entretanto, de um teorema de convergência para o processo iterativo do algoritmo acima.

CONDENSAÇÃO DA MATRIZ

O método de relaxação pontual, pelo seu caráter iterativo, de manda um tempo computacional elevado. Observa-se, por outro lado, que o emprego desta técnica é desejável somente porque sobre alguns pontos nodais se aplicam condições de unilateralidade e atrito. A técnica de condensação de matrizes empregada neste trabalho limita a utilização do método de relaxação pontual aos pontos nodais sobre Γ_3 . Como estes formam, de um modo geral, um conjunto muito menor que o conjunto de todos os pontos nodais sobre Γ_3 , a dimensão do problema e o tem po computacional requerido para resolvê-lo sofrem um decréscimo considerável.

Esta técnica de condensação já foi utilizada por FELJOO-BARBOSA [9,10,11] para resolver problemas de contato. Para o caso de problemas com atrito eles utilizam uma técnica um pouco diferente. Ela consiste de um algoritmo iterativo com, basicamente, duas etapas, onde se resolve sucessivamente:

- a) um problema de Signorini (pode-se utilizar nesta etapa métodos diretos de programação não-linear adaptados à problemas de complemen taridade, p.ex., método de LEMKE [10,11,12]).
- b) um problema de Tresca onde o limite de deslizamento g é fornecido pela solução do problema precedente (pode-se utilizar um método de sobrerelaxação).

As iterações são feitas até estabilização dos limites de desl<u>i</u> zamento nodais g_i.

É necessário mencionar também a utilização de métodos de penalização para solução de problemas de contato com atrito. Eles são apl<u>i</u> cados na minimização com restrição do funcional não diferenciável que introduzimos previamente [13]. A técnica de redução da dimensão do problema considera que se trabalha com um conjunto de problemas de minimização de funcionais di ferenciáveis. Assim, a minimização de $J(u_1, u_2, ..., u_M)$ é equivalente à pesquisa de raízes do problema:

AU = F , $A \in Lin(V, W)$

Considerando-se uma renumeração conveniente dos nós, seja a se guinte representação, por blocos, do sistema linear:

$$\begin{bmatrix} \mathbf{A}_{\boldsymbol{\ell},\boldsymbol{\ell}} & \vdots & \mathbf{A}_{\boldsymbol{\ell},\mathbf{c}} \\ \vdots & \vdots & \vdots & \mathbf{A}_{\mathbf{c},\mathbf{c}} \end{bmatrix} \begin{bmatrix} \mathbf{U}_{\boldsymbol{\ell}} \\ \vdots \\ \mathbf{U}_{\mathbf{c}} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{\boldsymbol{\ell}} \\ \vdots \\ \mathbf{F}_{\mathbf{c}} \end{bmatrix}$$

onde U_c e F_c são os deslocamentos e as forças nos nós sobre Γ_1 . Reescrevendo-se o sistema acima:

 $A_{\underline{\ell},\underline{\ell}} U_{\underline{\ell}} + A_{\underline{\ell},\underline{C}} U_{\underline{C}} = F_{\underline{\ell}}$ $A_{\underline{C},\underline{\ell}} U_{\underline{\ell}} + A_{\underline{C},\underline{C}} U_{\underline{C}} = F_{\underline{C}}$

e isolando-se U_, chega-se a:

$$A_{cc}^* U_c = F_c^*$$

onde

$$A_{CC}^{*} = A_{CC} - A_{C\ell} A_{\ell\ell}^{-1} A_{\ell c}$$
$$F_{C}^{*} = F_{C} - A_{C\ell} A_{\ell\ell}^{-1} F_{\ell}$$

A resolução do sistema acima equivale à minimização do funcional:

$$J^{*}(U_{c}) = \frac{1}{2} U_{c}^{T} \mathbb{A}_{cc}^{*} U_{c} - F_{c}^{*} U_{c}$$

sobre um espaço de dimensão proporcional ao número de pontos nodais sobre F₃.

EXEMPLOS DE APLICAÇÃO

Placa Simplesmente Apoiada sobre Solo Rigido

Considere-se uma placa espessa longa e de secção retangular simplesmente apoiada sobre solo rígido e submetido a um carregamento vertical em uma de suas extremidades. Assume-se um estado plano de deformação e que o comportamento do material seja elástico linear. Es tudam-se casos sem e com atrito entre a placa e o apoio horizontal, sendo os resultados ilustrados nas Figuras 3, 4 e 5. São utilizados elementos finitos triangulares (P_1) com funções interpoladoras line<u>a</u> res.

Observa-se um deslocamento da placa na região não comprimida da barra. Estes resultados não podem ser obtidos numa análise que se despreze as condições de unilateralidade.

PLACA APOIADA EM SOLO RÍGIDO, SEM ATRITO

PLACA APOIADA EM SOLO RÍGIDO, COM ATRITO

PLACA APOIADA SOBRE SOLO RIGIDO

Fig. 5

Placa Apoiada sobre Dormentes Rigidos

Seja uma placa espessa longa biapoiada sobre dormentes rígidos e sob carregamento por forças distribuídas uniformemente. Este exemplo ilustra como o modelo pode ajudar na estimativa das áreas de contato e da pressão efetiva entre os dois corpos em contato, mostrando que estes parâmetros podem vir a ser muito diferentes daqueles presumidos em projeto.

São considerados dois comprimentos distintos para a placa, e a análise considera os casos sem e com atrito ($\mu=0,3$). Os resultados es tão ilustrados nas Figuras 6 a 11.

Como seria de se esperar, à medida que o vão da placa aumenta, a área de contato diminui e a distribuição dos esforços reativos torna-se mais irregular. No caso ilustrado na Figura 10, a área de cont<u>a</u> to efetiva é menor do que 20% da área de contato hipotérica, enquanto a pressão de contato é da ordem de 4,6 vezes a pressão calculada supondo-se uma distribuição homogênea dos esforços. A importância da consideração da condição de atrito pode ser verificada comparando-se as Figuras 6 com 7 e 9 com 10.

Este exemplo é utilizado, também, para se ilustrar o ganho de desempenho do algoritmo quando se emprega a técnica de condensação de matriz. A tabela abaixo mostra os tempos despendidos pelos dois proc<u>e</u> dimentos, para o problema com *l*=300cm, considerando-se os casos sem e com atrito. A discretização em elementos finitos adotada define 300 elementos e 171 pontos nodais.

PROBLEMA	PROCEDIMENTO ORIGINAL	MATRIZ CONDENSADA	torig/tm.cond		
Sem atrito	762	281	2,71		
Com atrito	1162	282	4,12		

Tabela 1. Tempo de CPU (em segundos) exemplo 2, 1=300cm

A vantagem na utilização da condensação de matrizes é maior quando o problema envolve a condição de atrito. Isto se deve ao fato de que, no problema com atrito, tem-se um cálculo iterativo maior, e este é o fator que define o alto tempo computacional, otimizado quan-

Fig. 7

PLACA BIAPOIADA SOBRE DORMENTES RIGIDOS

Fig. 10

150 cm

com escorregomen to sob atrito

PLACA BIAPOIADA SOBRE DORMENTES RIGIDOS

Fig. 11

do se utiliza a técnica de condensação. De fato, pelo procedimento sem condensação, o método de GSRP com atrito envolve, no exemplo, um sistema de 342 minimizações por iteração, enquanto que, pelo procedimento com condensação, trabalha-se com um sistema de 14 minimizações por iteração. Todávia, o ganho no tempo de execução não obedece esta proporção pois grande parte do tempo é utilizado na geração e condensação da matriz A_{CC}^* . No caso, este tempo assume o valor de 257 segundos. Assim, a vantagem na utilização da técnica de condensação de matriz é ainda mais evidente quando são considerados diversos casos de carrega mento dobtr uma mesma estrutura.

CONCLUSÕES

Este trabalho apresentou um método numérico capaz de resolver uma classe de problemas de contato unilateral com atrito de Coulomb e aplicou-o a dois problemas de placas apoiadas. Considerou-se a elasti cidade infinitesimal com equações constitutivas lineares e uma classe particular de convexos sobre os quais definiram-se os problemas de mi nimização. Foram apresentados exemplos de aplicação que ilustram a utilização do método e, em particular, a eficiência da técnica de con densação de matrizes. É importante lembrar que esta condensação se faz possível pelo fato de que as minimizações de funcionais não diferenciáveis foram substituídas por minimizações de funcionais não difeveis. Observe que estas substituições não constituem regularizações de funcionais.

AGRADECIMENTOS

Este trabalho recebeu suporte da CAPES/COFECUB para Dr. Michel Raous (CNRS) como professor visitante na PUC/RJ durante 3 meses nos anos de 1985 e 1986.

