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RESUMO

Discute-se, de uma forma geral os métodos cm;nemm’s de Andlise Modal, nos dominios da
freqiiéncia e do tempo, com os mais recentes volvimentos. Sdo feitas consideragdes sobre
excitagdo, sensoramento, niimero efetivo de graus de liberdade e investigagdo de erro. Con-
clue-se da necessidade de investigagdes estatisticas nos diferentes métodos, devido a correl,

agdo
dos bem como do limite de erro. Finalmente apresenta-se aspectos de identificagdo
m investigagdo atenta em detalhe. o
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INTRODUCTION

Experimental modal analysis is well understood and is very common today. It-is sometimes
used when it is not really required, and there are cases when experimental modal analysis is
performed while other methods would be preferable. The knowledge of modal quantities is
needed, if

i) the inner structure of the dynamic behavior is required (decompositions),
ii) particular (generalized) degrees of freedom are requested (stability investigations),
iii) they are used for mathematical handling (e.g. modal transformation).

In 2all other cases the engineer is interested in the predictions of dynamic responses using a
mathematical model with known confidence within pre-given error limits,

The basic theory of experimental modal analysis can be found in [1-10]. The state of the art
of its theory and applications are described in [1,11-16] and elsewhere, [17] is an extensive
review. Another review paper [32] additionally contains practical rules.

The state of the art is not directly presented here (see e.g. [14,15]), but only some statements
will be made which seem to be important from the authors’ point of view. The main
characteristics of experimental modal analysis today can be described briefly as follows: the
various possible excitations are applied mostly in the search for good coherent output
quantities. It is known that multi-point excitations and "suitably" chosen force shapes
increase the confidence of estimates. An attempt is made to improve the accuracy of the
measurements by a large signal-to-noise ratio, and by repeated tests and applications of
(approximated, e.g. averaging) estimations. With regard to the measurement itself,
improvement may be noted with the application of suitably chosen pickups and high-quality
instrumentation. The selection of transducers depends on the task, frequency range etc., and
wether rotating parts have to be measured and many other conditions have to be taken into
account, as described, for instance, in (1] and elsewhere. The choice of pickup positions is
generally determined by prior knowledge. The choice of actuators and their locations is done
by prior knowledge and also by trial and error. Linearity checks are not always performed,
though they are absolutely necessary to avoid biased estimates. Boundary conditions and
their realizations are also important in this context and have to be investigated thoroughly,
If necessary their influence has, of course, to be modelied.

Data acquisition and signal processing can be a hard job. However, the effects of the various
manipulations in this context are known and can be assessed. In consequence, if the correct
approximations and remedies are chosen, the additional inaccuracy introduced must not
exceed a pre-given bound.

Free response measurements and dynamic responses due to a defined excitation are the
basis of identification. One first step may be the non-parametric estimation of impulse
response functions, frequency response furictions {connected with the Fourier transform)
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and transfer functions (with respect to the Laplace transform). Withregard to this, the theory
is well established [1,6]. Some improvements concerning error minimization have been
developed and will be discussed later. However, in general the estimates are presented
without any direct error statements.

Modal parameter estimation methods are well developed, They are defined in the time
domain as well as in the frequency domain, Measurements of dynamic responses, random
decrement functions and inverse FFT applied to frequency response fur..tions are provided
as starting data in the time domain. The classic second order equation of motionas well as
the state space formulation serve as a basis for this. Their solutions are taken directly
decomposed in modal quantities. Approximation of the equation of motion (see e.g. ARMA
models) as well as of its solutions is favored. For details see the available publications and
the reviews and surveys mentioned here. They may be complemented by [16,18,26,28,33].
Some of them are also tutorial and re-confirm statements (e.g. concerning excitation, local
and global procedures) which are well-known to the practising engineer and analyst and
which have already been published (sometimes the statements are -self-evident). Many
procedures exist, and some methods are compared and assessed mainly taking benchmarks.

A comparison may be useful in order to express a preference for one method for the
assistance of the non-expert, but this is hard to establish and one should ask whether such
a comparison is really necessary. If the appliers were able (0 give some error bounds
(estimates) of their results, they could decide by themselves whether their results are accurate
enough within the requirements. If'not, they have to consider why they failed and then
improve the estimates, In this context it should be mentioned that it can be difficult to
determine the effective number of degrees of freedom. This problem is also discussed later.

Recent developments can be obtained from the proceedings of national and international
conferences on experimental modal analysis, such as the annual seminars in Hannover [15],
IMAC, IFAC, the international seminar at Leuven and, for instance held at CALTECH,
Pasadena 1988. These papers have been assessed and serve as the basis of the paper in hand.
Comments are made on them by the authors.

TEST REQUIREMENTS

With regard to test requirements, less new essential work is noted. Only a few publications
deal with the optimization of measurement and excitation. The limited number of pickups
and actuators must be taken into account, and also the limited excitation energy available.
The types of sensors and actuators and their locations should be optimized.

Excitation. The trend is again toward multi-point excitation, because it provides higher
confidence in the estimates, allows one to estimate several columns of the frequency response
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matrix at the same time, and decreases the danger of omitting eigenmodes. Fewer problems
arise with unwanted phase shifts if the synchronous excitation is performed electronically
with electrodynamic exciters, than when electronic control is combined with mechanical (e.g.
hammer) or explosive excitation sources. Nowadays a renewed interest in harmonic excita-
tion as a stepped sine can be noted with non-constant frequency increments [26]. The
exciter-system interaction has also been rediscovered. It should be noted that it can be
difficult to measure the input forces with sufficient accuracy.

A good survey of excitation signals is presented in [22].

The appropriated exciation of a multi-degree of freedom system so that the system vibrates
in one pre-selected normal mode is theoretically well-defined. It uses the unknown modal
quantities. Papers which deal with the problem of how to find out the appropriate excitation
are, for example [44-50], which also include attempts to automatize a procedure of this kind.
As far as the authors are aware, no general convergent procedure exists.

Optimization of the excitation concerns the force shape, the number and placement of the
actuators [52] using Fisher’s information matrix under simplifying assumptions.

It should be noted that the optimum excitation of modes (modal quantities) is quite different
from the excitation needed for modelling critical load paths. In the latter, realistic loading
is favorable [1] (p. 186 with respect to the design loads).

Measurement, Multi-point measurements are necessary for mode shape estimation. In
European ground vibration testing for airplanes (= modal test at the ground) more than
200 pick-ups are used simultaneously. The Boeing company reports on 300 channels [53].
The difficulty here is calibration, and in consequence one has to look for easy but accurate
methods for doing this [54,55].

Holographic interferometry is not new, but it needs some improvement because of the
ambiguity in fringe interpretation. [36] presents a modulated fringe technique which removes
the fringe ambiguity by superposing a linear phase variation on the phase change produced
by the vibration displacements. As low cost transducers are used as spatially distributed
transducers, piezoelectric films are discussed [38,41). This can be a step towards measuring
field quantities instead of their discretized approximations.

With regard ro the sensor types, numbers and their postions, the first papers have appeared,
such as [56,35].

NON-PARAMETRIC IDENTIFICATION

Non-parametric identification refers to the impulse response functions (and step response
functions) in the time domain and to the frequency response functions in the frequency
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domain and the transfer functions in the s-domain (s - Laplacian variable).

Estimation of the Impulse Response Function, The determination of the impulse
response function is equivalent to the deconvolution, which is a numerically unstable process.
Although some direct estimation procedures for the estimation of impulse response func-
tions exist [57], in general it is done indirectly by inverse Fourier transformation (Laplace
transformation) using estimated frequency response functions (transfer functions). (Fre-
quency response functions need only matrix inversion instead of convolution.) The step

response function then follows from the unit impulse response function by single integration,
as is well known,

Estimation of the Frequency Response Function (Transfer Function). The estimation
of frequency response functions uses spectral analysis and takes into account output noise
as well as input noise [21]. Unbiased estimates are possible for multi-degree-of-freedom
models [33]. The coherence function serves to indicate the quality of the input/output
relationship and can be used for obtaining estimates with the pre-defined variances. The
reader can find an extensive error discussion in the older paper by H, Schmidt [51].

MODAL PARAMETER ESTIMATION

Experimenta] modal analysis today ought to be based on parameter estimation methods.

Effective Number of Degrees of Freedom. The methods discussed here need the
knowledge of the effective number of degrees of freedom hidden in the measured data. This
number defines the order of the model used in estimation. With regard to frequency domain
methods, various procedures are discussed in [58]. In [34] the fractional rational function of
the elements of the frequency response matrix is used in terms of orthogonal polynomials.
Curve fitting of the denominator by a polynomial with pre-given maximum power using LS
yields a squared error which serves as proof of the statistical hypothesis.

Deterministic methods are investigated in [39,42]. [39] starts with an LS problem and states
that adding a column to a matrix increases its largest singular value and decreases its smallest
singular value, thus making it closer to rank deficiency. In consequence, the "true”
parameters will converge to a small area bounding the true values, the remaining parameters
will be arbitrary (and will change in each step). Time domain methods will use the
generalized inverses or rank decomposition. The latter is discussed in [42]. Here, for
example, the (generalized) Hankel matrix is taken and the singular value decomposition
applied which extracts the eigenvalue of the system from measurements. Anather
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decomposition method applies the QR algorithm. The modal methods [59,60] should be
mentioned in this context, Many time domain methods make use of overspecification (that
means taking a larger number of degrees of freedom than contained in the measurements)
if required. This is necessary for determining the model order, and serves to reduce the bias
[43]. Concerning the order determination of ARMA models see [61].

A further development is the complex mode indication function (CMIF) [23]. It is based on
the frequency response matrix and is defined as the plot of the eigenvalues of the frequency
response matrix premultiplied by its Hermitian matrix (the result is equal to the normal
matrix). The plot is done on a log scale over the frequency axis. Thus it is a method for
detecting the effective number of modes within the measurements.

Time Domain Methods. A comparison of parameter estimation methods (LS, double LS,
total LS, correlagion fit and Smith LS - which includes a constant offser term in the basic
equation) is made in[25] by means of aircralt test data, and is applied to the impulse response
of a multi-degree of freedom model. The LS applied results in the polyreference method.
This investigation does not result in clear statements with respect to what methods in general
seems to be favorable.

In [26] the state space formulation is used to develop a frequency domain method. SVD is
applied to extract valid state variables. A combination of known methods, such as the
so-called Ibrahim Method with the random decrement method, can be found in [62]. A
probabilistic time domain identification method is presented in [30]. The identification of
distributed systems {continuously modelled) using the Rayleigh quotient and admissible
functions for discretization is described in [31]). In paper [32] the recursive prediction error
in the context of ARMAX models is compared with the maximum-likelihood estimation in
the context of state space modal parametrization by their characteristics. The optimal
experiment design is based on the information matrix. Simplifications can be achieved by
the determinant-optimal experiments for identifying modal frequencies and damping
parameters. Various practical rules are given in this paper.

Total LS methods are investigated from a statistical point of view in [40]. The advantage is
the practically unbiased estimates compared with the LS (pseudoinverse) solutions.

Frequency Domain Methods, It is agreed in the "modal community” that these methods
work well in a narrow frequency intervall (small effective number of degrees of freedom)
and that they are suitable (predestined) for the separation of highly coupled modes.

Some methods result in the root determination of polynomials. In [19] the numerical
conditioning is investigated by root sensitivity due to coefficient perturbation. A small
effective number of degrees of freedom (5-7, see [1]) can be handled.

The ARMA model in the Laplace domain is taken in [37]. Multiple reference frequency
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response measurements (emphasized due to multipoint excitation) serve for estimation. It
is a rational fraction formulation of orthogonal polynomials (Forsythe) which is able to
reduce ill-conditioning and decouple the normal matrix.

The complex mode indication function [23] is mentioned in the context of chapter 4.1. It is
based on the frequency response matrix, applies the SVD, and in a second stage procedure
(by applying a single degree of freedom modal parameter estimation algorithm and mass
matrix information) all modal parameters can be obtained.

The optimization of experimental design in order to obtain estimates of minimum variance
was started in [63]. It takes into account only the excitation and minimizes the Fisher’s
information matrix under the restriction of decoupling submatrices with respect to the
degree of freedom. It is continued essentially with regard to updating mathematical models
[64]).

ERROR INVESTIGATIONS

Experimental modal analysis results are, in general, erroneuous and incomplete. It is (or
should be) common practice that the (statistical) errors of the measurements on which the
modal procedure is based, including those of the frequency response functions if used, are
known (estimated). However, the estimates of modal quantities, in general, are not
presented with their uncertainties, although early exceptions do exist [65). For validation of
the estimates it is absolutely necessary to know these uncertainties in addition to global
checks, such as looking for residuals (prediction errors etc.).

One has to distinguish between deterministic (including bias coming from estimation) and
random errors on one hand, and on the other hand between the physical and mathematical
interpretation of the results within their error bounds (e.g. if an asymmetric mode is
estimated for a symmetrical system). The latter and deterministic errors due to testing
conditions can be handled by indicators (functionals) and (sometimes) by the errors in the
estimates. Statistical errors from the test set-up should be avoided or detected and corrected
computationally,

With regard to indicators, one should mention the orthogonality check of measured modes
(if not directly a part of the procedure as a dynamic constraint) [1]. The application of the
so-called model assurance criteria (little, big, multi MAC) is widespread. Here the cosine of
the angle between two estimated eigenvectors are checked (see [18] and the references cited
there). It is therefore a deterministic check (no correlation in the statistical meaning) and
the analogy to the coherence function is purely formal.

In [28] the unmodelled residual modes are investigated applying the inclusion principle in
the identification of distributed systems (continua). The inclusion principle exists in
identification as well as in modelling.
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The basic idea of paper [35] is very interesting. It deals with different sets of eigenmodes in
the stat space domain and investigates the influence of external forces and number of sensors
on the modal results,

Estimates of covariances and/or of variances can be obtained by the well-known methods,
mainly using weighted averaging. This is necessary in order to verify the estimates [27,29].
The application of parameter estimation methods presumes that the structure of the used
mathematical model is adequately valid. The structure of this linear model with a finite
number of degrees of freedom is predetermined by this number (see Chapt. 4.1) and by the
modeiling of the damping forces.

CONCLUDING REMARKS

The cited references with their subjects should indicate the trend in the field of experimental
modal analysis. However, it is very difficult to summarize it briefly. Time domain methods
are favorably discussed, benchmarks seem to be popular, and error investigations (in the
sense of indication functions) are widespread. Papers which summarize systematically the
experience made with different methods and applied to various structures are rare.

In the experience of the authors it is necessary to present modal estimates with their error
estimates. Deterministic errors have to be corrected mathematically (il detected) and
random errors should be approximately determined. The assessment of modal estimates
with respect to their confidence is indispensable for application. Statistical investigation of
the various method seem to be needed in this context, because (statistical) correlations of
the parameters can involve inherent error bounds which cannot be reduced.

Some problems which should receive more detailed attention within modal identification in
future are

- direct estimation of impulse response functions

+ test optimization in general

+ realization and optimization of multiple transient excitation

* inclusion of knowledge from the prior mathematical model

+ real time identification for control purposes

* systematic approaches for applying the estimated modal quantities.
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INTRODUCTION

In structural design optimization some problems have design variables which ¢an be
subdivided into two-very distinct groups. The case of variables describing cross sectional
sizes and variables describing the overall geometry of the structure is a typical example. In
these cases it is matural 1o decompose the problem into two subproblems. A lower level
problem is defined in which one group of variables i§ held fixed while the objective function
is minimized with respect to the other group of variables. In the higher level problem the
optimal values of the group of variables held fixed in the lower level problem are sought in
order to obtain a local minimum of the objective function with respect to all variables. The
advantages of this decomposition are multiple. The dimension of each problem is decreased,
the nature of the variables is more uniform so that the curvatures of the Lagrangian function
are also more uniform, and the complexity of at ieast one of the problems can be dramatically
reduced,

On the other hand this decomposition has to be dealt with due care since in general the
higher level problem is not continuously differentiable. As the solution can be a point of
nondifferentiability the usual optimization algorithms, designed for smooth functions, may
not converge. Difficulties attributable to this problem can be found in the literature [1].

A systematic procedure is proposed to treat the above dcéomposition. It is shown that the
gradient of the objective function of the higher level problem can be computed from the
Khun-Tucker pair of the lower level problem. The procedure is then applied to the
optimization of reinforced concrete columns of general shape. In this example the
decomposition scheme is particularly effective because the lower level problem is a linear
programming problem involving the majority of the variables. The resulting higher level
problem is nondifferentiable and a reduced subgradient algorithm is proposed for its
solution. Finally examples are presented to demonstrate the numerical efficiency of the
decomposition scheme. '

PROBLEM FORMULATION

Consider the problem (P) below:

(P)  Minimize r" i Firs)

subjectto: A (=0, i=1,.,nk
& (rs)=0, j=1,..,ng

where r € R™ and s € R™,
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This problem can be solved by first fixing r = 7 and minimizing the objective function with
respect to s:

(P1)  Minimize F(r,s)

subjectto:  g(F,5) < 0
Let s* be the solution to problem (P1). We can then define a new objective function:
fir) = Fr, s%) (1)
Now the solution to problem (P) can be found by solving:

(P2) Mlmr:mzl: fn

subjectto:  A(r) <0
We call (P1) the lower level problem and (P2) the higher level problem. As shown below

the gradient of the new objective function Vf is readily obtained from the Lagrange
multipliers of (P1).

Computation of Vf. Consider the following modification of problem (P1):

(P1')  Minimize F(r,s)
L§
subjectto:  r=r=0
grs)=0
Obviously (P1') is equivalent to (P1). Through the application of the sensivity theorem [2]
it can be shown that the sought gradient Vf is the negative of the Lagrange multipliers

associated with the equality constraints of (P1'). Applying the Khun-Tucker first order
conditions [2] to (P1')} we get;

V.F 1 V.2
v, F *[u]’“ ] Ll e

where 4 € R™, and 4 € R™ are the Lagrange multipliers of (P1'). The last row gives:
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V,F+V,g-u=0 3
this shows that u is the vector of Lagrange multipliers of the original problem (P1). The
first row yields:

Vf==1=V . F+V.g-u (4)

It can be concluded therefore that the gradient Vf can be computed with negligible
additional numerical effort once (P1) is solved.

OPTIMIZATION OF CONCRETE COLUMNS

The design of reinforced concrete columns of general shape is frequently encountered in
the structural engineering practice. This problem can be formulated as a nonlinear
programming problem [3]. Consider the cross section of Figure 1. The concrete geometry is
defined by the coordinates of its NVC vertices. Also indicated are locations of the NTS
possible reinforcing bars, each of area A,. The loading is specified by the three factored
stress resultants Ngy4, Mg,4 and Mg, Compression and moments causing compression of
the first quadrant are considered positive. Let the strain at any point be given by:

e=e,+y g txp, (5)
with corresponding resisting stress resultants given by:

Neg=[[oda; Mpy=[[oyda; Mpy=[[ axas (6)
The problem is which of the possible NTS bar locations should be actually filled with bars

so that the section can resist the external loading with the minimum amount of steel. In [3]
this problem is formulated as follows:

NTS
(PC)  Minimize > Aq
Agl— AgNTS i=1
Ea Py Py
subject to: @ Mpig= Mgy =0

En Ny =&y Npaso
€5y Nra—En Mpia < 0
£ —35=0, k=1.,NC
—&;—10s0, j=1,.,NTS
4t t3 8, —14=0
0sA4;sA4,, =1.NIS
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where:

(Mgl = m[|Mw|. l.MM”' ie., 1-axis corresponds to that with the largest acting
bending moment, while 2-axis is the other axis.
€52 = Ms1a/Nsa

a = Msaa/Ms1a

v = sign (Nsa)

Em = sign (Msw)

Eck = concrete deformation at vertex k (jn °/«)
&y = steel deformation at location j (in °/=)

Eemae = Maximum compression strain in the concrete (in °/=)
£omin = minimum compression strain in the concrete (in °/=)

Figure 1. Cross section definition

The first three constraints enforce strength while the next three constraints represent code

provisions regarding limiting concrete and stecl deformations according to NB-1/78 [4]
which are similar to the CEB-Model Code [5]. As done in [3] variables As; are considered



continuous to simplify the problem,

Decomposition Scheme. Using the procedure described above we can decompose this
problem into two subproblems. Given a deformation configuration specified by the values
Eg, Pr, Py, the lower level problem is:

(P1C) Minimize Ag
Agy— ASNTS i=1

subject to: a Mpyy+Mp,=0
EH'N“-iu'NMsl)
EH'CQ'NM_EM'MWSO
o‘:‘ysA’, i= l,...,m

and letting Ag; be the solution to (P1C) we can define the new objective function f as:

NTS
[CunPo®y) = D, Ay ™

i=1
The higher level problem is:

(P2C) Minimize f
% Pr Py

subject to: e,—35<0, k=1,.,NVC
-cs-msﬂ_ Jj =1, ,NTS
4'8‘n+3"ﬂ—1450

The proposed decomposition is actually a generalization of the usual procedure to design
rectangular columns subjected to uniaxial bending whereby one fixes the neutral axis and
computes the required top and bottom reinforcement applying the equilibrium equations.

The Lower Level Problem, The most significant advantage of the proposed decomposition
scheme results from the fact that the lower level problem (P1C) is a linear programming
problem. In fact, if the deformation is held fixed the resultant of concrete stresses as well as

the steel stresses at bar locations are all fixed. As a consequence the resisting stress resultants



Design Optimization Problems 313

are linear functions of the steel areas:

Npg = Ngg + Z (0g) * Ag;

Mgy = Moy + Z(og " y) - Agi (8)

where Neg, My, and Mcyq are the concrete stress resultants. These stress resultants as
well as their derivatives with respect to e, ¢, and @, are readily computed by the
procedure of reference [6]. Notice also that (P1C) usually contains the large majority of the
design variables.

In applying (4) to compute the gradient Vf we observe that the first term vanishes and that
the only nonzero columns of the gradients in the second term are those associated with the
first three constraints of (P1C). The algorithm of reference [7] is used to solve problem

(P1C). The Lagrange multipliers are naturally computed inside the method which has the
advantage of using the initial point to decrease the number of iterations,

The Higher Level Problem. Problem (P2C) has only three design variables and all its
constraints are linear. It would have been a simple problem to solve if it were not for the
fact that f is not continuously differentiable. This happens because the active constraint set
of problem (PIC) changes depending on the deformations producing thereby sudden
changes of the gradient. Unfortunately this generally happens exactly at the solution
rendering the usual optimization algorithms useless.

An important point to keep in mind while one develops an algorithm to handle (P2C) is that
one generally knows from the begining the active set at the solution, In fact, this generally
amounts to knowing the mostly strained concrete vertex. This can be determined by
inspection but can be more reliably done through an initial strength analysis of the section
with all bar Jocations filled. This not only gives a good starting point for the deformation
variables but also indicates if the problem is feasible. The next few sections present an
algorithm to handle (P2C).

AN ALGORITHM TO SOLVE PROBLEM (P2C)

Only a very brief introduction to the basic tools of nondifferentiable optimization and the
schematic algorithm to solve (P2C) are given below. Detailed information can be found in
[8-10].

Basic Tools. We shall start the discution with the unconstrained minimization of a
piecewise continuously differentiable convex function f defined in R". In this case f has
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continuous gradients almost everywhere. Vector g € R” is a subgradient of fat x € R" if:
fOzfx)+<gz~x>, VYzeR" 9)

where <-,-> represents scalar products. This can be geometrically interpreted in Figure
2 as a slope that falls below the graph of f.

siope g

L

Figure 2. The subgradient

We will call the set of all subgradients of f at x the subdifferential of f at x denoted by
af (x). The set af (x) is closed and convex and if the function is continuously differentiable
at x it reduces to the usual gradient. It represents the complete behavior of f at x and it
can be shown that x* minimizes f if 0 € 3f (x").

Assuming that we knew how to compute df(x) the probability of it not being only the
gradient of f is zero. As a consequence if we use the steepest descent algorithm and we get
very close to a point of nondifferentiability it may be impossible to numerically find a usable
nonzero move in the direction — Vf. In which case our method would fail or converge to
the wrong solution. This suggest that we need information on f not onlyat x but alsoina
neighborhood of x. Convex analysis provides an instrument to solve this problem. Given an
e = 0 we define the e-subdifferential as:

3,f(x) = {g | f@) 2f(x)+<gz-—x>—e¢, Vz} (10)

To be consistent we must also define e-solutions. Point x" is an e-solution to the
minimization of f if:
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[ 2fE) -2, Ve (11)

Now, let d = — Nr(ef(x)), where Nr(@f(x)) is the vector with minimum norm in
3 f (x). It can be shown that d is a kind of steepest descent direction for f at x. Also, if
d =0 then x isan e-solution.

The question that arises in the numerical treatment of these problems is that it is generally
impossible to compute the whole set 3. f (x). What is available in practice is only an element
g € df (x) at every point x. In the so-called "bundle-type” algorithms 3 f (x) is replaced by
an inner approximating politope G:(x) which is constructed as we proceed with the
algorithm. Given xy, ..,x; with their corresponding subgradients g; € of (x),i = 1, ..., &,
then:

k k k
G ={Y g hz0, > A=1, > 4 -a@xg) se (12)
i=1 =1 i=1
where:
@ (6,x,8) = () = () — <gox — x> (13)

Notice that « (x,x;, g/) is the error at x when [ is linearized at x; with the subgradient
g It can be shown that Ge (x) € 3. f (x).

Reduced Subgradient Algorithm, Let us return to the higher level problem (P2C). It can
be writen as:

Minimize i
X

subject to; A-xsbh
with x ER", A €R™™" b €R™ and n = 3. We can further rewrite the problem abave
as:

(P2C")  Minimize  f
xy

subject to: A-x+y=A-{;}=b

yz0
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where y ER™ A € R™ ™M with A = |4 1,,].
The reduced subgradient algorithm of [11] with a slight modification is used to solve (P2C').
First let us decompose A into [B, N], where B € R™"™ nonsingular, N € R™"". Let us

also decompose (x y) into (xp yp Xy yN) With (xp yp) ER™ and (xy yy) ER™
Matrix B is called a basis and (xg yg) is the vector of basic variables. The vecior

(xx yN) is the vector of nonbasic variables with yy € RV,

We can use the m equality constraints of (P2C") basic variables as functions of the n

[;ﬂzs“-(b-!v- ‘;:‘) (14)

Therefore we can write [ as a function of the nonbasic variables only: f(x) = f (e yiv)- We
can also rewrite (P2C') as follows:

(P2C)  Minimize foonyn
IN-FN

subject to: o
BN YN) 20

Pr@lm(ﬁ&)haﬂ&ﬂwm@mdproﬂmdnuﬂhmminmohhembaﬁc
variables only.

The central idea of the reduced subgradient method is to choose as basic variables those
which strictly satisfy their bound constraints. Hence the problem of finding a usable feasible
direction for (P2C) need only consider the bounds yy = 0. Keeping this in mind it can be

shown that the Kuhn-Tucker type conditions for (f’ZC) without the bound constraints on
¥a are [10,12):

" let £ 20 and (.r;,y;‘) be feasible. Then (x},yy) is an e-solution if and only if there
exist scalars £, and v, { = 1, __ nyN, such that:

i) 0€a, fehyi) - { "}

i) f"f‘)’?ﬁs‘_‘n
=1

Therefore, if we are at & point (¥,y) and we want to check if it is in fact an e-solution all
we need to do is to find the vector of minimum norm of the set on the right-hand side of



Design Optimization Problems 7

condition (i) above, subjected to condition (ii) as a constraint. Using the bundle
approximation and manipulating the problem to remove ey, as in [12], we get:

k
1 P 2
(D) Minimize 'i“E‘l:SI_{E}”

;[ i=1

\"1,..., VWH

k
subject to: Z =1
i=1

k N
Z A a - Exg) ‘*E vty Se
i=1 =

Az0, v=z0

where the reduced gradient E =gv=B""' N7 - gg Let:

0 x ~
d~=[‘,-}-21:-gf (15)

i=1
dy is called the reduced direction of search and is the direction of movement of the nonbasic
variables. The corresponding direction of movement of the basic variables is
dg = — BN dy. Given dg and dy we can construct d, the direction of movement
of the variables (x,y) of (F2C').