REFERÊNCIAS

- [1] DUVAUT, G., Equilibre d'un solide elastique avec contact unilate ral et frottement de Coulomb, CRAS serie A, t.290, 263, 1980.
- [2] COCU, M., Existence of solutions of Signorini problems with friction, Int. J. Eng. Sci., 22(5), 567-575, 1984.

- [3] PANAGIOTOPOULOS, P.D., Inequality problems in mechanics and Applications, Springer-Verlag, 1985.
- [4] DUVAUT, G.; LIONS, J.L., Inequalities in mechanics and physics, Springer-Verlag, 1976.
- [5] RAOUS, M.; LATIL, J.C., Code d'élements finis pour des problèmes de contacts unilateraux avec frottement formules en termes d'inéquations variationnelles, in "Unilateral Problems in Structural Analysis", Ed. G. Del Piero, Springer-Verlag, Vienne, 1987.
- [6] RAOUS, M., Contacts unilateraux avec frottement en viscoelastici tê, in "Unilateral Problems in Structural Analysis", CISM course nº 288, Ed. G. Del Piero-F. Maceri, Springer-Verlag, Vienne, 1985.
- [7] RAOUS, M., On two variational inequalities arising from a periodic viscoelastic unilateral problem, in "Variational Inequalities and Complementarity Problems", Ed. R.W. Cottle-F. Gianessi-J.L. Lions, John Wiley, 1979.
- [8] RAOUS, M., Notas dos seminarios: Contato unilateral con atrito, PUC/RJ, 1985.
- [9] BARBOSA, H.J.C.; FEIJÓO, R.A., Um algoritmo numérico para o problema de Signorini com atrito de Coulomb, VIII COBEM, pp. 541-544, 1985.
- [10] BARBOSA, H.J.C.; FEIJÓO, R.A., Numerical algorithms for contact problems in linear elastostatics, Conf. on Structural Analysis and Design of Nuclear Power Plants, vol. 1, pp. 231-244, RS, 1984.
- [11] BARBOSA, H.J.C., Algoritmos numéricos para problemas de contato em Elasticidade, Tese de D.Sc., Prog. de Eng. Civil, COPPE/ UFRJ, 1986.
- [12] PINTO, J.; RAOUS, M., Direct non linear programming method for a two body contact, ICIAM §7, Paris, La Villette, Juin 1987.
- [13] CAMPOS, L.T.; ODEN, J.T.; KIKUCHI, N., A numerical analysis of a class of contact problems with friction in elastostatics, Computer Meth. in Applied Mech. and Eng., 34, 821, 1982.

- [14] GLOWINSKI, R.; LIONS, J.L.; TREMOLIERES, R., Analyse numerique des inequations variationnelles, Dunod, 1976.
- [15] BREZIS, H., Analyse Fonctionelle, Masson, 1983.
- [16] FICHERA, G., Boundary value problems of elasticity with unilateral constraints, Handbuch der Physik, Ban Via/2, 391-424, 1972.
- [17] RAVIART, R.A. & THOMAS, J.M., Introduction a l'analyse numérique des equations aux derivées partielles, Masson, 1983.
- [18] DEL PIERO, G., Unilateral problems in structural analysis, Módulo III do 29 Curso de Mecânica Teórica e Aplicada, LNCC/CNPq, 1985.

II ENCONTRO NACIONAL DE CIÊNCIAS TÉRMICAS

OBJETIVOS

ENCIT

- Divulgar a produção científica nacional na área de Ciências Térmicas.
- Promover o intercâmbio entre pesquisadores.
- Incentivar o relacionamento das atividades de pesquisa com o setor produtivo nacional.
- Avaliar as perspectivas de evolução das Ciências Térmicas.

CALENDÁRIO

ATE O DIA 15 DE MAIO DE 1988

Os autores deverão encaminhar seus RESUMOS, juntamente com 2 (duas) cópias xerox, seguindo fielmente as instruções.

ATE O DIA 15 DE JUNHO DE 1988

Os autores receberão da Comissão Editorial a confirmação de que seus resumos foram aceitos e as instruções para a datilografia do trabalho na forma final.

ATÉ O DIA 01 DE SETEMBRO DE 1988

Os autores deverão encaminhar seus trabalhos na versão final datilografada nos formulários próprios, fornecidos pelo INPE, para a Assessoria de Comunicação Social – Setor de Eventos.

ATÉ O DIA 15 DE OUTUBRO DE 1988

Os autores receberão da Comissão Editorial a confirmação de que seus trabalhos foram aceitos.

Os prazos acima deverão ser cuidadosamente observados considerando que qualquer atraso implicará prejuízo do programa final de impressão dos Anais, que deverão ser distribuídos na ocasião do Encontro.

Todos os trabalhos são de responsabilidade de seus autores. A Comissão não se responsabilizará pela revisão ortográfica ou por nova datilografia dos textos para efeito de publicação.

INFORMAÇÕES E CORRESPONDÊNCIAS

O Instituto de Pesquisas Espaciais – INPE, Setor de Eventos – poderá fornecer quaisquer informações adicionais pelo telefone ou endereço abaixo:

Instituto de Pesquisas Espaciais – INPE – Setor de Eventos Caixa Postal 515 – 12201 – São José dos Campos – SP

Telefone: (0123) 22 9977 - ramal 539 - Telex: 123 3530 INPE BR

COMISSÃO ORGANIZADORA

Demétrio Bastos Netto	_	Presidente
Maurício Nogueira Frota	—	Vice-Presidente
Vehemias Lima Lacerda	-	19 Secretário
Paulo Moraes Junior	-	2º Secretário
Leon Sinay	-	Tesoureiro
Paulo A. de O. Soviero		Editor

DETERMINAÇÃO DE FATORES DE INTENSIDADE DE TENSÃO PARA TRINCAS PRÓXIMAS A JUNTAS T EM ESPÉCIMES PLANOS E TUBULARES SUBMETIDOS À TRAÇÃO VIA FOTOELASTICIDADE

José Luiz de França Freire – Membro da ABCM PUC/RJ – Departamento de Engenharia Mecânica

José Ricardo Rebello Metal Leve S/A – Indústria e Comércio

RESUMO

Este trabalho relata a aplicação de técnicas fotoelásticas bi- e tri--dimensionais na determinação de fatores de intensificação de tensão, FIT, para trincas próximas a juntas planas e tubulares em T, solicit<u>a</u> das à tração. O método de determinação dos FIT, a partir das ordens de franja isocromáticas lidas nos experimentos, envolve a solução de equações generalizadas de Westergaard para os modos de abertura I e II pelo método de Newton-Raphson associado à ajustes por mínimos quadrados. Além dos FIT para as geometrias consideradas, o trabalho fornece uma importante avaliação da incerteza dos resultados obtidos.

ABSTRACT

This paper reports the aplication of 2-D and 3-D photoelastic techniques to the determination of stress intensity factors, SIF, for cracks located near plane and tubular T joint specimens, loaded in tension. The scheme adopted for SIF determination, from isochromatic fringe orders measured in the experiments, envolved the solution of generalized Westergaard equations for crack opening modes I and II employing the Newton-Raphson method associated to the least squares technique. Besides determining SIF for the considered geometries, this paper also furnishes an important evaluation of the uncertainties associated to the determined SIF.

Submetido em Setembro/1987 Aceito em Fevereiro/1988
INTRODUÇÃO

Este trabalho relata os resultados obtidos na aplicação de fotoelasticidade bi e tridimensional na determinação de fatores de intensidade de tensão, FIT, para trincas em geometrias complexas, onde outras técnicas analíticas ou numéricas são difíceis de serem aplicadas. Os objetivos finais são a avaliação de FIT - modo I, para trin cas superficiais com formato especial, em espécimes tubulares, local<u>i</u> zadas próximas aos pés de juntas soldadas em T como mostrado na Figura 1, e uma medida do erro associado a cada FIT. As juntas em T são as formas mais simples de conexões tubulares, normalmente encontradas, juntamente com nós tipo Y e K, em estruturas de plataformas marítimas de exploração de petróleo. Dois tipos de resultados são apresentados para os espécimes tubulares:

- Fatores K_I (FIT modo I) para trincas em tubos simples (sem cone xões T). Estes fatores são comparados com resultados para barras e tubos, respectivamente com trincas superficiais semi-elípticas e circunferenciais, carregadas à tração.
- Fatores K_I para trincas próximas aos pés de junções soldadas, que são comparados com os resultados descritos acima. Deste modo, a influência da vizinhança das juntas T nos estados de tensão atuantes em pontos próximos às pontas das trincas pode ser quantitativamente avaliada.