Let 1 be the Lagrange multiplier associated with the second constraint of problem (D). It
can be shown that [10,12]:

i} if d =0 then X isan e-solution
i} if 4 # 0 then d is a feasible direction for (P2C")
iii) if 3f(X¥) S Gg(X), then the directional derivative f((%,y),d) < — | |dn| | —u - ¢

The Line Search. We will be searching along 4. First, we must compute the maximum
value of the step length r, such that the bound constraints are not violated:
I may = Min ——ild <0 (16)
max { 2 d“+1 n+l ] T]-
where T is an arbitrarily large value. We now proceed with the main philosophy of the
bundle-type methods. If G¢(X) is a sufficiently good approximation to 3. f(x) then,
loosely speaking, we will be able to find a new point along d where <g,d> is "large
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enough” and f is "small enough”. If, on the other hand, G¢ (X ) is a bad approximation the
line search will not succeed in which case we will stay at the same point but we will enrich
the bundle with a new subgradient (null step).

We give next a summary of the line search requirements according to [10]: let
D<my<my<], 0<m3 and my +mj < ], finda stepsize 1 € [0, fp,y] such that ar least
one of theset of conditions below is satisfied:
i) [Maximum step]: =1, and

fxy)+t-dysf(xy)+my-t-a
ii) [Seriousstep]: (€]0, 1, [ and

<g.d> Zmll-a

JUEFY+ e d)Sf(RF)+my t-a
iif) [Null step]: t€]0, tp. [ and

<g,d> zm;-a

Flxy)=f(xy)+r1 d)+ <g d>s¢e-my
with a=-—||dN||z-u-a,whichisnnmemlimateo!'lhcdirecdomldﬁivntiveu
indicated in observation (iii) about problem (ID), above,

In the actual implementation we start by bracketing the solution using the procedure in [13],
The first test point is obtained by allowing a maximum change in strain at any vertex between
0.005 and 0.015 %. Infeasible points of (P1C) are treated as having large values of f. The
algorithm of [14] is used with the slight modification of forcing, at least, one feasible iteration.

The Algorithm, 0) INTTIALIZATION: Given x' a feasible point, compute g; € 3f (;l)
put it in the bundle and select a nondegenerate basis B.’

1) DELETION OF SUBGRADIENTS: delete all subgradients in the bundle with
a>2'm_-e
3
2) SEARCH DIRECTION: solve problem (D) and find dy and d.
3) STOPPING TEST: If | |dy|| s TOL then stop.
4) LINE SEARCH: perform the line search procedure.

5) UPDAT[NG:&ddthemsuByadicnttothebundl& If it is a null step compute the new
a and go to (2). Otherwise recompute all a's.

6) BASIS CHANGE: if all basic variables strictly satisfy their bounds go to (1), otherwise
select a new basis and go to (1).
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Observe that aswe have a very good idea of the active set from the begining the basis change
in step (6) will rarely be performed. Problem (D) in step (2) is solved using the algorithm
of [15].

EXAMPLES

Two examples are given below to demonstrate the numerical efficiency of the proposed
decomposition scheme.

Example 1. Consider the cross section shown in Figure 3, where the diameter of all bars
is 16mm. Bar locations 1 to 6 are mandatory. The design of Figure 3b was obtained after
five iterations of the higher level problem and took 41% of the solution time of the procedure
in [3]. The final design is identical in both cases. The values of the parameters used are:

my=02,my=01,m3=06¢6=25-10"% T0L=25-10""

ﬂ‘mgi fﬁ-mgh (CA-50B)

Nxd=280 tf ; Mad=16.8f-m ; Myd=22 4H.m

(a) (b)

Figure 3. Cross section of example 1

Example 2. In the cross section shown in Figure 4a the diameter of all bars is 16mm and
the concrete cover to the center of all bars is 3em. Locations 1 to 8 are mandatory, The final
steel arrangement of Figure 4b was obtained aftersiz iterations of the higher level problem.



The total processing time was slightly less than 50% of the execution time of the procedure
in [3]. It interesting Lo point out that all nonmandatory bars are under compression.

y
o S Hy fck=130kgf Ffyk=5000kgf
- 2
=0c cm cm
1 Nxd=450tf Mxd=70tf-m Myd=0
——-é— 2
70cm M
x
30cm e (o) (b
| |
30cm 70cm U Soen !
Figure 4. Cross section of example 2
CONCLUSIONS

Some optimization problems have two distinct classes of design variables. A procedure is
proposed to decompose such problems into two subproblems, In the lower level problem
one group of variables is held fixed while the objective function is minimized with respect
to the other group. A new objective function can thus be defined which depends only on the
variables held fixed. The higher level problem minimizes this new objective function
subjected to those constraints of the original problem involving its variables only. The
gradient of the new objective function is readily computed once the lower level problem is
solved.

This decomposition scheme is particularly effective in cases where the lower level problem
is a linear programming problem involving most of the design variaables. One such case, the
optimization of concrete columns of general shape, is treated in detail. A reduced
subgradient algorithm is used to solve the higher level problem which is of nonsmooth
optimization. For the example presented the solution time of the decomposed problem is
less than half of the original undecomposed problem.
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RESUMO

E apresentado um método sistemdtico de obtengdo do modelo geométrico direto de um robd
manipulador, utilizando rotinas computacionais especiais. Este método pode ser usado na
cone e simulagio de robds manipuladores que podem ter juntas prismdticas e/ou de
rotagdo. O modelo geométrico inverso relaciona as coordenadas generalizadas em fungdo das
coordenadas operacionais do robé manipulador. O méiodo apreseritado permite obter as
expressdes analiticas que expritnem o modelo geométrico inverso a r das matrizes de
passagem homogéneas elementares do robé manipulador. As expressoes obtidas podem ser
facilmente incluldas em um sistema de comando em tempo real.
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ABSTRACT

A systematic method to obtain analytically the ‘gmm’c model of robot manipulator, u-zl:!ﬁ
special computational routines, is presented. This method can be used in the conception
simulation of robots manipulators, which can have ﬂm and/or rotational joints, The
inverse geometric model relates the. ; ;i with respect to al coor-
dinates of the robot manipulator. An analytical method is presented to obtain the equations that
describe the inverse geometric model using homogeneous matrices of the robot manipulator.
These equations may be included in a system of real time control.
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INTRODUCAO

O modelo geométrico direto de um robd manipulador € a fungio que permite obter a
posigio e a orientagfio do efetuador em fungo da configuragio do rob6 manipulador [6,7].

A situacio do efetvador isto &, a posigio e a orientagdo, é definida por m coordenadas
Operacionais xy, X, .., Xpy-

A configura¢io do robdé manipulador € definida por n coordenadas generalizadas
91 92> -1 Gn

Se {.r} representa a matriz das coordenadas operacionais e [q} a matriz das coordenadas
generalizadas, 0 modelo geométrico direto do robd manipulador ¢ dado por:

(= @) 1)

onde a fungio m ¢ geralmente nio linear.

Pode-se apresentar o problema do modelo geométrico inverso de um robd manipulador da
seguinte forma [S]: quais sdo as coordenadas generalizadas {q} que correspondem 2s
conrdenadas operacionais [ } dadas? Assim o problema consiste no calculo de uma fungio

{f} , se ela existe, tal que:

(a} =} @

A inversdo da fungio -L(‘} € um problema complexo pois ela nfo € linear. Se sdo conhecidas
as coordenadas generalizadas {q'} correspondentes as coerdenadas operacionais [x'}
impostas, ¢ a malriz jacobiana possui as condigbes de regularidade suficientes " noponm
{q ]- pelo teorema das fungdes implicitas pode-se afirmar a existéncia da inversa de
vizinhanga de {x . Existe af uma solugdo local, Por analogia com as solugdes dos sistemas
lineares, pode-se que, na majoria dos casos e ndo levando em consideragio as restrigbes
fisicas, tem-se 0 seguinte resultado global [2]: - ndo existe solugiio quando o nimero de graus
de liberdade n do robd manipulador & inferior ao ndmero de graus de liberdade », da
tarefa a realizar; existe uma solugdio ou um nimero finito de solugdes quando n € iguala
n, ; existe uma infinidade de solugbes quando n & maior que n, . Neste caso, o manipulador
¢ dito redundante.

Um dos objetivos desse trabaiho & apresentar um método analitico de obtencido do modelo
geométrico inverso, lembrando que este método nflo leva em consideragio: a trajetéria a
ser descrita pelo efetuador; as restrigdes fisicas, se]a devido As dimensdes dos corpos ou
limitaghes dos movimentos das articulagbes; consumo minimo de energia; tempo minimo
de percurso e outros,
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Para apresentagiio do método serd utilizado o robé manipulador UFU6R86 como exemplo,
facilitando a visualizagdo dos procedimentos utilizados.

DEFINICOES CINEMATICAS

Sejam dois sistemas de coordenadas ortogonais R; e R; e um ponto Q mostrados na

Figura 1.

Ze (Rz)
Q
Y2
£
(Ry) 02
- Y1
O X2

X1

Figura 1, Transformacio de coordenadas

A mudanga de coordenadas do ponto ' pode ser escrita:

{r} = {P} + B1 {=o} ®
¢ a mudanga de referencial dos componentes de um vetor pode ser escrita:

i} = 1R o] @
onde {x,} ¢ [r;} st0ascoordenadas doponte Q no referencial R; ¢ Rj respectivamen-

te, {P o as coordenadas do ponto O, no referencial Ry, [R] a matriz de passagem clés-
sica do sistema R, ao sistema R;, {"1} e [vz} sfio as matrizes dos componentes de um
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vetor v no referencial Ry e R; respectivamente,

Os componentes homogéneos de um vetor sdo os trés elementos clissicos associados ao va-
lor zero e as coordenadas de um ponto sdo 0s quatro escalares obtidos associando o valor
1 as trés coordenadas cléssicas. Portanto, as Equagdes (3) e (4) podem ser escritas:

il R‘P-"z
£ - |
. ()

=[5 B

A matriz quadrada que aparece nas duas expressoes (5) é denominada matriz de passagem
homogénea do referencial R, para o referencial R; e que sera representada por [7T] néo
ortogonal,

R . P

=\« s ()
0.1

As coordenadas operacionais do efetuador sdo as quantidades escalares que permitem
definir sua posigdo e sua orientaciio,

Para se determinar a situagio do efetuador deve-se considerar dois referenciais ortonormais,
um ligado 2 base do robd manipulador (Ry) e outro ligado ao seu érgio terminal (R, ).

Seja {x,l a matriz cujos elementos definem a posigdo da origem O, do referencial
Rp4+q em relagio ao referencial Ry e |xgl a matriz que define a orientagio desse
referencial R,.; em relagio ao mesmo referencial Rp. A matriz {.:} cujos elementos
definem a situagdo do referencial R, 41, fixo ao efetuador em relagio ao referencial Ry,
fixo & base, ¢ dada por:

(= {fﬁ} ™

A posigio do efetuador € definida pela posicio do ponto fixo O, do referencial R,
com relagio ao referencial Ry Esta posicio pode ser definida através de coordenadas
cartesianas, cilindricas ou esféricas de acordo com a natureza da manipulacio a efetuar,
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A orientagio do referencial R, i, ligado ao efetuador do robé manipulador, com relagio
ao referencial Ry pode seg definida utilizando os pariimetros de Euler (p, g, 7, 5), os pari-
metros de rotagio finita (u, v, w), 0s cosenos diretores entre outros.

A partir da defini¢io da matriz de passagem homogénea, pode-s¢ escrever a matriz de
passagem homogénea [T »44] do referencial Ry ao referencial R4,

“ B
(Tonsl = [5“'{,—” - —"Ll-ﬂ] ®

onde, Ry ,41] €a matriz passagem cléssica do referencial R,,, ao referencial R; e que
permite definir a orientagio do referencial R,,; em relagho ao referencial Ry.
{Pu’”q.l} ¢ a matriz dos componentes do ponto O, no referencial R, ., em relagio ao
referencial R; . Deve-se observar que as matrizes de passagens homogéneas conservam as
mesmas propriedades de multiplicidade das matrizes de passagem cldssicas,

Pode-se dizer que, qualquer que seja a escolha thsmordcn&sopmadonais.omodelo
geométrico direto se deduz do célculo dos elementos ¢; (ij = 1,23,4) da matriz de passa-
gem homogénea [Tg n44]

As relagdes entre alguns parimetros que definem a situagdo do efetuador ¢ os componentes
da matriz de passagem homogénea podem ser encontradas em (1} e [2].

O robd manipulador & constituido de n+1 ligacdes C; (i = 0,1, .., n), teoricamente rigidos,
articulados entre si, através de juntas L;(i = 1,2, .., n).

Na construgio de robds manipuladores sio utilizadas as juntas de rotagdo (ou rotdides) e

as juntas de translacdo (ou prisméticas) que permitem, respectivamente, um movimento de
rotagio ou um de translagio do corpo C; em relagio ao seu antecedente C;_,. Assim, todo
corpo C; possui um grau de liberdade em relagio ao seu antecedente C;_;.

A primeira ligagio C; da cadeia & articulado sobre uma base Cj, fixa ou mével. A ltima
ligagio C, da cadeia € o efetuador (Figura 2).

Pode-se definir o coeficiente bindrio o; (i = 0,1,2, .., n) que é nulo se C; gira em relagio
a C;-y em torno do eixo da ligagio L; e igualalse C; translada em relagio a2 C;-; ao
longo do eixo da ligagio L. O coeficiente bindrio conjugado serd 3; = 1 ~ o;.

Para a sistematizagio do cdlculo do modelo geométrico direto, define-se um método
iterativo para ligar cada ligagio C; um referencial ortonormal R, a partir do referencial
R, ligado & base do robd manipulador. A Gnica restricio que € feita ao referencial R, €
que o vetor unitério z; esteja na direglio do eixo da primeira junta.
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"/ ._
o)
|Ligoedo) JUNTA L1
\ Co 4
—
Figura 2. Cadeia cinemética do robd manipulador

O método consta de:

© O,,, &aintersecio da perpendicular comum aos eixos das juntas L e L, situado
sobre o eixo da junta L‘ﬂ.. Se o0s eixos das duas juntas sio paralelos ou coincidentes .
pode-se escolher arbitrariamente uma perpendicular comum; o ponto 0,,, fica assim
determinado. Neste caso, consideragbes de simetria ou de simplicidade permitem uma
escolha racional.

" Eq € um vetor unitério desta perpendicular comum orientado do eixo da junta ;[.f na
direcdo da ligagio L .Se os eixos dessas duas juntas sio concorrentes ou coincidentes,

a orientagio € arbitrdria. Entretanto, consideragdes de simetria ou simplicidade
permitem uma escolha racional.