Como a fotoelasticidade por congelamento de tensões foi utilizada para estas determinações, dificuldades apareceram devido ao maíor tamanho possível que os modelos poderiam ter a fim de ainda poderem se ajustar ao interior do forno para congelamento de tensões. Mais ain da, a técnica de introdução das trincas nos modelos tubulares, particularmente naqueles com junções T, e o tamanho máximo destas trincas (de modo a simular geometrias reais), impuseram as seguintes restrições neste estudo: a) as trincas deveriam ser introduzidas por usinagem; b) o comprimento destas trincas deveria variar entre 1 e 5mm.

Embora métodos fotoelásticos tenham sido aplicados com sucesso na determinação de FIT em problemas com trincas longas, ainda existem dificuldades na determinação de FIT para espécimes com trincas pequenas (a <1 a 2mm). Estas dificuldades estão relacionadas à necessidade

Fig. 1. Geometria dos espécimes tubulares

de medição de ordens de franjas isocromáticas próximo às pontas das trincas, arredondamento da ponta das trincas grande se comparado ao seu comprimento, e, erros associados à medição de parâmetros geométri cos na região próxima à raiz das trincas. Se a fotoelasticidade tridimensional é usada, dificuldades adicionais surgem devido ao tamanho dos modelos (limitado ao número e volume de fundições repetidas dos materiais fotoelásticos e ao tamanho interno do forno fotoelástico pa ra acomodar os modelos e sistemas de carregamento), baixo módulo de elasticidade dos materiais fotoelásticos, controle apropriado do alinhamento do carregamento externo aplicado, expansão térmica do material, efeito de tempo e bordo nos materiais fotoelásticos, introdução de trincas por outros meios que não a usinagem, necessidade de utilização de trincas curtas para simular condições de projeto e situações reais de trabalho das estruturas.

Devido às dificuldades mencionadas acima, uma investigação adi

cional foi levada a termo a fim de quantificar o erro associado às d<u>e</u> terminações de K_I para os tubos simples e com nós em T. Duas linhas de investigação foram seguidas.

A primeira linha envolveu repetições dos experimentos com os espécimes tubulares a fim de se obter seus valores de K_I e para avaliar a dispersão dos resultados.

A segunda linha envolveu uma análise bidimensional de trincas superficiais em barras planas com e sem juntas T. Os espécimes foram construídos de policarbonato e tinham trincas usinadas ou propagadas por fadiga. Após serem testadas e analisadas, cada barra reta tinha um ramo secundário a ela adicionado ortogonalmente próximo à trinca superficial já existente, a fim de simular juntas T com trincas desen volvidas nas regiões próximas aos seus pés. Os espécimes eram então novamente ensaiados, com 5 repetições, de modo que uma variação estatística dos fatores ${\rm K}_{\rm T}$ pudesse ser determinada. Assim, além do estudo da influência do tamanho e da geometria de trinca (usinada ou propaga da por fadiga) e da geometria do espécime (trinca próxima ou longe das juntas soldadas) sobre os fatores K, uma medida da sua dispersão foi obtida, o que é um resultado importante para colocar limites na preci são que se pode efetivamente obter em experimentos similares para determinação de FIT.

MÉTODO EXPERIMENTAL

Para descrever o estado de tensão para um ponto próximo à ponta de uma trinca aberta segundo modo I, SANFORD [1] utilizou uma forma generalizada das equações de Westergaard tal que:

$$\sigma_{\mathbf{x}} = \operatorname{Re} \mathbf{Z}_{\mathbf{I}} - \mathbf{y} \operatorname{Im} \mathbf{Z}_{\mathbf{I}}' - \mathbf{y} \operatorname{Im} \mathbf{Y}_{\mathbf{I}}' + 2 \operatorname{Re} \mathbf{Y}_{\mathbf{I}}$$

$$\sigma_{\mathbf{y}} = \operatorname{Re} \mathbf{Z}_{\mathbf{I}} + \mathbf{y} \operatorname{Im} \mathbf{Z}_{\mathbf{I}}' + \mathbf{y} \operatorname{Im} \mathbf{Y}_{\mathbf{I}}'$$

$$\tau_{\mathbf{x}\mathbf{y}}' = -\mathbf{y} \operatorname{Re} \mathbf{Z}_{\mathbf{I}}' - \mathbf{y} \operatorname{Re} \mathbf{Y}_{\mathbf{I}}' - \operatorname{Im} \mathbf{Y}_{\mathbf{I}}$$
(1)

Para o modo de abertura II, um procedimento similar como segui do para o modo I em [1] e [2] pode ser seguido e expressões para as tensões sob modo II são obtidas tais que:

$$J_{x} = 2 \text{ Im } Z_{II} + y \text{ Re } Z'_{II} + \text{ Im } Y_{II} + y \text{ Re } Y'_{II}$$

$$\sigma_{y} = -y \text{ Re } Z'_{II} + \text{ Im } Y_{II} - y \text{ Re } Y'_{II}$$

$$\tau_{xy} = \text{ Re } Z_{II} - y \text{ Im } Z'_{II} - y \text{ Im } Y'_{II}$$
(2)

Convenções e definições para as funções acima são:

$$Z = Z(z)$$
, $Z' = dZ/dz$

$$z = x + iy$$

$$Z_{I,II}(z) = \sum_{j=0}^{J_{I},II} A_{j_{I},II} z^{j-1/2}$$

$$Y_{I,II}(z) = \sum_{m=0}^{M_{I,II}} \alpha_{m_{I,II}} z^{m}$$

onde $A_{j_{I}}$, $A_{j_{II}}$, $\alpha_{m_{I}}$, $\alpha_{m_{II}}$ são constantes reais. Quando j=0, os coeficientes dos termos $z^{-1/2}$ para os modos I e II serão, respectivamente, $A_{o_{I}} \in A_{o_{II}}$. Estes coeficientes estão relacionados aos FIT - modos I e

II da seguinte forma:

$$K_{I} = A_{O_{I}} \sqrt{2\pi}$$
$$K_{II} = A_{O_{II}} \sqrt{2\pi}$$

Aplicando a superposição das equações (1) e (2) e usando a equa ção básica da fotoelasticidade

$$4(\tau_{max})^{2} = (N f_{\sigma}/t)^{2} = (\sigma_{x} - \sigma_{y})^{2} + 4\tau_{xy}^{2}$$
 (3)

onde N é a ordem de franja, t é a espessura da fatia analisada e f_{σ} é o valor da franja do material utilizado. Coordenadas dos pontos estudados e dados fotoelásticos são coletados e usados para o cálculo de K_I e K_{II} a partir do método de Newton-Raphson associado a um processo de ajustagem por mínimos quadrados como proposto por SANFORD e DALLY [4].

Decisões sobre o número de parâmetros a ser empregado para cada problema, i.e., $J_{1}+M_{1}+J_{11}+M_{11}$, o número de pontos estudados e o ta manho da região onde os dados são coletados não são triviais e precisam ser cuidadosamente analisados. A avaliação dos resultados obtidos é feita de dois modos como indicado em [2]. O primeiro modo é qualita tivo e baseado na semelhança entre as distribuições de franjas isocro máticas reais e as plotadas pelo computador que utiliza os valores cal culados de $K_{I} = K_{II}$ e os demais outros parâmetros. O segundo modo é baseado num desvio relativo percentual calculado para as franjas isocromáticas, Δn . Este desvio utiliza as ordens de franjas lidas no polariscópio e as calculadas para o mesmo ponto pelo computador.

O número de pontos usados nesta investigação variou entre 80 a 150 (para cada análise), escolhidos aleatoriamente no interior de uma região limitada por duas circunferências de raios 1 e 8mm e com centro na ponta da trinca. Regiões selecionadas dentro destas duas cir cunferências permitem bons resultados com apenas 40 pontos. As melhores soluções foram obtidas com os seguintes números de parametros: $J_{T}=5$, $M_{T}=5$, $J_{TT}=1$, $M_{TT}=1$, devido ao fato que o modo de abertura II te ve influência praticamente desprezivel. Diferentes conjuntos de pontos coletados (40 a 150 pontos), obtidos de um mesmo experimento, pro duziram variações em K, de apenas 3%, enquanto que valores típicos de An variaram entre 1,5 e 5%. Os dados coletados, i.e., ordem de franja N e coordenadas polares dos pontos com relação à ponta das trincas, r e 0, foram determinados num polariscópio de transmissão com aumento de 10x e utilizando o método de compensação de Tardy quando necessá rio.