é um vetor unitério do eixo da junta LHI’

o edeﬁnidopeloprodmovetorinlpociﬁvomtreg‘ﬂ ez,

& = orientado arbitrariamente.

A posiglio e a orientagdo da ligacio C; em relagiio d ligagio C;; sdo definidaspelos quatro
parimetros de DENAVIT-HARTENBERG 3] (ai, @, 6;,r;) como mostrado na Figura 3.

Tendo em corita a orientagio definida para x;.4, @; € sempre positivo ou nulo. Os ngulos
6; e a; sio definidos positivos, aplicando-se a regra da méo direita.

Para este método iterativo € necessdrio definir uma diregio L,4;, sem que exista a junta
correspondente, Esta dire¢io deve ser tal que o ponto Oy, esteja situado no centro
geométrico do efetuador e 08 vELOres X, 41, ¥u+1 € 2,43 depreferéncia segundo as dire¢des
de simetria geométrica do mesmo.
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de simerria geométrica do mesmo.

&

e X141

X
Figura 3. Parimetros de Denavit-Hartenberg

Deve-se ligar um segundo referencial Ry a ligagio Cp conforme definido anteriormente.
Uma escolha adequada de R, permite simplificar as operagdes de transformacgido entre

RO € Rl‘

A situagio da ligagio C; relagio ao corpo C;_y €& definida pela matriz de passagem
homogénea [ ;4] do referencial R; (ligado ao corpo C;_,) ao referencial Ry, (ligado 2
ligacio C;). Em fungio dos pardmetros de Denavit-Hartenberg a,, a;, 8;, #;, tem-se:

€088, —senB, - cosa; senb-sena; - a;cosb;
sen6;  cosh, - cosa; —cosb; sena, ~ a send,
[T iml=]| © sen a; cos & # (&)

0 0 0 ) 1
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Conforme as defini¢des dadas, pode-se concluir que a i-ésima coordenada generalizada g;
se identifica com 6; se a junta L; € de rotagio em tornode z; oucom r; se L; éuma de
junta de translagiio ao longo de z; . Conseqiieniemente,

9; = 0;8; + o;r; (10)

Do ponto de vista prético, pode-se representar os referenciais ligados as diferentes ligagdes
robd manipulador para uma configuragio genérica. Entretanto, deve-se procurar represen-
td-lo numa configuragio particular a mais simples possivel, onde os parimetros de
Denavit-Hartenberg sdo mais fdceis de visualizar.

MODELO GEOMETRICO DIRETO

Pode-se verificar que a matriz [T} ;4,] € fungdo da i-ésima coordenada generalizada g;,
portanto [T; ;44) = [T} ;41 (q;)] lembrando que [T, ;] € constante com o tempo quando
Cp € fixo. Assim, pode-se escrever:

[To,n+1@1 92 qa)] = [To,4) " [Ty 20g]- - [Ty n41(gs)] (11

O célculo dos elementos f; da matriz de passagem homogénea [T ,4] permite

determinar o modelo geométrico direto do robd manipulador em fungio das coordenadas
operacionais escolhidas.

A sistematizagdo do célculo do modelo geométrico direto, permite a utilizaglio de rotinas
computacionais para sua determinagio, evitando erros nas expressdes analiticas ¢ erros
numéricos de cdlculo. Através dessa rotina computacional conversacional onde o usudrio
define os dados literais dos pardmetros de Denavit-Hartenberg, o nimero de GD.L. e o
tipo de ligagio, obtém-se as expressdes analiticas dos elementos da matriz de passagem
homogénea [Ty ,41], bem como das matrizes de passagem homogéneas intermedidrias. O

fluxograma ¢ apresentado na Figura 4.

Para exemplificar o mérodo € apresentado o célculo da matriz de passagem homogénea
|To.n+1] para o robd manipulador UFU6R86 representado numa posigio particular simples
conforme a Figura 5.

A Figura 6 mostra os referenciais ligados as diferentes ligagdes do UFU6R86 ¢ a Tabela 1
apresenta os valores dos pardmetros de Denavit-Hartenberg,
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1

Figura 4. Fluxograma da rotina computacional para obtengiio analitica do modelo geomé-
trico direto
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j a\_ 7 = Xy
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Q2 / xr
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Figura 5. Robd manipulador UFU 6R86 e suas coordenadas generalizadas

Xa Xe

Xe

Figura 6. Referenciais ligados as diferentes ligagbes do robd manipulador UFU 6R86

Fazendo ¢ = cos 8;,s; = sen 6}, c;y; = cos(B; + 8)) € 5;4; = sen(8; + 8)) e utilizando a ro-
tina computacional obtém-se elementos ¢; (i = 1,2,3 e j = 1,2,3,4) da matriz de passagem
homogénea [Ty;].
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Tabela 1. Valores dos pardmetros de Denavit-Hartenberg para o rob8 manipulador UFU

6R86
i

Farken. 0 1 2 3 4 5
a} - 0 0 0 0 0
@, 0 n/2 1] /2 | =n/2| w2 n/2
a, 0 0 a, 0 0 0 0
ef 0 1, 9, 1, L s %
r B 0 0 0 A 0 Te

T e ] e B R Rl R e B L B
—Sy ) teyrsgregta(sycest gty sy

tp=cy*cafey ey ss+syocs) =53(s3 ¢4 S5 —c37¢5) +5 75,55

fu=cl'Cz'Cs(ﬂ._'""s“""50_33'55"‘_
=53 853(cy 555+ 54 C) H ey 8555+ 5 (5455 €5 — ¢y’ cp)

l14 =01 €3 Cy Cq-Sg gt sy(cg-rg+trd —sy-83¢q°85°rg—
"‘C's(l'»'s'!'s"‘?‘)'faz‘Cz + 554 85T

In =563 C3(cq €5 C5= 3548 =y S5 Ce~
— 83 53(cq C5Cq=54"5g) T3 ss5rcg—cy(Ss 5ty Sg)

ty=syfey(eycq 85453 cg) =53(55 g 855—¢3°05)] =y 5" 5

fy =S "y CalCq 5" Sg+ 34" cg) =8y 55" 5~
— 83 53(cqrcs st sy tcg) t oy g5 —cy(5yc5855— €4 Cg)

Iy =) ey Ss rgtsyfcs rgtr) =Sy sycce S5 rg—
"'ts(ﬂ's'J‘e"’fd‘l’.’z"ﬂz-c‘l'-’"’s’f‘
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I33=¢; Cyc3 cy S5t s3-0c5) =83(53° ¢4 55—c3-es) +5 5475
ty =S;(c3 ¢4 S5 +5S305) Foy(sy° ¢4 55—¢q°¢s)

t33 =35 "e3(cq e Sgt sy og) — 853 855+
top 5y(cq o5 5g+ 854 cg)+ey 555

lg =5y C3 ¢4 Ss Tgtsylcs rgtr) vy s3°¢q-55°r5—
—esles rgtrdtay s tn

MODELQO GEOMETRICOQ INVERSO

Para obter as n coordenadas generalizadas {q'} correspondentes & situagiio imposta
B[:;L € possivel utilizar métodos analiticos ou métodos numéricos iterativos, Os métodos

ticos permitem obter todos os modelos geométricos inversos sob forma literal. Entre-
tanto, eles se aplicam apenas aos robls manipuladores mais simples, isto €, aqueles que
possuem um grande nimero de parimetros de Denavit-Hartenberg nulos, como os que sdo
utilizados arualmente na indistria. Apesar da dificuldade de obtengfio analitica do modelo
inverso, pode-se calcular numericamente, através de um pequeno nimero de operagdes, as
coordenadas generalizadas {q'} correspondentes 2 situagio imposta [x'}, utilizando-se
das expressbes analiticas obtidas. Estes cdlculos podem ser facilmente incluidos em um
sistema de comando em tempo real.

Os métodos numéricos iterativos sio de cardter geral, mas necessitam um grande nimero
de operagdes e possuem delicados problemas de convergéncia.

O método que serd apresentado utiliza as matrizes de passagem homogéneas [T; ,44] €
[T; i+l G =0,1.2,..,n} que podem ser oblidas através do modelo geométrico direto. A
cada passo i(i=0,1,2,..,n) sdo determinadas as matrizes (T;4 1) = [T}, H.l]_l e
(7741, a41] = [Tis 1) X [T} n41]. Da igualdade das matrizes (Tyyqnea] € [Tiry,ne1l

obtém-se doze equagdes que sdo fungbes de g; que, escolhidas adequadamente, permitem
obter com maior facilidade a equagfio literal que expressa a coordenada generalizada gq;. A
matriz de passagem [Tg ,41] corresponde & situacio desejada do efetuador com relagio a
base do robd manipulador e pode ser obtida em fun¢io dos pardmetros adotados, ou seja:
pardmetros de Euler, cosenos diretores, etc.

Se o robd manipulador termina com juntas de rotagdo concorrentes num ponto 0, o que
ocorre com 0s "punhos” clissicos, torna-se interessante utilizar um referencial adicional
R+ com eixos paralelos ao referencial R,4; € deorigem em 0, Este procedimento facilita
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as operagbes de obtengdo analitica de M'I.Amatrizdepauaguu [Ty, n+1] se deduz
facilmente de [T} n+1] desde que seja conhecido o vetor Ot O no referencial R,4q. Do
mesmo modo pode-se obter a matriz de passagem [T} 5+1] a partir da matriz [T} 44
AFigurnTapreseNaorébﬁmmipuladorUFUGRB&musrcfanndahoﬂon&rmah
ligados as diferentes ligagdes. Por possuir um *punho” cldssico & utilizado o referencial
auxiliar R,4; = Ry. Portanto, o referencial Ry & obtido de R, pela translacio do vetor
205 = 0105

Xs,X6. X7 Z7

Oy

51,22

Xo

Figura 7. Referenciais ligados s diferentes ligacdes do rob& manipulador UFU 6R86

Os pariimetros de Denavit-Hartenberg j4 foram apresentados na Tabela 1.
A situagio descjada {x'} pode ser definida pela matriz [T, ou seja:

h s e T A
M 6, B . i
L]
fol=|m & & - 6 (12)
0 0 0 ; 1
L .

Fazendo a translacio para o referencial K} ,,,, tem-se:
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q4 € g5 podem ser calculados desde que m%z + m%z # 0, o que significa que g5 # 0 ou
qs = .

Pode-se determinar g4 independentemente da posigio desejada do efetuador.

As posigdes para as quais ndo é possivel o cdlculo das coordenadas generalizadas
correspondem as singularidades do robd manipulador.

CONCLUSOES

A utilizacio do método sistemdtico para obteng¢io do modelo geométrico direto através da
rotina computacional apresentada, possui uma grande vantagem, por ser conversacional,
podendo ser utilizada por pessoas nio especializadas em robética e/ou computagio
representando uma ajuda preciosa na concepgio e construcio de novos robds manipuladores
permitindo sua simulagéo.

A rotina computacional permite a minimizagio das operagbes de adigdo, subtragio e
multiplicagio que intervém no céleulo, reduzindo consideravelmente o tempo de processa-
mento e obtengdo dos elementos da matriz [Ty ,+1], melhorando o comando em tempo
real.

A obtengdio analitica do modelo geométrico direto permite resolver analiticamente o modelo
geométrico inverso, determinar analiticamente a matriz jacobiana do robd manipulador,
que & necesséria para o estudo do modelo dindmico e ao seu controle além da obtengio
analitica de suas configuragdes singulares.

O processo de obtengio analitica do modelo geométrico inverso apresentado pode ser
utilizado separadamente para cada caso particular de robdé manipulador de cadeia simples
e permite sua inclusio em sistemas de comando em tempo real utilizando-se as expressbes
lirerais obtidas que definem as coordenadas generalizadas {q'} em funglo da situagio
imposta {x‘}.
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ABSTRACT

Inn the present pqg;:r the debonding effect of interfaces is ulated and studied. The non-
monotone, possibly multivalued stress-strain laws simulating the interface behaviour are
expressed by nonconvex superpotentials leading to hemivariational inequalities and to sub-
stationarity’ problems, The ansing hemivariational inequalities are studied conceming the
existence and the approximation of their solutions. Necessary conditions as well as sufficient
conditions are derived. Finally the unloading problem is considered.
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RESUMO

No presente artigo, formula-se ¢ estuda-se o efeito de descolamento de interfaces. Expressa-se
as leis tensdo-deformagdo, ndo-mondtononas e possivelmente a valores multiplos, simulando-
se o comportamento de interface através de superpotenciais ndo-convexos que levam a
desigualdades hemivariacionais e a problemas sub-estaciondrios. Estuda-se as desigualdades
hemivariacionais obtidas quanto a existéncia e & imagdo de suas solugdes. Estabelece-se
as condigdes necessdrias, assim como as mﬁc'm%e, considera-se o problema de
descarregamento.

Palavras-chave: Desigualdades Hemivariacionais m Adesio s Descolamento s Anélise
Nao-Convexa

Submetido em Margo/89 Aceito em Agosto/89



INTRODUCTION

The debonding between connected bodies through an adhesive material can be described
by nonmonotone stress-strain laws which may include vertical complete jumps, i.e. they are
multivalued. Nonmonotone, possibly multivalued laws can be expressed in terms of
nonconvex superpotentials and lead to a new type of variational inequality expressions, the
so-called hemivariational inequalities, which express the principle of virtual work or power
in inequality form.

We recall here that the study of variational inequalitics begun in 1963 with the works of
FICHERA [1], [2] and LIONS-STAMPACCHIA [3]. In 1968 MOREAU 4] introduced the
notion of convex superpotential in order to describe monotone possibly multivalued
mechanical laws, and proved the relation of this new notion with the theory of variational
inequalities, Moreau’s superpotential permitted the study and the correct solution of large
classes, of yet unsolved, problems in Mechanics and Engineering.

Until 1981 all the inequality problems studied were expressed in terms of variational
inequalities and included convex superpotentials describing monotone mechanical relations,
In order to overcome the constraint of monotonicity the author of the present paper
introduced and studies [5]-[9] the notion of nonconvex superpotential by using a new
mathematical tool, the generalized gradient of Clarke. Thus a new type of variational
inequality expression emerges the hemivariational inequality. Moreover the static
hemivariational inequalities lead to substationarity "principles” for the potential and the
complementary energy, instead of the minimum "principles” as happens in the case of convex
superpotentials. For the study of the variational inequalities we refer the reader to [2], [7],
[10}-[14] and for the hemivariational inequalities to [7]-[9] both for the mechanical and the
mathematical aspects of the theory. In the present paper we study the debonding problem
of adhesively connected deformable bodies.