Modelos Bidimensionais. Os modelos bidimensionais foram construídos de uma ou mais barras de policarbonato com espessura de 6.35mm, as quais foram fresadas e acabadas manualmente com limas. As barras sujeitas à tração t<u>i</u> veram trincas usinadas introduzidas por fresas tipo disco, com uma ge<u>o</u> metria de corte proposta em [5], e com uma geometria de ponta mostrada na F<u>i</u>

gura 2. Outras barras de tração tiveram suas trinças produzidas da se guinte forma: barras com largura excedente tiveram entalhes usinados para a iniciação de trinças de fadiga. Estas foram iniciadas e propagadas ao vibrarem-se as barras utilizando-se uma mesa vibradora. Após pequenos incrementos no seu tamanho, as barras, que estavam engasta das, tinham suas fixações mudadas para as extremidades opostas a fim de que trincas retas pudessem ser propagadas, evitando a tendência de terem seus planos desviados com direção ao engastamento. Após terem atingido um comprimento desejado, a superfície com largura excedente onde o entalhe iniciador fora usinado era removido por fresagem tal. que apenas uma trinca de fadiga ficasse lá posicionada. Deste modo. trincas retas de fadiga com comprimentos nominais de 1, 2 e 4,5mm foram construídas. A variação do seu comprimento através da espessura das barras foi controlada de modo a ser menor que 10%. Na maior parte dos casos a variação foi menor que 5%.

Fig. 2. Geometrias dos espécimes planos e trinca usinada

Cada razão de geometria das barras bidimensionais testadas (a/w=0,05, 0,1 e 0,2) foi então composta de dois modelos, um com trin ca usinada e outra com trinca propagada por fadiga. Estes modelos foram submetidos a 5 séries de carregamentos e coleta de dados. Após t<u>e</u> rem sido analisados, ramos secundários foram então colados ortogonalmente com adesivo cianoacrilático. Novas séries de 5 carregamentos coleta de dados foram levadas a termo.º Todos estes dados foram então analisados e algumas das conclusões mais importantes serão apresenta-

das na próxima seção.

Modelos Tridimensionais. Dimensões básicas dos espécimes tubulares es tão apresentadas na Figura 1. Tubos em dois tamanhos, para os ramos primários e secundários, foram obtidos por fundição a quente e tornea dos até sua forma final. O material fotoelástico foi composto de 100 partes em peso de Araldite F e 50 partes em peso de anidrido ftálico. Trincas foram fresadas com a mesma ferramenta usada para as trincas bidimensionais nos espécimes de policarbonato. O carregamento foi apli cado no interior do forno de congelamento de tensões por um peso de 200N. A Figura 3 ilustra o aparato simples de carregamento.

Fig. 3. Esboço do carregamento dos espécimes tubulares

As trincas foram usinadas no ramo primário antes da colagem do secundário com uma resina epoxi comercial com cura à temperatura ambiente. Este adesivo foi testado previamente sob tração na temperatura crítica de congelamento de tensões e comportou-se muito bem, tran<u>s</u> mitindo perfeitamente o carregamento para todos os pontos tracionados da seção transversal.

RESULTADOS E DISCUSSÃO

Os resultados determinados para as análises bi e tridimensio -

nais estão resumidos nas Tabelas 1 e 2. Estas tabelas apresentam valo res médios normalizados de FIT, \overline{K}_{I}^{*} , como uma função dos parâmetros geo métricos adimensionais a/w, número de repetições para cada experimento, n, e desvios padrões dos valores determinados, s_{n-1}.

ESPÉCIM	ES	a/w	a (mm)	κ. τ	s _{n-1} (%)	K [*] [11]	K [*] [9]
Simples	U F	0.05		1.26	5.6 16	1.13	1.15
Soldada	U F	- 0.05	1.0	1.13	11 7.2	-	1.38
Simples	U F	0.10	2.1	1.25	2.7 8.2	1.19	1.20
Soldada	U F	- 0.10	2.1	1.29	5.3 4.9	-	1.29
Simples	U F			1.37	2.6 4.2	1.36	1.38
Soldada	U F	0.20	4.5	1.38	3.6 3.6	-	1.39

Tabela 1. Resultados para os espécimes bidimensionais

U = trinca usinada , F = trinca propagada por fadiga $\overline{K}_{I}^{\star} = \overline{K}_{I} / \sigma \sqrt{\pi a}$, $\overline{s}_{n-1} = (s_{n-1} / \overline{K}_{I}) \times 100\%$, $\overline{K}_{I} = valor médio$

As faixas dos resultados determinados para os espécimes tubul<u>a</u> res lisos (sem conexões T) foram plotadas na Figura 4 de modo a forn<u>e</u> cer uma idéia da dispersão dos resultados. A análise destas faixas de dispersão, como também dos desvios padrões apresentados nas Tabelas 1 e 2, é importante antes que qualquer comparação entre FIT para barras ou tubos com ou sem conexões T possa ser feita. Deve-se notar na Fig<u>u</u> ra 4 que a dispersão dos valores dos FIT aumenta quando o comprimento das trincas decresce. Isto é também indicado pelos valores dos des vios padrões nas Tabelas 1 e 2, exceto para os casos dos espécimes t<u>u</u> bulares com juntas T. Um gráfico da variação dos desvios padrões percentuais (relativamente a cada FIT médio) está apresentado na Figura 5 como uma função do comprimento de trinca a. É interessante notar c<u>o</u> mo s_{n-1} decresce rapidamente com o acréscimo de a, atingindo 3 a 5% quando a torna-se maior que 3mm. Isto ocorre para trincas introduzI das por fresagem ou fadiga e, também, para espécimes bi ou tridimen sionais, exceto para os tubos com Juntas T, que podem ser considera dos pouco representativos pois tiveram apenas 3 repetições para cada geometria.

ESPÉCIMES	a/w	₹ [*] I	Número de Repetições	5 _{n-1} (%)	OBS
	0.1	1.1	4	30	
Tubo simples sob	0.2	1.0	4	14	Veja Figuras 1 e 2
tração	0.25	1.2	3	8	
	0.3	1.2	7	5	
Tubo com trinca	0.1	1.1	-	-	la
circunferencial	0.2	1.15	-	-	(H)
sob tração	0.3	1.2	-	-	
Barra com trinca	0.1	1.05	-	-	26 .
superficial semi	0.2	1.1	-	-	
elítica sob tra- ção	0.3	1,1	-	-	
	0.1	1.2	3	10	
Tubo com juntas	0.2	1.1	3	20	
T sob tração	0.25	1.3	1	-	Veja Figura 1
	0.3	1.1	3	10	

Tabela 2. Resultados para espécimes tubulares

Uma conclusão parcial até este ponto é que experimentos com pro cedimentos cuidadosos são ineficientes em evitar grandes erros quando as trincas possuem comprimentos menores que 3mm. Uma predição para tais erros pode ser feita através de publicações prévias [5-8].

Fig. 4. Valores de FIT tridimensionais normalizados para tubos simples comparados com FIT para trincas superficiais semi-elíptica em barras e circunferenciais em tubos (w = espessura da parede do tubo sujeito à tração)

Fig. 5. Variação com o comprimento de trinca dos desvios padrões normalizados para os valores de FIT determinados experimentalmente

Para os experimentos bidimensionais, os erros estão associados à precisão de aplicação do carregamento (tração pura), leitura da ordem de franja nominal para avaliar tensões nominais, leitura de ordem de franja e medição de coordenadas para os pontos estudados e localização da ponta da trinca. Para comparar os resultados experimentais com outros analíticos, é importante levar-se em consideração que outros fatores podem levar a erros tais como: arredondamento da ponta da trinca; forma das trincas usinadas e propagadas por fadiga; comprimen to variável das trincas ao longo da espessura das barras; comportamen to mecânico e ótico não-linear do material dependente do nível de ten são e taxa de tensão; distorção da geometria da trinca devido ao carregamento. Número de parâmetros devido ao método multi-paramétrico uti lizado e número de pontos coletados, assim como as regiões de leitura dos dados, podem influenciar os resultados.

Os experimentos tridimensionais associam todas as fontes de er ros acima mencionadas a outras, relativas ao método de congelamento de tensões. Repetição dos testes, no caso do método de congelamento de tensões e corte em fatias, acarreta o uso de modelos diferentes. Assim, nestes casos, lida-se com trincas diferentes em vez da mesma trin ca como na análise bidimensional. Em qualquer dos casos, porém, os desvios das médias dos resultados bi e tridimensionais comparados aos resultados analíticos, variaram de 12% a 0% do pior (a/w=0.05) ao melhor caso (a/w=0.2).