After the formulation of the corresponding hemivariational inequalities, we study a
semicoercive hemivariational inequality and we derive necessary and sufficient conditions
for the existence of its solution. The problems studied here and the proofs given are general
and may be repeated for all types of hemivariational inequalities.

The theory of hemivariational inequalities is a part of Nonsmooth Mechanics [7)-[9]. At this
point we would like to emphasize the great differences between "Smooth Mechanics” based
on the notion of classical potentials and "Nonsmooth Mechanics” involving nonsmooth,
convex or nonconvex superpotentials. For the reader’s convenience we give further some
definitions and notations from Nonsmooth Analysis ([15]-{17]).
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MATHEMATICAL NOTIONS AND DEFINITIONS. NONCONVEX
SUPERPOTENTIALS

Let X be a locally convex Hausdorff topological vector space, X" its dual space and
<x',x> the duality pairing. The reader who is not familiar with this terminology could
consider X as a classical Hilbert space (then X = X' and <x',x> is the scalar product
of the Hilbert space), or more simply as the classical n-dimensional EBuclidean space R"
{then <x',x> =x';x;i = 1,2, ...,n). A functional f: X - (= o, + ] with f # « iscalled
proper. Moreover f is lower semicontinuous (1.5.¢) on X if and only if the set
epif = [(:,l) |fx)sAie R} is closed in X X R. Functional f is locally Lipschitz at x
if a neighborhood U of x exists on which f is finite and

[ fl) ~fl) | Scpxy —x) , V%, €U 63}

where ¢ is a positive constant depending on U and p is a continuous seminorm on X. If
(1) holds at every x €4 C X then f is called (locally) Lipschitzian on A. Note that f is
Lipschitzian at x, if it is continously differentiable at x, or convex (resp. concave) and finite
at x or a linear combination of Lipschitzian functions at x.. We denote by f° (x,y) the
directional differential in the sense of F.H. Clarke at x in the direction y. It is defined for
f Lipschitzian at x by the expression:

£O6y) = lim g fath+ly)—flx+h) @
A=0 i

k=0
Then the generalized gradient of f at x is by definition:
)= {x' EX | fPxx —x) 2 <x'\x; —x> Vx, ex} . 3)

It should be noted that if f is convex then 3f (x) coincides with the subdifferential af (x)
defined as:

F@) =[x €X' | f(x) - f() = <',x; —x> Vx €EX] . @

For f continuously differentiable at x,of (x) = {grad f (x)}. Note that the generalized
gradient can be defined for any functional f: X ~» [~ o, + o]. In this case fu(x,y) has to
be replaced in (3) by the more sophisticated notion of the upper subdifferential of R.T.
ROCKAFELLAR [14] f! (x,y). Then:
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3f(x)={x' EX |f rny —x) 2 <x'\x x> Vx ex} : ()

Moreover 3f (x) =@ if £ (x,0) = — x, otherwise 3 (x) # @. It is worth noting that
:?f(x) is never empty, if f attains a local minimum at x, or if f is Lipschitzian at x. A point
X is called a substationafity point of f, if x, satisfies the multivalued equation:

0ET() - (6)

Everylocal minimum and every saddle point is a substationarity point. Also a local maximum
Xy is a substationarity point if f is Lipschitzian around x;.

A functional f: X = [~ o, + o] is called E-regulatif:

11 @) =F ) Vy €X where [ () = tim (EX /@) %

A+

If f is convex or a maximum type function, then [ is E-regula.r. Let now Z be a mechanical
system, let fEF and w € U be the corresponding generalizéd force vector and the
generalized velocity vector, Here F and U are vector spaces being in (separating) duality
through the bilinear form <u, f> which expresses the work produced by f due to u. We
denote by @ : I/ » [~ =, + «] a generally nonconvex and nondifferentiable function and
we assume that between f and u a relation of the form:

-f€EM(w) in X @®)
holds. By definition, (7) is equivalent to the relation:
@1(u,v—u)2<f,v—u> YWwelU. (8a)

Inequality (8) is called a hemivariational inequality and @ is a nonconvex superpotential,

i) Let @® be the indicator Ic of a closed set CCU=R", ie.

O =Ic)= {0 if u €C, o if uQC} and let u= {ul, ..‘,u,.}. Then

a® (u) = N (1), where N () denotes the normal cone to C at the point u [15]-

ii) Let ® bea maximum type function, i.e. u - ® (¥) = max [«p;(u)},i =1, ., m,where
i

u=luy, .., t4,} and @;(.) are smooth functions, We introduce the sets
A= {u | @ (W) =, (u)} Then [17]:
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3@(u)={gud¢,-(u)}, if u€A ®)
3 (u) = co {grad ¢, (u), grad ¢ W)}, if u €A, N4 (10)
3 (u) = co [grad p; (u), grad ¢ (u), grad g (W)}, i w €A NANA, . (11)

Here co is the convex hull. Therefore in (10) (resp. (11)) 3® (u) is the line segment
(resp. the triangle) connecting the ends of two (resp. the three) gradients.

iii) Suppose now that in (i) C = {u ER" | ) s0,i= 1,.,.,m} where the functions
w; are smooth, Then we can show by means of u (cf. (7], p. 146) that:

Ne@)={fE€F=R"|f= Y Agrade, (). A 20,9,50,4g =0} (12

i=1
on the assumption that if u € (boundary of C} a vector y exists such that:
<y, grad pi (u)> < 0 (124)

for every i corresponding to an active constraint @; (u) = 0 at r (multiplier type
formula).

SUPERPOTENTIAL LAWS FOR ADHESIVELY CONNECTED INTERFACES

We consider a deformable body € and let T be its boundary. € is referred to a fixed
orthogonal Cartesian system Ox;x;x3. On I' we can distinguish three types of boundary
conditions on the disjoint parts I'r, Iy and I'y, On T’y the displacements u = lu;l are
prescribed and on Iy the boundary forces §= S;L are given where
§; = oyn;(i,j = 1,2, 3-summation convention), o = [0y} is the stress tensor and
u={nj is the outward unit normal vector to I'. On I's we consider that the body is
adhesively connected with the support in the normal direction. In order to describe this type
of boundary conditions we decompose on I'su (resp. §) into normal and tangential
components uy and wyr (resp. Sy and S7). The adhesive contact condition is described
by a nonmonotone relation between — Sy and wuy (see Figure 1a). The adhesive material
can sustain large compressive forces and very small tensile forces for a monotenic loading
beginning from zero. (The case of unloading will be examined at the end of the present



paper). Thus we may write that:

if HN>H.NE then SN+k(“~)‘o
if Uy = an then 0= SH =k (HNO) (13}

if uy<uy, then S§y=0 (debonding)

The dotted line in Figure 1a is more realistic, since we avoid the ideally brittle behaviour,
Function k is generally nonmonotone and may include vertical jumps corresponding to
local locking and crushing phenomena (stick-"slip” in the normal direction). Note that if
upg =0 then (13) describes the unilateral contact (Figure 1a) with a granular support (rock,
concrete etc.). The boundary condition (13) may be called a2 nonmonotone multivalued
Winkler law. It must be combined in the tangential direction with another law as, e.g. the
simple assumption of given tangential displacements or forces on I'y. The relation (13) can
be put in the form:

= Sy € Gy (u) (14)

where

+
J'N(E)=-r§ k()de, &, =sup(0,§) . (15)

In the tangential direction the normal laws may be combined with a general tangential
nonmonotone relation of the form:

~ St € ¥r(uy) (16)

in order to describe frictional phenomena or the adhesive debonding and gradual slipping.
For Sy = Cy, given, Figure 1c depicts the friction law of Coulomb. In Figure 1d to Figure

Ifand for Q,Q C R some other friction laws or stick-slip laws are depicted expressing the
evolution of the tangential debonding. In case QCR’ the additional assumption that the
vectors — S and wy are collinear has to be made. The graphs of (— S, uy) diagrams

may include vertical jumps describing local cracking and crushing of the contact surface
asperities in the case of friction or stick-slip phenomena in the case of adhesive connection.
Note also the analogy between Scanlon's diagram [18) for reinforced concrete in tension

(Figure 1g) and the sawtooth debonding or friction diagrams describing the change of the



-8,
S 0 Ky
0 9

uy or [u,)

(a) (b)

-Sy4 “S1g

plcyJf— 11 -
Uy orl'J'] uy o [T* ]
u T

"]c“l " \
(c) (d)

(e) ()
L' Sy 4
— 2 d
J [u,]
(g) ' (h)

Figure 1. Superpotential Interface Laws
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mechanical properties of the contact surface due to increasing loading. Finally we give in
Figure 1h the friction diagram between fiber and matrix in fiber-reinforced materials or
between reinforcement and concrete. Here [uy] denotes the relative tangential
displacement between the two structural elements in contact. In [19] we have shown that
the anisotropic or orthotropic friction is a special case of (16) and we have derived
muitidimensional nonmonotone friction laws.

Let us now assume that in Q there is an interface A along which debonding and slip is
possible. The surface 4 may be a rock joint, a fault, or an interface between different
structural components, e.g. between the adjacent laminae in a laminated structure. We
assume that the interface can be simulated by fictitious elements having two strain
components, the normal strain ¢y and the shearing strain ér, with ) the corresponding
stresses. Then the same laws as those of Figure 1, can be assumied between oy and ey, and
between o and ey, where, now, — 5y and — Sp arereplacedby oy and o respectively.
This consideration assumes that the interface 4 is a part of £ with different behaviour.
Especially for laminated structures another approach is suitable. Each side of the interface
is considered to belong to a different body. Then we introduce relations of the form:

—~ Sy €3n(unD),  ~ St € dr(lug)) an

on the interface, where [u,] and [uy] denote the relative normal and tangential
displacements of the two bodies, and j and j; are nonconvex superpotentials (cf. (14)).
Of course relations (17) hold if the normal action can be decoupled from the tangential one.
If this is not the case (17) has to be replaced by a general relation of the form

— 5 € 3 ([u]).
We shall further give two examples of the above interface laws,

a) Massonry structures: In these structures cracks appear due to tension, compression or
shear usually in the weak positions of the structure i.e. in the joints, where the mortar
fractures between the stones, due to exceeding of the mortar strength normally or
tangentially to the joint (Figure 2a). In the case of brick structures, another weak position
in the middle of a brick is possible (Figure 2b). In order to study this problem we assume
that on the interfaces the superpotential relations (17) hold.

b) The delamination effect: Let us consider a composite plate consisting for the shake of
simplicity of two plates connected with an adhesive material (Figure 3). Each plate is
assumed to be elastic and is referred to an orthogonal Cartesian coordinate system
Ox, x, x5. The two plates have thicknesses h; and k,, which are constant, and the middle
surface of each plate coincides with the Ok, x,-plane of the coordinate system. Let Q,

and Q, be two open, bounded and connected subsets of RZ and let T';, T, be their
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undeformed state. The plates are connected together on Q' C £y N Q, so as to act as
an integral structural element, (Here €2, are the projections of the plates onto the
interface plane). Further we denote by {; (x) the deflection of the pointx = lx; x;,x;}.
Let f; = (0,0,f5) be the distributed load for the i-th plate per unit area of s middle
surface, For i = 1 (resp, 2} we have the upper (resp, the lower) plate £, (resp. ;). In
order to study the delamination effect we notice that the interlaminar normal stress
@33 is responsible for the delamination effect in all types of composite plates, i.e. in

layered plates, sandwich plates, or laminated plates (cf. e.g. [20], p. 220).

CJ

(a)

(b)

Figure 2. Interfaces in massonry structures
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Figure 3. On the delamination effect of composite plates
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Thus we split f; into f; which is the given loading of the i-th plate, and into Jj, which
describes the interaction of the two plates due to the binding material, i.e.:

fi=fi+];, mQ;, i=12 (18)

assuming that J; is a nonmonotone multivalued function b of the relative displacement
€] = &; = &3 of the two plates. We have that (Figure 3):

-1 €bE-%) amd + b}, -8) m@CQ NG, 19
where J; = —J, = f and
7i=0 on -9, =0 on Q-Q 20)

The graph of the multifunction b results from a function b € L. (R) by “filling in” the
gaps (see Sec. 5 and Figure 4).If b (£ 4) exists for every £ € R then, according to CHANG

[21) a locally Lipschitz function j: R+ R can be determined (up to an additive constant)
such that:

b®=5® wheref(e)=f:bmds @1
Thus (19) is put in the form:
-fEHED on @ )

The diagram AOB of Figure 3b describes phenomenologically the plate debonding and
takes into account stick-slip possibilities for the adhesive in the normal direction. This graph
describes the adhesive contact of two plates with adhesive material with negligible thickness
at the interface. The branch OB is vertical (nonpenetrability condition) due to the
incompressibility of each lamina in the Oxy-direction according to the assumptions of plate
theory. Here, however, we assume that the line OB has a small slope, i.e. we consider the
diagram AOB', in order to take into account the possibility of small elastic deformations of
the plates in the Oxj-direction. Analogously the graphs of the forms AOCD or AOCD’
correspond to an adhesive with thickness & > A’. See’in this context [22}-[26].
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Figure 4. On the definition of b and b

DERIVATION OF HEMIVARIATIONAL INEQUALITIES

In order to show the method for derivation of hemivariational inequalities we study a specific
mechanical problem, the problem of equilibrium of elastic bodies with adhesive contacts for
a given external loading. Note that this is a free boundary problem. Indeed, assuming that
the adhesive material has the behaviour depicted in Figure 1a, it is not a priori known at
which points of the interface the debonding takes place.

Let ©,,/m =1,2,..,1 be open bounded, connected, subsets of R’ representing a set of
deformable bodies each with different elasticity properties. The boundaries
[,,m=1,2, ..,/ are assumed to be appropriately regular, £2,’s are referred to a fixed
Cartesian orthogonal coordinate system Ox,x,x3. Letnow x = [xl},i =1,2,3 beapoint
of R? andlet o™ =of™ and e™ = &ffV,i,j = 1,2, 3, be the stress and strain tensors
of the m-body. We denote by ™ = [ﬁ"ﬁ‘ and 4™ = {ui"'}} the volume force and the
displacement vector in each body. If n?™ = {n}"}} is the outward unit normal vector to
I'CM). the boundary force on l"(M} is 5™ = aﬁ"') ng”) (summation convention) with %
and S¥™ the normal and tangential components, of it. The corresponding displacement

(m)
components are u;’}') and u?-"). The boundary ' is divided into three non-overlaping

) (m) (m) )
parts I{T.I‘:’ and I's . On I‘?} the displacements and on l"f:w the forces are

prescribed, i.e.:



W et o Ty @)
Sf"] =.F§m) on l";m ; (24)

(m)
On I's - which is the interface of the body m with all the other bodies - nonmonotone

interface conditions hold describing slip and delamination effects. We write the interface
conditions in the form:

(m) - (m)

= Sn € Yngm [“; D (25)
(m) _— (m)

=57 €drmlur D (26)

in the normal and in the tangential direction to the interface. The superpotentials fy and
jr are assumed to be locally Lipschitz functions of the interlayer gap [upy] and slip [ug]
respectively. Then (25), (26) are equivalent to the inequalities:

(m) {mt) (m) m)

j.?v{m} (ley Lv=ley N=-Sy (v—[uy]) WER @n
(m) (m) (m) (m) :

T (87 by —lur D= =57 (i=lur ) VnER,i=123. (28)

The m bodies connected with the adhesive material constitute a body £2.In £ we denote
the jointsby T, ¢ = 1,2, .., k, where k is the total number of joints (Figure 5 ).

(m)
Assuming small strains and linear elastic behaviour for Q ,m = 1,2, ..,/ we can write
the relations:

(m) )
(m) 1 _(m) (m) (m)

‘ﬂ =§(UIJ. +“]JY ) =Gg(" ), (30)
(m} (m) (m)
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(m) (m)
The comma denotes the differentiation and C = {C.y:\-} is Hooke’s tensor. Then the
(m
principle of virtual work for every body € i takes the form:

:m) ;m) 6™ ™y e [ 46 ) 0
Q{n o™
S B0 - uhar + S 58 0% - ugh +
) )
y4 v
(m) (m) (m)
+ 55, (vrf —up )dl W €U,y . 32)
[ S ()
Here Uaq is the kinematically admissible set of Q :
u""’ { (m) (--)ﬂ f"’, vf‘"]EU(Q * ; U.oul } _ @)

(m)
Wedenoteby U(Q ') aspace of functions defined on Q. Now we add with respect to
m all the expressions (32) and we take into account the interconnection of the bodies. This
yields a relation of the form:

/

> oo™ -u"aa = 2 {f J‘" "o - uMyag +

me=] Q("") m=1 Q
o f oo >m+2 W s e -
I‘(;) q=1 l-.(ql

- ugrany + [ s%’(f D)~ 14D Vo € Uy, (34)

(m)
where Ugda = | Usa .
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Figure 5. On the interface problem

In (34) we introduce now the integrals along the joints I'y, ¢ = 1, .., k&. The new numbering
(m)

of the I';m-boundaﬂeshas the advantage that finally the energy of each joint appears.
Further the elastic energy of the m-structure is introduced;

a (@, vy = [ CO ey (W) e () a2 35

Q(M)

Now combining (26), (28), (35) with (34) we obtain the following hemivariational inequality:
Find u € U,y such as satisfy:

! k
b i S 1["{’ B 140 401~ 140D +

+ 0, (649, 149 - (0 =

2 f} A6 - yam

m=] Q(m]

+[ oM - weu,. (36)
l-.(")

This hemivariational inequality is the expression of the principle of virtual work in its
inequality form for the considered problem. Let us check now in which sense a solution of
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(m)
(36) satisfies (29), the boundary conditions on I'y  and the interface relations on

(m)

I's , m=1,..,1I To this end the functional setting of the problem will be made more
(m) (m) (m) (my o (m)

precise: We assume that fMeL*(Q ), F €L*(Tp), Cum€EL™(Q )

(m} (m) 1. ,

u; vy E€H (Q ) (classical Sobolev space).

(my (m) (m) (m) (m) (m)
Then uy ,ur eHY*(T ) and Sy V87 EH V3T ). We set in (36)

(m)  (m) (m) (m) TR, . . y
v, =—u; ==*p; wherew; belongsto the space ofinfinitely differentiable functions

(m) (m)
with compact support in £ ,D(Q ). Then (36) implies by setting

(m) (m) (m) (m)  (m)
Vi —u =%x¢; form=nandv; —u; =0 form*n that
a (u®,pm) = [ 7 o a2 @37
Qfﬂl

(m (m)
since wp; =0 on ' * From (37) using the notations (30) and (31) we find that (29) holds

() ()
on Q  in the sense of distributions over € . This procedure is repeated for

n = 1,2, .., Now applying the Green-Gauss theorem to each body we obtain the equality:

a @, v - ytmy o [ M8 a0

Q(M)
+ {SEmJ, v,?"] - ugm:'}r—r_,"' <S§:,"), vff) - uj(:.")‘:-rs +
(m) (m)  (m)

+<Sp vy, —up, > (38)

I

where <-,-> is the duality pairingbetween H () and H™ V2 (I"). From (38) and (36)
we derive the inequality:
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2 g_fbmq,([uﬁ’] (1= [ D) + R, (67 7] -

(Q)])] dr + Z <S F,(-m], vfm) - ufm):» (m} + 2 { (s(q]' [v 4}] -

=1
- [u"”]:» + <s:f.§} [ )] - [uﬁ.“;)]:-r flzo WeU,. (39)
q
(m) (m) (m) (m) (m)
Ifin (39) wetakethaton Iy ,v; —wu; ==—r €HY3(I ) for m =n,and that
) (m (m) (RN

v —u —Dformaen on Ir andon T, forevery g, we obtain §; =F; asan

equality in H"l‘a(l“ ); this can be shown for every n. From (39) by setting

(g} @ @ ; :
[vn ] —lun ] =ry on Iy for ¢ =n andthe same difference =0 for g # n, and setting

(q) @
[vr 1 —ler ] =0 on T for every g we obtain:

f!l A ([, e dr 2 - <55, rf;">r' W € V2 (1) (40)
]

which is a “weak” formulation of (25) on H~ Y2 () x HY?(I"). Analogously from (39) a
weak form of (26) is botained, Let us now consider the following substationarity problem:
Find u € Uysg such that the potential energy of the structure:

ne = Z GO | [m“ (ON'D) + i, ([ ar -

g=1

‘E [ P 2 A, i

m=1 Q(m) I,(m)

is substationary at v = u, where v € Uag. The following proposition holds.

Proposition L. If & = ju(my (§) and & = jyy) (§) are locally Lipschitz and d-regular for
m =1, ../, then every solution of the substationarity problem is a solution of the
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hemivariational inequality (36) and conversely.
The proof is similar to the one given in [9], p. 108 and it is omitted here.

Suppose now that the substructures 2, m = 1, ..,/ obey a general nonmonotone law of
the form o™ € 59(,,] (), where w(,) is an extended realvalued function, nonconvex and
noneverywhere differentiable. This law holds e.g. for a fiber reinforced composite material
in order to describe the sawtooth form of the siress-strain law. For three-dimensional
generalizations of Figure 1g cf. [9]. Then the variational expression of the problem is the

1
same as (36) with the difference that now the term . a(u®™, v — 4™ is replaced by

m=1

1
z f w b (e (u("'}), £ (v("') - u"'))) dQ. If the wy,y)'s are convex superpotentials,

m=1 (m)
Q

i.e. they are convex, 1.s.c. and proper functionals, then let:

f Wwom (8)dR if w,, (+) € L' (™)
W(m] (g) = Q(MJ ; (42)

® otherwise

In this case we obtain a variational formulation analogous to (36) where the elastic energy

!
variation a(-, ) is replaced by the difference 2 Wy (e (™)) = W, (¢ ™))]. This is
m=1
a variational-hemivariational inequality [8], [9] and is the expression of the principle of
virtual work for the considered problem.
If the interface superpotential is not a Lipschitz continuous function, then Clarke’s
directional differentials j:,(', ) and 7?..(-, ) must be replaced in the previous
hemivariational inequalities by jg,(-, *} and j,'- (-, *). Analogous is the treatment of
(m)
dynamic problems on the assumption of small displacements. Then f;  has to be replaced
(m}
o &t m)
byﬁ" -p =] , where p"" is the density of the m-body; also initial conditions for

the displacements u?") and the velocities auf"')/at must be given. The resulting
hemivariational inequality expresses the d’Alembert principle in inequality form. Note that
in the dynamic case the holonomic interface relations (25) and (26) may be replaced by the
relations:



(m) 3"1(::" !
-5y €8um 51 - “3)
(m) g
T
-5t €dmm 5] (44

In this case we formulate again (32) by considering instead of displacement variations,
velocity variations, Thus a hemivariational inequality similar to (36) is derived having instead

m
of v/™ — 4™ and [y ] = [un ] the following variations:

(m)
m Au
wm -2 ana [y ]-[5-] -

STUDY OF A SEMICOERCIVE HEMIVARIATIONAL INEQUALITY.
NECESSARY AND SUFFICIENT CONDITIONS

In this section we shall study a hemivariational inequality similar to (36) and we shall develop
a general method which permits to prove the existence of the solution. Moreover the proof
indicates a method for the approximation of the solution, Let us consider for u;, v; €V,

i=1,2, .,r where V; is a real Hilbert space defined on €, a symmetric continuous
bilinear form a; (+, *): ¥} X V; -+ R_Here index i enumerates the "deformable bodies” and
not the vector components as is the previous sections. Let V; be the dual space of ¥; and

assume that for Q; open and bounded subset of R":
v,cLl*@)cv,, i=l.,r, (45)

where the injections are continuous. We denote by (-, +); the Lz-prroduct and the duality

pairing, the norm of ¥; by | | | |; and the norm of L% (&) by | - |. We shall omit index
i if no ambiguity occurs. We recall here that the linear form (-, -); extends uniquely [27]
from V; x L?(Q;) to ¥; x V;, Further let us assume that for each /:

ViC I* (Ty) is compact , (46a)
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where I; is the boundary of £; assumed to be Lipschitz and that:
Vi N L™ (T}) isdensein V; forthe ||-||/~norm . (46b)

The bilinear forms are assumed to have a nonzero kernel, i.e.:

kera; (uy, 1) = {a; | @ (@na) = 0} # {0} , @7
and let:

kera; be finite dimensional, 1 =1, .,r . (48)
Thenorm ||v|]; on ¥; isassumedtobe equivalentto || |v]| |, =p; (¥} + |q|, where

v=v+ g, q € keray, v € kera; (ie. (V,q); = 0,¥ q € kera; p (V) isaseminormon V; such
that p;(v) =p(v + q),¥v €V}, q € kera; and let:

2
awmvizclp;(v)) , WEV,;, cconst> . (49)
Now let f§; € L, (R),j = 1,...,p, and let us define for any u > 0 and &, R the functions:

B E) =essinff;(§) and B, (§) = esssup f; (§) (30)
be-€1<u l§=6 | <u

Since u *E;,,, and p -ﬂj,, are monotonically decreasing and increasing functions
respectivelly, their limits as # = 0 exist {they may be also * ) and let:

B® =lmB, @) and FE)=lmf &) . (51)
- =

Now the multivalued function:
E= B ) =155 (52)

is defined. The graph {E i (E)} is the same as {E, Bi (& )}, the only difference being that it
contains the vertical segments at the points of discontinuity of* §; (cf. Figure 4).

From f; alocally Lipschitz function J;: R - R s defined up to an additive constant by the
relation!



AGES] Zﬁ, &) at, . (53)
It satisfies the inclusion &; (§) C B; (&) and if Bj(£.) exists for every & € R, the equality:
S =B® . j=1..p (54)
holds according to [21). Now the following problem is formulated for f; € L* (Q),

fod . .r

Problem P. Find u; € ¥, i = 1, ..,r so as to satisfy the hemivariational inequality:

i=1 j=1

2 ﬂr(u;.v;-!q)w“g I!'-Uo([“lﬁlvlj“[“h)drz
i

2 (ovi—u) WEV,. (55)

i=1
Here [u]; is the relative boundary displacement of the two £2's scparated by the interface

/. Analogous is the meaning of [q];. The following proposition gives a necessary and
sufficient condition for the existence of the solution. We introduce the notations.

B(= =) =lmsupfy &) and (=) = lim inff) &) (56)

for j =1,2,..,p. Mureover [g] is the relative "rigid” displacement with respect to I}’ and
[49]+ (resp. [q]-) denotes the positive (resp. negative) part of [q]:

ie. [qhgiﬂ%l_[ﬂi . [ql_=J_[i]_2|;[ﬂ'
Proposition 2. Let:
pj (— =) 5.BJ &)= ﬁj{‘”] VEER: j=1..p. (57)

Then a necessary condition for the existence of a solution u; € Vj,i = 1, .., r of problem P
is the inequality:
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ﬁ (1! B, (~ =) a4 - (=) fa}-)dr) < S tows

i=1

361

ﬁ (f@(w)[qlﬁ—ﬁj(—m)lq], )dT). Yq; Skeray, i =1,.,r . (58)

j=1 J'

If at least one inequality in (57) holds strictly (with < instead of =) the same holds for (58).

Proof. Let us set in (55) v = u; = * g € Keraj, We obtain:

j=1

i=]

J

which implies due to the fact that g = J° (§,¢) is positively homogeneous that:

i f 5y lgp dr = E OE

j=1

i -rjo([u]j [‘I]j)dr Vq,EKem,, ‘h‘o i=1,.

From the definition of J; and Jf for j =1,..,p and from (57) we obtain that:

u_yi-khl[q!’

: 1
1! J (. lglp T = rf ,(timnp 1 B, (0)drdr) =

J I et

J ace [ Larz [ peyigyar+
9}>0  [4}>0  [@};>0

_r ,6} (— ) [q]!dl" f (ﬁj () [q);+ “ﬁj( 2 [q}i')dr
[‘f];>0 h

Accordingly:

i I:r'{?([u]j!'t[q]j]drzztfﬁiq.i} Vq,-EKem,-, Q,'*O, ".:lr---

7, (59)

(60)

(61)



i=1

S (ot sjﬁ (I-!-r(ﬁ;(")iqlp, - B (- =) [q}-) dT
=1 )
Vg, €EKeray, q;#0,i=1,.,r (62)

and analogously for — J 5} [u);» [q]) 492. Thus (58) is proved.