Valores de FIT para barras planas com juntas T foram compara dos a resultados de elementos finitos determinados por [9] e concorda ram satisfatoriamente bem, exceto para o caso a/w=0.05 com trinca usi nada. Os valores de K_{II} fotoelásticos, nestes problemas, foram muito pequenos, mesmo para as menores trincas, sendo apenas pequenas frações de K_{I} e, assim, uma formulação de modo I seria bastante viável de ser empregada nestes problemas. A baixa influência de K_{II} foi tambêm observada experimentalmente, devido às pequenas perturbações apre sentadas nas distribuições de franjas isocromáticas típicas de modo I.

Resultados médios de FIT para tubos lisos, apresentados na par te superior da Tabela 2, mostram-se similares a resultados publicados para outros tipos de trincas: trincas circunferenciais em tubos sujei tos à tração e barras com trincas semi-elípticas sujeitas à tração [10].

Valores de FIT para tubos com juntas T estão também apresent<u>a</u> dos na Tabela 2. Estes resultados não diferem muito daqueles determ<u>i</u> nados para os tubos lisos, pelo menos se for considerada a faixa de erro experimental - grande, para as pequenas trincas analisadas. Pode-se concluir daí que as juntas soldadas e os ramos secundários pr<u>o</u> ximos às trincas não contribuem de maneira acentuada para modificar o valor de K_I, pelo menos para razões a/w>0.1. Isto é também uma co<u>n</u> clusão desta investigação para a análise bidimensional e também um resultado apresentado em [9]. Este último, entretanto, conlui que a proximidade das juntas soldadas eleva os valores de K_I quando a razão a/w torna-se menor que 0.1.

CONCLUSÕES

Considerando o método utilizado para obtenção dos valores de FIT a partir dos dados fotoelásticos, número de dados coletados, número de parámetros usados e outros detalhes experimentais discutidos no texto, os seguintes pontos podem ser realçados desta investigação

- Uma grande dispersão para os valores de FIT foi encontrada para trincas usinadas ou propagadas por fadiga, em modelos bi e tridimensionais quando os comprimentos das trincas são menores que 3mm. Trincas maiores permitem resultados bastante precisos, frequentemente dentro de uma faixa máxima de ±5% em torno do valor real es perado para o FIT.
- Os resultados bidimensionais mostraram não haver diferenças signi ficativas entre valores de FIT para trincas usinadas e propagadas por fadiga.
- 3) Diferenças entre os valores fotoelásticos de FIT para trincas lon ge e próximas a juntas soldadas (em espécimes bi ou tridimensio nais) foram pequenas e dentro da faixa de erro experimental. Entretanto, resultados de elementos finitos bidimensionais [9] mostram que as diferenças entre estes valores crescem quando as rela ções a/w decrescem, sendo 7% para a/w=0.1 e 20% quando a/w=0.05. Quando a/w>0.2, ambos valores de FIT se aproximam, a diferença má xima entre eles sendo 1.5% (por ambas as análises de elementos fi nitos e fotoelasticidade).

4) Valores de FIT para as trincas, com geometria especial, estudadas nos modelos tridimensionais podem ser estimadas pelos valores de FIT para trincas circunferenciais em tubos, já que os erros associados a estas aproximações encontram-se dentro da faixa de erro observada para a análise fotoelástica.

REFERÊNCIAS

- [1] SANFORD, R.J., "A critical re-examination of the Westergaard method for solving opening - mode crack problems", Mech. Research Communications, 6(5): 289-294, 1979.
- [2] SANFORD, R.J.; FOURNEY, W.L.; CHONA, R. and IRWIN, G.R., "A photoelastic study of the influence of non-singular stresses in fracture tests specimens", ORNL, 1981.
- [3] COSTA, T.F.; REBELLO, J.R. e FREIRE, J.L.F., "Fatores de inten sificação de tensão para trincas em juntas planas soldadas", Anais do VIII Congresso Brasileiro de Engenharia Mecânica, COBEM 85, 865-868, Dezembro de 1985.
- [4] SANDORD, R.J. and DALLY, J.W., "A general method for determining mixed-mode-stress-intensity factors from isochromatic fringe patterns", Eng.Fract.Mech., 11: 621-633, 1979.
- [5] SCHROEDL, M.A. and SMITH, C.W., "A study of near and far field effects in photoelastic stress intensity determination", Eng. Fract.Mech., 7, 341-355, 1975.
- [6] DOYLE, J.F.; KAMLE, S. and TAKEZAKI, J., "Error analysis of photoelasticity in fracture mechanics", Experimental Mechanics, November, 429-435, 1981.
- [7] SCHROEDL, M.A.; McGOWAN, J.J. and SMITH, C.W., "An assessment of factors influencing data obtained by the photoelastic stress freezing technique for stress fields near crack tips", Eng. Fracture Mech., 4: 801-809, 1972.
- [8] SMITH, C.W.; McGOWAN, J.J. and JOLLES, M., "Effects of artificial cracks and poisson's ratio upon photoelastic stress-intensity determination", Exp.Mech., 5: 188-193, 1976.

- [9] SMITH, I.J.. "Stress intensity factors for toe deffects in single-sided transverse attachments of varying thickness made with fully penetrating welds", Research Report 183, The Welding Institute, 1982.
- [10] ROOKE, D.P. and CARTWRIGHT, D.J., "Compendium of stress intensity factors", Ministry of Defense, London.

[11] BROWN, W.F. and SRAWLEY, J.E., STP 410, ASTM, 1966.

ANALOGY BETWEEN HEAT AND MASS TRANSFER FOR DIFFUSION DRIVEN NONISOTHERMAL EVAPORATION

Álvaro Toubes Prata – Membro da ABCM UFSC – Departamento de Engenharia Mecânica

ABSTRACT

The analogy between evaporative heat and mass transfer is investigated for diffusion-driven nonisothermal evaporation of water from a partially-filled container. It is shown that suitable definitions of the mass transfer coefficient make possible a tight correlation between the ratio of the transfer coefficients and the Lewis number.

RESUMO

A analogia entre transferência evaporativa de calor e massa é investi gada para o caso de evaporação difusiva, não isotérmica, de uma cavidade parcialmente cheia com água. É demonstrado que definições conve nientes do coeficiente de troca de massa tornam possível a obtenção de estreita correlação entre o número de Lewis e a razão entre os coe ficientes de troca.

Submetido em Outubro/1987 Aceito em Fevereiro/1988

NOMENCLATURE

cp	specific heat of air
cpw	specific heat of water vapor
D	binary diffusion coefficient
н	distance between top of the cavity and liquid surface, Fig. 1
h	heat transfer coefficient, equation (6) or (10)
h fq	latent heat of evaporation
h"	heat transfer coefficient, equation (19)
K	mass transfer coefficient, equation (7) or (12)
к'	modified mass transfer coefficient, equation (16)
к"	modified mass transfer coefficient, equation (22)
k	thermal conductivity of air
Le	Lewis number (=Sc/Pr=k/pc_pwD)
m	evaporation rate per unit area
Nu	Nusselt number (=hH/k)
Nu"	Nusselt number (=h"H/k)
PeT	Peclet number for thermal transport (=mHc _pw/H)
Pew	Peclet number for mass transport $(=\dot{m}H/\rho D)$
Sh	Sherwood number (=KH/D)
Sh'	modified Sherwood number (=K'H/D)
Sh"	modified Sherwood number (=K"H/D)
т	temperature
т _і	temperature at the liquid surface
т	ambient temperature
W	water-vapor mass fraction
Wi	value of W at the liquid surface
W	value of W at ambient
Y	dimensionless coordinate (=y/H)

- y vertical coordinate, Fig. 1
- a dimensionless water-vapor mass fraction, equation (3)
- θ dimensionless temperature, equation (3)
- ρ air density
- relative humidity

Subscripts

- 0 at y=0
- H at y=H

INTRODUCTION

In the analysis to be presented here, evaporation of liquid water into ambient air will be used to explore the analogy between heat and mass transfer. The evaporating water partially fills an adiabatic-walled, open-topped container.

It will be demonstrate how seeming defects in the analogy can be redressed by suitable definitions of the mass transfer coefficient. Furthermore, the relationship between heat and mass transfer coefficients and the Lewis number will be investigates.

ANALYSIS

A view illustrating the evaporation problem in consideration is shown in Fig. 1. The diffusion-driven nonisothermal evaporation associated with the situation shown in this figure has been recently investigated for a one-dimension, steady state situation [1].

The equation governing the evaporative heat and mass transfer for this problem was shown in [1] to be, respectively,

$$(mc_{mx}/k) (dT/dy) = d^2 T/dy^2$$
 (1)

and

$$(\mathbf{m}/\mathrm{pD}) (dW/dy) = d^2 W/dy^2$$
(2)

were, all quantities appearing in equations (1) and (2) are explained in the nomenclature.