The proof of the rest of the proposition is trivial, q.e.d. Further a sufficient condition will
be derived. To this end the regularized Problem P, is defined:

Let p be a mollifier (p € C, (=1.+ 1),p = 0 with I_ p(€) d€ = 1), and let;

ﬁl} =Pl‘ﬁjr ‘)ﬂ: j=1,...,P (63)
Here p,(E) = (1/e)p(E/e) and # denotes the convolution product. The regularized
problem P, reads:

Problem P.. Find u,; € Vi, i = 1, ..., r, such as to satisfy the variational equality:

i=1 J=1

S gy 3 rf By (lu]) by dr =
]

r =
= 2 (f;‘s V;) ' Vvi' € V} (64)
i=1
Further a Galerkin bais is introduced for each one of the spaces ¥; N L™ (T),i = 1,..,n
let ¥}, denote the corresponding n-dimensional subspace of ¥; N L™ (T;). Then Problem
P, results.

Problem P,, Find 4oy € Vi = 1,2, .., r such:

r

2 a; (enpy Vi) + i I!' Bej (enlp) V) dl =
j:l .
J

i=1

=2 (;i,v‘-), WLy i LnF (65)

i=1

Proposition 3. Let:
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Bi(-®)<Bi(®), j=L..p (66)

Then if,

i (I(ﬂ(' ®) lg}+ - ﬂj(”)[q]‘ )dl") 2 (thf)<

I'kl

<3 (L G -,
J

j=1

Vg, €EKera;, q;20, i=1,..,r (67)

problem P has at least one solution:

Proof. (66) implies that for some £ ER:

Jup ﬁ;j &)= ""f ﬁq & < (68)

(-=, -8

Thus we may determine for every j two numbers py;; >0 and py > 0 such that
By (5) = 0:

if §>py, By &)s0 if E<—py and |B;(B) spy if 1&] spy

and thus,

f By (el lghyar = .. ar+ [.. arz
J' ||l'm];| >py |Iltmg| spy

=0 — Pyj Py mes I‘J,' (67

This estimate which was applied to the coercive problem (7] will now be improved {or the
semicoercive problem. First (65) is written in the form:

A LR R =0 o = {v,.-}, Vo, €V, is1,2.,r. (70)

From (70), (69) and (49) we [ind that:



<A )in>2¢ Y oG] = ¢ 3 1 ugel 1 -
=1

i=]

—ipvpumcxr’, cconst >0 . (4}
fmt

Now using Brouwer's theorem we shall show that (70) has at least one solution u,, and that
{] ltdems| | } is bounded for every i. Accordingly to this theorem (cf. [28], p. 53) it suffices
to show that there exists a number M > 0 such that:

| luemsl | > M, i=1,..,r implies (A{&,)d,)>0 (72)
For the proof of (72) it is sufficient to prove that:
(A(tgy') ') <0 implies |Jupl) S¢, f=1.,r. (73)

Due to (71) we deduce that, if (A (Ude ) Uen ) = 0, then a constant ¢ > 0 exists such that:

r " 2 r
(2 pi@m)) < X 1l * ¢ (74)

i=1 i=1
Where Mgy = gy + Geny. Accordingly it is sufficient to prove that <A (g, ), 4> 0

implies |gumily = ¢, 7 =1, .., or equivalently, that a number R > 0 can be determined
such that:

[9eni| , > Ry i = 1,0 and (74) = <A (lup'),4s > >0. (75)
This last relation will now be proved. From the definition of B we prove that:
+e
By (=)= lim By @) = lim I_pe-op0a=
Z limess inf B;(x) = limessinf f;(x) =

§o|x=f| se fomf-rsrce

= liminf f; () = ) (). (D)
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Similarly we show that B (— ®) s f; (— ®). Thus (67) implies that;

ﬁ (l!,cﬂq(- ©) @+ By (D) gy ) T < S, Tra) <
=1 1

=1

<3 rf By () lays ~ By~ =) lg})dT),
j

i=1
Vg, €EKeryy, q;20,i=1,..,r. (¢)]
Due to (66) numbers Mj > py; (cf. (69)) can be chosen such that for functions u; € V; with

[#(x)); > M; and sign [u(x)); = sign [g(x)}; for almost every x € I}', we have from (77) that
for [g}; > 0, [q) = [g}+ and [Gx)]; > M, j =1,..,p sufficiently large,

I @@y -3 ¢ae>0. 78)

J=1 x| [q(x)};>0}
I By -Epa@y dar+ S (ua)>0. )

19| [g@));>0}

For [q); < 0 we have [g]; = - [g]-; and for [u(x)]; < — M; we obtain from (77):

I By@ep ey ar-3 (ag)>0 (30)
=1 {x|[g(x))<0} ek
I By EepLey T+ Y (e > 0. 81
= fellgeoy<o)

By an appropriate choice of the numbers djE(O,l],A}hv 1,7>0, and a; >0, and by

taking into account that B ([@(x)];) - [(x)}, =0 and that sign [#(x)); = sign [g(x));
J =1, .., p, these inequalities imply for every [:Tb as above, the relations:
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_ﬁ (1- —,:7,) 1 By ([E@)) [g@)); dT ~
= I g | > 65 aj)
—Z (D) >_E 74l (82)
i=1 i=1
S-(-p I
<=} By (- @eo)}) g dT +
19 T el g@)) | >d o}
+Y Gpgd> Y, 1l (83)
i=1 i=1

as is obvious by taking &; -+ 0. We take NOW Uy = gy + Gen- Then for N asin (82), (83)
=1 1 1

and for @; > ay = M;d; (1 - ﬁj-) for j=1,..,p we have (we omit the index (f) in

(84)-(87) for the sake of simplicity).

L e N o | PR
N G| <52 @) => 32 @]l <da
|gen)ll >da | [gen@®)])| >de
2 B laddr - pypymesTy 2
ol < 52
| a1 >8c
1 i ;
2(1-5) el Be (0ea) 4R — pypymes Ty (84)
| (Zenl)] | < "&T
| G| >8c

Indeed for |[Zn(x)]| < da/N and |[ges(x)]| > da we have that for @ > ap:

|t = |l + ganll| > (1 = 37) 8 > B (85)

and thus B, ([4.,]) * [#en] = 0, and B, ([tenl) * [gen] = 0. Further it can be verified that for
[gen(®)] > da:
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g ] = [ ) + [ 0] > =52 4 (4 @) > N (1 - 7)  (86)
and therefore:
By el Btn) 2= (1 = 37) (9 B (Tt - &7

Similarly for [ge()] < — &, Accordingly (65) implies the inequality:

<A (g )y > 2 s (1 g _ -r [Q'm]j ﬂej ([um]j) drjl =
= e A
| [genl®);| >4;

i PUP:Q”"'—‘[} = E U.ﬁqﬂd) E (ff-“mf) (88)

i=1
By taking into (82) and (83) we obtain from (88) for q; > ag; sufficiently large, that:

<A (gn )y ten' > > E 7 19enil, = 5: pijpymes Ty ~
i=1

-5‘_, (f,,..,,,)zz 7 e, =1 = €2 leu,.fll 2

i=1 f=}

zz 7 el = 1 = € Ellvwll?—

r r
=Y 1 lqwml,—ci=c;' 2 | Gl || =
i=1 i=1
r r
=> 7 |9l , = €1 = €2 > ). ¢y cpey’ const>0
i=1 i=1
(89)

From (89) we obtain due 10 (74) the final estimate:
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r r
<A (i higy'> > 3, 1 |l =1 = ¢V D, 1geul, # ¢

i=1 =1
¢,¢y const >0 (90)
The right-hand side of (90) is positive for |gey|z > R, i=1,..,r, where R is an
appropriately large number. Thus (75) has been shown. Thus due to Brouwer’s fixed point

theorem, problem Pey has a solution w.y with | |ugyl|| <¢,i=1,..,r. Now we may
determine subsequences, again denoted by u.‘l.,i-l....,r,mchthatfor e—=0,m = 0

Ugy—uw, weakly in V;, i=1_,r, 91)

and because of the compact imbeddings in (46a) and considering the correspondence of
/s with the interfaces I’ we have:

Ugy ~u srongly in L2(T}), i=1,_,r. ®2)
Accordingly:
Upi = U; ae. in l'}'. i=1..r. (93)

Further we may omit the indices (/) and (j) if no ambiguity occurs. Now we shall prove
that Bg ([ue)) is weakly precompact in 2 I), j=1..p [29] Applying the
Dunford-Pettis theorem (e.g- [30], p. 239) we show that for each u; > 0 and &; > 0 can be
determined such that for @; C T}’ with mes @ < 5

18y (el 141y < . ©4)
ki /
a}-
]
From the inequality:
& 18.©1 = 18O +& ap 186 ©9)

we obtain (we omit the index j);
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[ 18 ot U < 5] 1B, (D il T +
w

+f ap 1B (Quadl dr (96)
@ | [ugn(2)]1 s&
But:
J 1B bl e = J  ogars J o pjar=
I | e}l >P | wen)]| 5y
- 4 teddar=  J Tupaties T s
l[u,,,(.t)”>,01 I[um('t)” Spl |[um(x)] |5P1
s i fo..ldl" + f [iia] 4T #2 I J...] 4 =
I [um(‘t)][ )pl I IU(.I)] ' spl | [um(x)] l sp:
= b aldt +2 I 1B, () el T o)
I es)l| 5y

Now we choose in (65) appropriate variations which make all the terms but cne of the sum

5: .. disappear, This is possible by setting eg. vi=v, €V, v =n €V, .,
j=1

V=V, €Vp such that [v;#0 on Iy and [vk=0 on T,/ for
k=112 ..,j=1,j+1,.,p Then wetake that [v]; = [uea]; on I}’ and we have from (97)

that generally for 1 <r<r

-

r

1‘[ 1B o) WD)y AT S 3, ) = Y, 0 ey i) +

i=1 i=1
J

2 J 1By (el el T <
| [“m(")lll SPU

S ¢+ 2pypyymes ) YVi=1..p (98)
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From the definition of the mollifier and from (63) we prove easily the estimate:

9
';m-lﬂq &1 slﬁs’?fll% (3] (99)

Choosing &g, such that for all ¢ and a:

1 -
& a{ 1B (fenly) fenly| T = glg{c + 2py Yoy mesTy) s (100)
j

and J; such that for mes w; < &y

- x 101
!ﬁs‘:‘fllﬁ ®l = 3, (101)
we obtain that:

sup | By ([wenlp)| AT} =

wj el =t,
s essup 1By (fuen] | mesay s 4 (102)
| luen@)l| S, +1

From (96), (98), (100), (102) and (94) the weak precompactness of ﬂqr([um],-).

J=142, ,p in L'(T}') results Thus,as £ = 0 and n = e, a subsequence again denoted
by (e (ieal))] can be determined such that:

Bei ([uenl) =2 weaklyin L'(T)), j=1.2.,p (103)
From (91) and (103) passing to the limit n - @, ¢ - 0 we obtain from (65) that:

2 aj (uj, vi) + i I!'x;[vb dly =
I

=1 J=1
F =

=EU‘|“‘)| W‘Elﬁr illlzl"‘!ri (104)
i=1

where we have used (46b). Note that ¥; N L™ (T}") where I} is any subset of I';(on which
€; is connected with neighboring body) is also dense in V; for the V-norm.
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To complete the proof we have to prove that:
VEBWY, j=12..p0 (103)

To show (105) we follow a method developed by RAUCH [29]: (93) implies by Egoroff's
theorem, that for every a > 0, we can determine wj,j=1,...,p with mese; < a such

that:

Uenj» uj uniformlyin I} -a;, j=1,2,..p (106)
with uJEL'(l}'-mJ).Duewt!ﬁsunifomoomergenoe,forwety @ >0 a o with
meswy < a can be found such that for any u >0, and for €< €g < #/2 and
n > ng > 2 u:

o] = ]| <5 . VxEI) - (107)

From (55) we derive easily the inequality:

Be (B) = (pnm(e)=f A= 0pe i s e supy - 1 (108)
and analogously,
essinf i€ =0 P © - (109)

From (107) and (108, 109) we obtain that:

ﬁaf([uuns mm Bi®) s e BE s

-{| se | fuem}—€1
< s f6) =D (10)
and
B () = essinf P (E) = Py ([uenl) . (111)
V=& <p

respectively. Due o (110), (111) we obtain for any ¢ =0 a.e. in I} —w; with
e € L™ ([} — w)) that:
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J Bu@nears [ pyuepears S Fe@pear 1y
I} —wj [j'~w Ij'—aj

which as € -+ 0 and n -» ®© becomes:

'f Bu(upears [ years ff Bie () ¢ dT (113)

I} —wj I} —wj I} —wj

Passing to the limit & - 0 we have using Lebesque's theorem that:

J. Bi(ful)edl < rf xedl = _'I Bi([u)edl . (114)
i o I} ~wj Ij'~oj

Since e = 0 is arbitrary, (114) implies that:
LEB (W) aein Tj —wj, j=1,..p

Taking a as small as possible, implies (105) q.e.d.

Remark 1. If the interfaces are not on the boundaries of the bodies €3; but on ;' C
as e.g. happens in the case of composite plates, then in (46a,b) L% (083 % fhad (T}) have to be
replaced by L% (Q;'), L™ (&) respectively. However for plates the compact imbedding
V; = H* (Q)) € C° () impliesthat H* (§,) C L™ () and therefore (46b) is superfluous.

ON THE UNLOADING AND THE NUMERICAL SOLUTION OF
HEMIVARIATIONAL INEQUALITIES

Here we shall consider the case of unloading in the interface relations which we have
introduced. All these relations are generally multivalued and nonmonotone. We recall that
in [31] a method was given for the calculation of a structure for a given unloading path; the
method was called "method of macroincrements”. Here a more general method taking into
account all the possibilities of loading and/or unloading (not only along a given unloading
path), is presented. This becomes possible by using appropriately defined multifunctions
involving &,0,¢ and &. Here the dot means the time partial derivatives (assumptions of
small strains and displacements). We assume that the unloading is linear and that the
modulus of elasticity changes with the strain. The onedimensional case or an equivalent
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modulus of elasticity changes with the strain. The onedimensional case or an equivalent
stress-strain uniaxial law, is depicted in Figure 6. At each point along the softening branch
AB the question arises whether é = ég} is positive, i.e. that one must remain on AB, or
negative and then the elastic unloading paths AC, A' C’ etc. should be realized. If at the
end of a load increment the stress-strain of an interface element is on OAB, then within the
next load increment we can write that:

oNE dp(en) if en<ep, orif ey=zeo and éy=0 (115)

on=C(en)en if en2¢e and En<0 . (116)
If the stress and strain of an interface element are, e.g., on A’ C' then:

on =C (en') eN (117)

where ey’ denotes the strain at 4’. We may easily conclude that (115-117) can be written
as

aN € Jp (en)" ¥ (eN) + [dp (en) x4 + C (en)" (en)" x-]1 g (en, on) (1 = ¥ (en)) +

+CEN) (en) - (1 —q(evon) - (1 =y (en)) (118)

where y (2y) = {l for ey < ey, 0 for ‘H=¢o} and &g is the strain for which irreversible
[

strains appear, x =“—N and x4+ and x. are the positive and the negative parts of x
N .

respectively, q(en,on) = {1if (enon) € E, 0 otherwise} with E={(znon) [oy € dp(en)}.