In [1] equations (1) and (2) were solved for the evaporation of liquid water into an ambient containing air at atmospheric pressure. The relative humidity ϕ of the air at the top of the cavity was varied from 0 to 100 percent, and its temperature T ranged from 15 to 35°C. Results were presented for the interface temperature T_i and for the evaporation rate \dot{m} . The evaporation rate results were presented divided by $\dot{m}_{\rm STEFAN}$ which is that corresponding to the diffusion driven isothermal evaporation, classically known as Stefan

diffusion problem [1,2].

For given ambient conditions, and in the absence of natural convection, the Stefan model provides the upper bound for the rate of evaporation, whereas the nonisothermal model yields the lower bound. A physical discussion of diffusion-driven evaporation exploring the existence of the two aforementioned limits is presented in [1].

Attention will now be focused in the analogy between the evaporative heat and mass transfer. To explore the analogy, a dimensionless temperature and water-vapor mass fraction are defined as

$$\theta = (T - T_{i}) / (T_{i} - T_{i}) ; \alpha = (W - W_{i}) / (W_{i} - W_{i})$$
(3)

where T_i and W_i are, respectively, the temperature and water-vapor mass fraction at the evaporating surface.

If θ and α are introduced into equations (1) and (2), along with Y=y/H, where H is the distance from the water surface to the top of the cavity, the resulting differential equations for θ and α are

$$Pe_{m}(d\theta/dY) = d^{2}\theta/dY^{2}$$
⁽⁴⁾

and

$$Pe_{r,} (d\alpha/dY) = d^2 \alpha/dY^2$$
(5)

where, except for the Peclet numbers Pe_{T} (=m Hc_p/k) and Pe_{W} (=m H/pD) the two differential equations are identical. In addition, both θ and α have the same boundary conditions (0 at y=0 and 1 at Y=1). Therefore,

$$\theta(Y, Pe_m) = \alpha(Y, Pe_m)$$

so that the temperature and mass fraction distributions are completely analogous.

Now, turning to the evaluation of the heat and mass transfer coefficients, h and K, there are some deviations in the analogy that have to be dealt with. These transfer coefficients are defined

according to

$$h = [\dot{m}h_{fg} + \dot{m}c_{pw}(T_{\omega} - T_{i})] / (T_{\omega} - T_{i})$$
(6)

and

$$K = m/\rho (W_i - W_{oo})$$
(7)

in which h_{fg} is the latent heat of evaporation. It should be noted that the latent and the sensible heat are included in the definition of h.

By a formal integration of the energy equation (1) between y=0and H and subsequent application of the boundary condition at the liquid surface,

$$k(dT/dy)_{0} = \hat{m}h_{fg}$$
(8)

it follows

$$mh_{fg} + mc_{pw}(T_{\omega} - T_{i}) = k(dT/dy)_{H}$$
(9)

so that equation (6) becomes

$$h = k(dT/dy)_{u}/(T_{m}-T_{i})$$
(10)

To determine the mass transfer coefficient K from equation (7), the evaporation rate \dot{m} has to be known. Since \dot{m} is constant throughout the container, it can be calculated at any location y. In this regard, it follows from the definition of mass flux of water vapor and from the impermeability condition for the air at the liquid surface that

$$\hat{m} = [-pD/(1-W_1)] (dW/dy)_0 = [-pD/(1-W_0)] (dW/dy)_H$$
(11)

In as much as the heat transfer coefficient in equation (10) was related to the temperature gradient at y=H, it is logical to relate \dot{m} to the gradient of the mass fraction at y=H in order to preserve the analogy. Thus, substituting the right-most member of

equation (11) into equation (7) yields

$$K = [-D/(1-W_{m})] (dW/dy)_{m}/(W_{s}-W_{m})$$
(12)

Now, using the dimensionless variables θ , a and Y, equations (10) and (12) become

$$hH/k = (d\theta/dY)_{Y=1} = f(Pe_m)$$
(13)

and

$$KH/D = [1/(1-W_m)] (d\alpha/dY)_{Y=1} = [1/(1-W_m)]f(Pe_m)$$
(14)

in which $f(Pe_T)$ and $f(Pe_W)$ are the same function. If hH/k is identified as a Nusselt number Nu and KH/D is identified as a Sherwood Sh, then

$$Nu/Sh = [f(Pe_m)/f(Pe_w)][1/(1-W_m)]$$
(15)

For the analogy between heat and mass transfer to hold, Nu=Sh when $Pe_T = Pe_W$, which is not fulfilled by equation (15) because of the presence of the factor $1/(1-W_{\infty})$. The existence of this factor, known as the blowing effect [2], is associated with a convective velocity required to counterbalance the diffusion of air from the top of the cavity to the liquid surface and due to the impermeability condition at this surface.

The seeming defect in the analogy can be overcome by redefining the mass transfer coefficient to include the factor $1/(1-W_{\infty})$. This approach is permissible because the definitions of the transfer coefficients contain some degree of arbitrariness, depending on convenience and on the intended use. To bring the analogy into standard form, let

$$K' = (1 - W_m)K = (1 - W_m)m/p(W_s - W_m)$$
(16)

and

$$Sh' = K'H/D$$

(17)

so that

$$Nu/Sh' = f(Pe_m)/f(Pe_m)$$
(18)

which yields Nu=Sh' when $Pe_T=Pe_W'$, as required for the fulfillment of the analogy.

The aforementioned arbitrariness in the definition of the transfer coefficient enables other forms of the analogy to be derived. In this regard, rather than taking into account both the sensible and latent heat contributions, the heat transfer coefficient can be defined in terms of the latent heat contribution only. This alternative definition is

$$h'' = \dot{m}h_{f''} / (T_{\infty} - T_i)$$
(19)

By making use of equation (8) and introducing the dimensionless temperature θ and coordinate Y, equation (19) becomes

$$h''H/k = (d\theta/dY)_{V=0} = g(Pe_m)$$
(20)

where it is noted that the newly defined heat transfer coefficient is related to the temperature gradient at the gas-liquid interface. With the construction of a heat/mass transfer analogy in mind, it is appropriate to evaluate the mass transfer coefficient K (equation (7)) using the middle member of equation (11) where the derivative $(dW/dy)_0$ appears. After introduction of dimensionless variables, there is obtained

$$KH/D = [1/(1-W_i)] (d\theta/dY)_{W=0} = [1/(1-W_i)]g(Pe_W)$$
(21)

By examination of equations (20) and (21), it is evident from what has gone before that the factor $1/(1-W_i)$ is an impediment to the attainment of a heat/mass transfer analogy. Consequently, a new mass transfer coefficient K" is defined as

$$K'' = (1 - W_{i})K = (1 - W_{i})\tilde{m}/\rho(W_{i} - W_{\infty})$$
(22)

With this and with the definitions

$$Nu'' = h''H/k$$
, $Sh'' = K''H/D$ (23)

it follows from (20) and (21)

$$Nu''/Sh'' = g(Pe_m)/g(Pe_m)$$
 (24)

Since $g(Pe_T)$ and $g(Pe_W)$ are the same function, then $Nu^*=Sh^*$ when $Pe_T=Pe_W$, thereby fulfilling the analogy.

TRANSFER COEFFICIENT-LEWIS NUMBER RELATION

In work involving mass transfer, it is customary to seek to relate the ratio of the heat and mass transfer coefficients to the Lewis number. Such a relationship is sought to enable the heat and mass transfer coefficients to be interchanged when the Prandtl and Schmidt numbers are not equal.

The Lewis number Le is the ratio of the Schmidt and Prandtl numbers, that is

$$Le = Sc/Pr = k/\rho c_{D}$$
(25)

By introducing the Lewis number, equation (18) can be rephrased to yield the ratio $h/c_{\rm n}\rho K'$

$$h/c_p \rho K' = [f(Pe_m)/f(Pe_m)]Le$$
(26)

Similarly from equation (24), there is obtained for $h^*/c_p \rho K^*$

$$h''/c_p \rho K'' = [g(Pe_m)/g(Pe_m)]Le$$
 (27)

These equations will be evaluated for the evaporation problem illustrated in Fig. 1. The numerical results for the temperature and mass fraction gradients at the gas-liquid interface and at the top of the container (i.e., the g's and f's) obtained from the solution of equations (1) and (2) are substituted into equations (26) and (27) yielding the $h/c_p\rho K'$ and $h''/c_p\rho K''$ ratios for various conditions at

the top of the container. These results are listed in Table 1 along with the corresponding Lewis number.

Fig. 1. Evaporation of water into air from an adiabatic-walled container

From Table 1, it is seen that for all the investigated boundary conditions at the top of the container, the values of $h/c_p \rho K'$ and $h''/c_p \rho K''$ are very close to the Lewis number. The maximum deviation which is less than 0.6 percent, occurs for $\phi=0$. For $\phi+1$, the values of $h/c_p \rho K'$, $h''/c_p \rho K''$ and Le are identical.

Table 1. Values of Le, $h/c_p \circ K'$ and $h''/c_p \circ K''$ for various conditions at the top of the container

			φ=0			φ=0.5	5		¢≁1	
т	(°c)	Le	h/c_pK'	h"/c_pK"	Le	h/c_pK'	h"/c_oK"	Le	h/c oK'	h"/c_pK"
	15	0.844	0.847	0.842	0.843	0.844	0.842	0.841	0.841	0.841
	25	0.842	0.846	0.839	0.840	0.841	0.838	0.837	0.837	0.837
	35	0.841	0.845	0.836	0.836	0.838	0.834	0.832	0.832	0.832

To rationalize this outcome, attention may be redirected to equations (26) and (27). Those equations indicate that for the equality of $h/c_p \rho K$ and Le, the ratio $f(Pe_T)/f(Pe_W)$ must be equal to unity; similarly, equation (27) shows that $g(Pe_T)/g(Pe_W)$ must also equal unity. This is possible if f and g are independent of Pe_T and

Pe ... which occurs only for pure diffusion.

The ϕ +1 case of Table 1 is, indeed, a pure diffusion situation, so that the precise equality of $h/c_p \rho K'$, $h''/c_p \rho K''$ and Le shown in the table is as it should be. The very slight deviations between these quantities which are in evidence with decreasing ϕ indicate the presence of convection.

The just-cited tight correlation between the ratio of the transfer coefficients and the Lewis number was made possible by the appropriate definition of the mass transfer coefficients, K' and K", i.e., equations (16) and (22). Had the mass transfer coefficient K been used, this tight correlation would not occur.

CONCLUDING REMARKS

The nonisothermal evaporation problem of [1] was used to explore the analogy between heat and mass transfer. It was demonstrated that a seeming defect in the analogy caused by the blowing effect can be overcome by a suitable redefinition of the mass transfer coefficient. Various forms of the analogy were shown to exist depending on the chosen definitions of the transfer coefficients. Furthermore, the ratio of the heat transfer coefficient to the modified mass transfer coefficient was shown to be virtually equal to the Lewis number.

REFERENCES

- PRATA, A.T. and SPARROW, E.M., "Diffusion-Driven Nonisothermal Evaporation", Journal of Heat Transfer, vol. 107, pp. 239-242, 1985.
- [2] BURMEISTER, L.C., Convective Heat Transfer, John Wiley and Sons, New York, 1983.

-	1	
C		
	1	
	C	сп

ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS MECÂNICAS Secretaria da ABCM - Biênio 1986-1987 PUC/RJ - ITUC Rua Marques de São Vicente, 225 - Gávea 22453 - Rio de Jameiro - RJ - Brasil Tel.: (021) 259-5197 - Telex: 31048 PUCR BR

FARA (50 L	A AS	SOCIA	IÇAU
Receb	ido			
1	1			
Aprova	ado			
1	1			
Matri	cula	nQ		
	TT		TT	-

FORMULÁRIO PARA AFILIAÇÃO

□ Sócio Efetivo □ Sócio Aspirante

Nome					Data	Nascimer	nto
Endereço	Av/Rua		NQ	B1.	Apt 2		
Residencial	CEP	Cidade	UF	Pals		Tel.:()
FORMAÇÃO AC	ADÊMICA						
	Título	obtido				Período	
araduaçao	Institu	ição				País	
Mestrado 🗆	Título	obtido				Período	
Especial. D	Institu	ição				País	
	Título	obtido				Período	
Doutorado	Institu	ição				Pais	
ATUAÇÃO PRO	FISSIONA	L					
Cargo/Funçã	o						
	Institu	ição					
Comercial	Av/Rua					NΩ	Sala
	CEP	Cidade	UF	País		Tel.:()
Areas de Es (Use códi;	pecializ go anexo	ação A)					
Areas de Ap (Use codigo	licação anexo B)						

Data

Assinatura

ANEXO A AREAS DE ESPECIALIDADE

1000	FUNDAMENTOS E MÉTODOS EM MECÂNICA	8000	GEOCIÉNCIAS
	TEÓRIÇA E APLICADA	8010	"Micromeritics"
1010	Mecánica do Continuo -	8110	Meios Porosos
1110	Método dos Elementos Finitos	8210	Geomecànica
1120	Métodos dos Elementos do Contorno	8310	Mecánica dos Abalos sísmicos
1130	Métodos assintóricos	8410	Hidrologia, Oceonografia, Meteorologia
1140	Métodos das Diferenças Finitas		and a second sec
1150	Outros Métodos em Mecánica Computacional	9000	ENERGIA E MEIO AMRIENTE
1210	Métodos Estocásticos e Estatísticos	0110	Combusting famile
1310	Modelaaam	0170	Compositives rossins
1410	Euclamentos da Análiza Exparimental	9120	Sistemas nucleares (Tissão)
1610	Matralogia	9125	Sistemas nucleares (Tusão)
1010	Metrologia	9130	Sistemas geotérmicos
1010	Gerencia de Projetos	9140	Sistemas Solares
	and being a survey about	9150	Sistemas eólicos
2000	DINAMICA E VIBRAÇÕES	9160	Sistemas de energia oceânica
2110	Cinemática e Dinámica	9210	Armazenamento de enerola
2210	Vibrações de Sólidos (Fundamentos)	9220	Distribuição de energia
2310	Vibrações (Elementos de estruturas)	9310	Mecànica de fluidos ambiental
2320	Vibrações (Estruturas)	9410	Mecánica de dispositivos de armazename
2330	Propagação de Ondas a Sólidos	2410	residuos poluentes
2340	Impactos em Sólidos		realidades policientes
2350	Identificação de continuiros de sistemas Macânicos	10000	NORTHNELE
2450	Denominação de parametros de sistemas viecanicos	10000	BIOCIENCIAS
2410	Propagação de ondas em títuloos incompassiveis	10110) Biomecánica
2420	Propagação de ondas em fluidos compreensíveis	10210) Ergonomia
2510	Interação sólido-fluído	10310	Reabilitação
2610	Astronáutica (mecánica celeste e orbital)	10410	Mecánica nos esportes
2710	Explosões e Balística		
2810	Acústica	5320	Mecánica dos solos (aplicações)
		5330	Mecánica das rochas
3000	CONTROLE E OTIMIZAÇÃO	5410	Efeitos aletro-magnéticos em mecánica o
3110	Projeto e Teoria de Sistemas Mecânicos	5420	Eleitos térmicos em mecânica dos sólido
3210	Sistemat de Controle Ötimo	5510	Estabilidade de estruturas
3220	Sistemas de Controle Adaptativo	5520	Comportamento anós a flamhanam
3220	Aplicações em Sistemas a Controle	5520	Estados limitas a saraas da colores
2210	Robôtica	5030	Assessed as a sector to de days
3310	Robolica	5540	Acomodação e acumulo de daro
3410	Utimização de Sistemas e Processos	5610	Mecanica da fratura
		5650	Tribologia
4000	MATERIAIS	5665	Atrito e desgaste
4110	Biomateriais	5710	Componentes de máquinas
4120	Materiais Metálicos	5720	Acoplamentos e juntas não soldadas
4130	Materiais Cerámicos	5800	Análise experimental de tensões
4140	Materiais Poliméricos	171552	Construction of the second second
4150	Materiais Coourgetos	6000	MECÂNICA DOS ELUIDOS
4210	Conformatio Mechalica	2010	Basingia
4210	Comprimerational Alexandra	6110	Hidefuller
4300	Cacacterização e Controle Microestrutural	0110	Hidrautica
4410	Comportamento Mecanico de Materiais	6210	Escoamento incompreensivel
4420	Comportamento Mec de Mat em Baixas Tempera-	6220	Escoamento compreensível
	turas	6230	Escoamento rarefeito
4430	Comportamento Mec. de Mat. em Altas Tempera-	6240	Escoamento em meios porosos
	Turas	6250	Magneto hidrodinâmico e plasmas
4440	Comportamento Mec. de Mat. sob Carregamento	6270	Escoamento multifásico
10000	Variavel	6310	Camadas limites com contorno sólido
4450	Comportunanto Mar, de Mat, Joh Corresemento	6320	Camadas limitas com contorno livra
4400	Diskeyes	6410	Economical Interno (linhor contin nous
45.00	Duriamico	6410	Elevamento interno (tubus, canais, coue
4500	wecanisho de Pratura	0420	coolemento interno toocais, orrusorel,
4600	Mecanica de Fratura	64.30	Escoamento com superficie livre
4710	Ensaios Destrutivos	6510	Estabilidade do escoamento
4720	Ensarios Não Destrutivos	6520	Turbulência
4800	Conosio	6530	Hidrodinámica de Veículos e estruturas
		6540	Aerodinâmica
5000	MECÂNICA DOS SÓLIDOS	6610	Mecánica dos fluidos aplicada a máquina
5010	E lauricidade lucear	6650	Lubrificação
5020	E-lasticidade pão-linear	6710	Transientes Hidráulinos
5020	Missonlastariefade	0710	Transmittes interactions
20.30	Viscoetaricidade	0010	recincas experimentais e visualização de l
5040	Plasticidade		manus millions
5050	V ISCO-prasticidade	7000	IEMMO-CIENCIAS
5060	Mecánica de materiais conjugados	7010	Termodinámica
5070	Mecánica de meios porosos	7110	Transporte de calor lconvecção monotás
5110	Reckogia	7120	Transporte de calor (convecção bifásica)
5210	Calbos, hastes e vigas	71.30	Transporte de calor (conducão)
5220	Membranas, placas e cascas	7140	Transporte de calor Iradiação e modos o
5230	Estruturas (geral)	7160	Transporte de calor lidispositivos a ilisten
6240	Ferrusturas lam contato com o colo	7310	Tarmomacônica da edidos
3240	Exercision Industry and a state when and	1210	Termoniecanica de solidos
5250	Earrands (200) emesas ou senti submersas)	7310	i ransporte de massa isem e com transpor
5260	Estruturas (moves)	7410	Compusião
5270	Estruturas lvasos e contenções	7420	Compustão em leito fluidizado
5310	Mecánica dos solos (básico)	7510	Acionadores e dispositivos de propulsão

000	GEOCIÉNCIAS
8010	"Micromeritics"
8110	Meios Porosos
8210	Geomecànica
8310	Mecánica dos Abalos sísmicos
8410	Hidrologia, Oceonografia, Meteorologia
000	ENERGIA E MEIO AMBIENTE
9110	Combustiveis fósseis
9120	Sistemas nucleares (fissão)
9125	Sistemas nucleares (fusão)
9130	Sistemas geotérmicos
9140	Sistemas Solares
9150	Sistemas eólicos
9100	Astemas de energia oceanica
9220	Distribuição de energia
9310	Mecànica de fluidos ambiental
9410	Mecánica de dispositivos de armazenamento de
	resíduos poluentes
0000	BIOCIENCIAS
10110	Biomecanica
10210	Penhilitraio
10410	Mecánica por esportes
10-11-0	
5320	Mecánica dos solos (aplicações)
5330	Mecanica das rochas
5410	Eteitos eletro-magneticos em mecanica dos solidos
5510	Estabilidade de estruturas
5520	Comportamento após a flambagem
5530	Estados limites e cargas de colapso
5540	Acomodação e acúmulo de daro
5610	Mecânica da fratura
5650	Tribologia
5665	Atrito e desgaste
5710	Componentes de máquinas
5800	Acopiamentos e juntas não soldadas Análise experimental de tensões
000	MECÂNICA DOS FLUIDOS
6010	Reologia
6110	Hidraulica
6210	Escoamento incompreensivel
6220	Escoamento compreensive
6240	Escoamento em meios porosos
6250	Magneto hidrodinámico e plasmas
6270	Escoamento multifásico
6310	Camadas limites com contorno sólido
6320	Camadas limites com contorno livre
6410	Escoamento interno (tubos, canais, couette)
5420	Escoumento interno (bocais, difusores,)
54,30	Escoamento com superficie sivre
6520	Turbuláncia
6530	Hidrodinámica de Velculos e estruturas pavais
6540	Aerodinâmica
5610	Mecánica dos fluidos aplicada a máguinas
6650	Lubrificação
6710	Transientes Hidráulicos
6810	Técnicas experimentais e visualização de escoamento
00	TERMO-CIÊNCIAS
7010	Termodinâmica
7110	Transporte de calor lconvecção monotásica)
7120	Transporte de calor (convecção bifásica)
7130	Transporte de calor (condução)
/140	Transporte de calor (radiação e modos combinados)
7210	Termomechnice de calor (dispositivos e sistemas)
7310	Transporte de massa (sem e com transporte de calor)
- or - 100	and the second sec

ANEXO B ÁREAS DE APLICAÇÃO

(Nota: Utilizando os códigos abaixo, especifique a Área de Aplicação de sua Especialidade. Por exemplo: Um especialista em Mecânica dos Fluídos (Família 6000 do Anexo A) atuando na área de Turbulência (6520) deverá escolher a Área de Aplicação 350 (Anexo B) se estiver aplicando seus conhecimentos em Propulsão).

- 010 Acústica e Controle de Ruído
- 020 Aplicações em Biociências
- 030 CAD
- 040 CAM
- 050 Componentes de Máguinas
- 060 Controle Ambiental
- 070 Controle de Qualidade
- 080 Criogenia
- 090 Engenharia e Física de Reatores
- 100 Engenharia de Petróleo
- 110 Engenharia Oceanográfica
- 120 Equipamentos de Processos
- 130 Equipamentos Industriais
- 140 Fontes Alternativas de energia
- 150 Forjamento
- 160 Fundição
- 170 Garantia da Qualidade
- 180 Indústria Têxtil e Tecnologia Correlatas
- 190 Inspeção e Certificação
- 200 Instalações Industriais
- 210 Instrumentação
- 220 Lubrificação Industrial
- 230 Mancais e Rolamentos
- 240 Máquinas Ferramentas
- 250 Máquinas de Fluxo
- 260 Máquinas Motrizes
- 270 Mecánica Fina
- 280 Metalurgia Geral e
- Beneficiamento de Minério
- 290 Metrologia

- 300 Mineração e Metalurgia Extrativa
- 310 Ótica
- 320 Pontes e Barragens
- 330 Processos de Fabricação (estampagem, extrução, trefilação)
- 340 Projeto de Estruturas
- 350 Propulsão
- 360 Prospecção + Perfuração
- 370 Servo-Mecanismos, Controle
- 380 Siderurgia
- 390 Sistemas Hidráulicos
- 400 Sistemas Pneumáticos
- 410 Soldagem
- 420 Solicitações Acidentais: (Efeito de Vento, Sismo, Explosão, Fogo, Inundação)
- 430 Tecnologia de Alimentos
- 440 Tecnologia Mineral
- 450 Transporte (excluindo veículos)
- 460 Transmissão de Energia
- 470 Tratamento Térmico e Termoquímica
- 480 Tubulações Industriais + Nucleares
- 490 Usinas Hidroelétricas
- 500 Usinas Termoelétricas
- 510 Vácuo
- 520 Vasos de Pressão, Trocadores de Calor, Equipamentos Dinâmicos Pesados
- 530 Veículos (Terrestres, Espaciais, Marítimos)

5° SIMPÓSIO BRASILEIRO SIBRAT SOBRE TUBULAÇÕES E VASOS DE PRESSÃO

mit further reduction to the dimensions of the Journal, and sent to the Executive Editor

OBJETIVO

Estimular o intercâmbio entre centros de pesquisa, universidades, indústrias e empresas de projeto visando a divulgação, aperfeiçoamento e desenvolvimento de novas técnicas nas áreas de tubulações e vasos de pressão.

PATROCINADORES SPONSORS

CNPq, FINEP UNESCO, OEA, ALALC

INSCRIÇÕES

Sócios da ABCM – US\$ 75,00 Não Sócios – US\$ 100,00

A inscrição dá direito aos anais do Simpósio e à participação no coquetel de abertura.

DATAS IMPORTANTES

- 30/04/88 Limite para envio dos resumos dos trabalhos.
- 31/08/88 Limite para a entrega do texto final dos trabalhos a serem submetidos ao Conselho Editorial.

ENDEREÇO PARA CORRESPONDÊNCIA MAILING ADDRESS

Secretaria do 5º SIBRAT Laboratório Nacional de Computação Científica Rua Lauro Müller, 455 22290 — Rio de Janeiro, RJ — Brasil Tel.: (021) 541-2132 — ramal 148

ORGANIZADORES ORGANIZERS

Laboratório Nacional de Computação Científica

Comitê de Tubulações e Vasos de Pressão da ABCM

SALVADOR, BAHIA, BRASIL 25 – 28/10/88

PROMOÇÃO DA / PROMOTED BY ASSOCIAÇÃO BRASILEIRA DE CIÊNCIAS MECÂNCAS ABCM

APOIO SUPPORT

Secretaria de Ciência e Tecnologia do Estado da Bahia Secretaria de Ciência e Tecnologia do Estado do Rio de Janeiro