In (118) C(ey’) is assumed as known and corresponds to (gy,on) €E. The

aforementioned thoughts hold for any type of nonmonotone stress-strain law with unloading.

The general form of the above law is a differential inclusion of the form:

0 EF (en, om, iN) (119)

where F is an appropriately defined multifunction. Note that the classical elastoplastic law
is a special case of (119). Usually we know oy and ey for a given load p and let a new
load pdr be imposed. For the total load p + pdt be imposed. For the total load p + pdr
the stresses and strains become oy + dydr and ey + &yt and thus for the whole process
an incremental relation of the form:
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6N € F1(eN, on, &N) (120)
can be written. Thus in the framework of the interface problem of Section 4 we can formulate

now the following dynamic problem on the assumption of small strains and small
displacements.
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Figure 6. On the unloading problem
(m} , . s .
Findon Q X (OT),m =1,2, ../ displacement fields u*"’ which satisfy:

" i 1
P = off) 4 ), o = L+, O = Cop) a2

the boundary conditions (23) and (24), the initial conditions &™ = u{™, 4™ = u{™,
a‘lE,”‘) = o'g’u'), and the interface conditions:
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0 € Py (SF, uf, of™: 5E%) . 0 € Fr (5P, o, uf™; 5§ (122)

where Fyy and Fr are appropriately defined multifunctions.

Note that the application of a classical incremental jterative method for the numerical
treatment of the loading-unloading law of Figure 6 leads naturally to hemivariational
inequalities and actually to eigenvalue problems for hemivariational inequalities, Tn order
to explain it let us consider an interface whose behaviour is simulated by interface elements
. obeying the law of Figure 6a. Suppose that at the end of a load increment some interface
elements have stress and strain on the loading branch of the diagram, say at A, and some
on an unloading branch, say at B, Then for the next load increment Ap we have to solve
a problem where the interface elements at 4 obey the law of Figure 6b and the interface
clements at B the law of Figure 6¢c. Obviously a hemivariational inequality characterizes
the new position(s) of equilibrium. Of course we may consider the loading AAp, where 4
is unknown and to solve a "parametric hemivariational inequality” in order to {ind the value
of the load increment for which. the loading-unloading mode remains the same, i.e. the laws
of Figure 6b,c hold at the interface. Note that an appropriate approximation of the curved
parts of the diagrams by line segments leads Lo nonconvex linear complementarity problems
(cf. [12]). It is worth mentioning that the tiagrams of Figure 6b and 6¢ contain a "decision”
problem concerning the branch to be'followed. A classical incremental iterative procedure
uses only a part of the "information” contained into the aformentioned linear
complementarity problem.

Concerning the numerical treatment of hemivariational inequalities there are many open
questions, Note first that a convexification of the energy climinates certain important
positions of equilibrium (cf. Figure 6d). Let us now consider a static problem: The total load
p is givén and we have to find all possible positions of equilibrium. The problem leads to a
substationarity problem and every local minimum of the potential energy corresponds to an
equilibrium configuration. Usually there are huge numerical difficulties concerning the
determination of all local minima of a general nonconvex and nondifferentiable function.
We mention here as a possible algorithm- the bundle method of
LEMARECGHAL-STRODIOT ([32] which is now at the stage of experimentation.
Analogously to the case of classical trial and error methods, one could make some
combinataorial attempts to find on which part of a nonmonotone interface law, (cf. e.g. Figure
1f) the solution can appear. But the substationarity property of the solution gives the answer,
exactly as in the case of convex contact problems the minimum property of the solution.
Another method related to the previous one is the regularization method whose convergence
has been already discussed in the previous Section. By means of the discretization and
regularization (Problem P,,) we obtain a system of semilinear algebraic equations depending
on &. The solution of this system "tends” as ¢ - 0 to the solution of the initial problem.
This system of algebraic equations has the general form:
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Ku+ Be(Tu) =p (123)

where u (resp. p) is the otal displacement (resp. load) vector, K is the stiffness matrix, T
is a transformation matrix such that Tu gives the appropriate relative displacements and
B, () is the vector of the nonlinear terms. Noteworthy is the sparsity of the nonlinear terms
which in some cases only slightly influences the monotonicity of the problem. In this case
the classical Newton-Raphson algorithm gives good results. At this point we would like to
remark that a structure with interfaces may have an overall equilibrium position in which
one or some elements simulating the interface may be in unstable equilibrium, For further
information on the numerical techniques for hemivariational inequalities and on the arising
questions we refer the reader to [9].
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ABSTRACT

This paper examines the parametric corvection of the symmeltric mass and stiffness matrices
representing the linear elastodynamic behavior of the associated conservative structure 1o a real
dissipative structure. The initial estimations of these matnices are considered fo have been
constructed by a finite element discretization. The parametric corection is based on the
minimization of the distance between the eigensolutions of the model 10 be comrected and the
identified eigensolutions of the physical structure.
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RESUMO

Este trabalho examina a corregdo paraméirica de matrizes de massa de rigidez siméiricas que

sentam o comportamento elastodindmico linearda estrutura conservaiiva associada a una
estruturareal dissipativa. As estimativas iniciais destas matrizes sdo supestas construidas através
de uma discretizagdo por elementos finitos. A corregio paramétnica é baseada na minimizagdo
da distdncia entre as auto solugées de modelos a ser correlacionado com as auto solugdes
identificadas a partir da estrutura fisica.

Palavras-chave: Dinimica de Estruturas = Validagio de Modelos de Elementos Finilos =
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INTRODUCTION

This article deals with the dynamics of linear elastic structures. The objective is to construct

knowledge models allowing the following predictive calculations to be performed with
increased precision: '

+ free or forced (transitory or steady state) behavior,
parametric sensitivity and parametric optimization,
active or semi-active control.

In order to accomplish this objective, the results of calculations deriving from finite element
(F_E.) models are combined with the results of prototype tests. The design variables of the
F.E. model are then corrected in such a way as to converge its behavior toward the observed
behavior of the prototype. The corrected F.E. model can then, observing certain precautions,
lead to an improved precision in the three kinds of predictive calculations cited above,

A physical approach to this problem of parametric adjustment (identification) consists first
of all in understanding why dilferences are observed between the behavior of the real
structure and its initial mathematical model (initial estimation), then to remedy the situation
by correction of the parameters:

responsable for three differences,
* respecting the configuration (connectivity) of the F.E. model,

maintaining a clear physical (or energetic) meaning.

The proposed method proceeds by a preliminary phase of localization of the regions of the
FE. model presenting dominant errors. The parameters characterizing these errors are
physical parameters such as: elastic coefficients; density; cross-sections; second order
moments of inertia (beams); thicknesses (plates); .. associated to the groups of FE.
regrouped into macro-elements. This regrouping allows, on the one hand, to take into
account the physical reality of the structure, and on the other hand, o reduce the number
of parameters in such a way as to deal with overdetermined systems, which are less sensitive
to the non-systematic errors present in the measured data,

ADJUSTMENT DATA

In the formulations which follow, the dynamic behaviors taken into account for the
parametric adjustment are the eigensolutions (eigenvalues and sub-gigenveciors) of the F.E.
model and of the structure. The eigensolutions of the structure are assumed to be identified



by a technique of modal identification allowing, in addition, the generalized masses to be
identified (see for example [1]).

The adjustment is performed using the following known quantities:
* K, M® € R € stiffness and mass matrices of the F.E. model, symmetric, positive definite

© A5y €RSY\v=1,.,N ecigenvalues and eigenvectors of the F.E. problem:
(K = A° M°] ¥° = 0, normalized such that: Ty’ M*y* =1,

Let:

A =diag RO ERMN ;. Y =[.ff. ) ERCN
These matrices satisfy the orthonormality relations:

Tye . MYyml,, TrXY=A,

! ).:',z’:' €RLv=1,.,n cigenvalues and normalized sub-eigenvectors identified on
the structure at ¢ instrumented degrees of freedom (dof), z7' is a sub-vector of
¥" € RSY, solution of the F.E. problem: [K™ -1:'&("],:‘ =0, where

K™ M™ € RS € are the unknown (and to be identified) mass and stifness matrices of
the structure.

Let:

"= |ER"; =L JERN

where z:ERC" is the sub-vector of y§ associated with the ¢ instrumented dof.

CHARACTERIZATION OF THE "DISTANCE" BETWEEN THE STRUCTURE
AND ITS FINITE ELEMENT MODEL

The distance is evaluated by calculating the difference between homologous eigenvalues and
eigenvectors:

M =2, v=L..n; M =22, v=l,..n,ERL,
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Thisyields ¢ - n + n equations. In practice, these differences are in fact utilized in the form
of dimensionless quantities, which have not been introduced here in order to simplify the
notation.

The evaluation of this distance makes sense only if the cigensolutions have been matched,
that is to say, if it is possible to associate an identified eigenmode with its homologous F.E.
mode (in eigenshape and in sign). With this purpose, the matching matrice A4 is formed,
whose elements are calculation from:

, T
I TR

The matrice A is equal to the unit matrice when the identified and calculated modes are
identical. In practice, two modes are considered to be homologous when, in a column of A,

the largest element has an absolutevalue A, > .7.The s™ F.E.mode s then the homologue

of the v* measured mode. If this condition is not respected, it will be seen that it is still
possible to use the equations relative to these modes by employing an appropriate technique.

PRINCIPLES OF THE LOCALIZATION BY A SENSITIVITY METHOD.
DETERMINISTIC GAUSS-NEWTON APPROACH

Parameterization of the Macro-Elements, Having defined the "distance™ between the
structure and its F.E. model by: Al,; Az,,v = 1,..,n, it is then natural 1o use a sensivity
method to express the evolution of the eigenvalue and sub-eigenvectors as a function of the
variations of the design parameters intervening in the F.E. model. These 2r - macro-element.
parameters are assumed to intervene linearly in the stiffness and mass matrices:

r:isﬂ{: : M“i”““: (1)

i=] i=1

where r is the number of macro-elements, Kf, M{ are the stiffness and mass matrices of

the i macro-element; s, m; the stiffness and mass modification parameters of the *
macro-element. It is possible that several mass and stiffness parameters may be defined for
the same macro-clement (corresponding for example, for the stiffness of a beam, to the
longitudinal, torsion and bending energies) in such a way as (o act independently on the
different types of kinetic and strain energies.
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Calculation of the Sensitivity Matrix. The vector z; is expressed as a function of z; by

performing a first order Taylor series expansion;

ST L. A
v [
M=t ) asids,--i-gamidm,-,

i=

-dsl =

at | a at. |,

az5
S"Ap=[—v‘ ] — |, v=14n
¥ a5y ds, am, am, dm,
dm,

An analogous definition can be made for the eigenvalues:

ds,
O NN |
¥ “[851 s om; "’ am,] dm, | ° - S
dm,

Regrouping equations (2) and (3) yields:

(2)

3



et S | &S ]
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&1 - ‘ L) ér

= —~ 4

e I S R Y ®

asy B r &"l v &ﬂ,

%, Z| |

e l am, |4 |

d=5-4p where d € R

The calculation of the terms of the sensitivity matrix is well known. The only hypothesis
made is that the derivatives of the eigenvectors can be expressed on the extended basis of
N (N = n) E.E. eigenvectors:

o
ja,—r=Y'f$: '&7‘=1"4 (%)

It can easily be shown from the derivation of the equilibrium equations and from the
orthonormality relations that:

¥, dy e e

E“N’i'fi';"-“ﬁ' =0 d = -T¥ Ky, ©
-a}-i=}"aj s dy = d ; ﬂ!..a-—ll'rfm}")' dl, = ATy ME

&ﬂ; v-‘:: 1:_1:- 2 v i Yyl 3 My P4

v Si v m; _
E=—dw; m=—dw (6 bis)

From the expressions (6), it is apparent that the sensitivity matrix depends essentially on the
eigenvalues calculated by FE. and on the matrices ' Y* Kf ¥* and "Y* Mf ¥°.

In order to transcend the particular type of F_E. code used, the assembly of the elementary

matrices M7, Kf of the macro-elements and the preceeding products are performed in an
independent program. The results are stored in a standard file. This preliminary work being
done, the sensitivity matrix § can be evaluated without having 1o re-read the matrices



M®; K%, which are often of very large size.

The expressions (6) show that the terms of the sensitivity matrix depend in the denominator
on the differences (A5 — A}), which can provoke numerical instabilities (or lead 1o a
non-convergent series expansion) when the F.E. model possesses quasi-multiple eigenvalues.
A method has been proposed [2] allowing these eigenvalues to be artificially separated in
the calculation model by modifying the stiffness matrix by the addition of a sum of singular
matrices of rank 1. The measured data are also corrected in order to account for the
introduction of these matrices. The problem posed by the quasi-multiple frequencies for the
calculation of the sensitivity matrix is then surmounted under to condition that, after the
introduction of these modifications, the matching between calculated and measured modes
remains possible.

If this matching is no longer possible, it is proposed Lo replace the equations corresponding
to the differences between the eigenvalues of homologous modes by the sensitivity relations

relative to the products and sums of the neighboring eigenvalues [3].

Exploitation of the Sensitivity Matrix for the Localization of the Dominant Errors. Be

fore the construction of the sensitivity matrix, a first siep consists in selecting the
macro-elements. It is required that all the elements belonging to the same macro-element
be related to a common set of mass and stiffness parameters, and that the columns of the

sensitivity matrix corresponding to these parameters have a significative importance.

The first partitioning into macro-elements is generally performed as a function of the
geometry of the structure. Certain elements of the sensitivity matrix depend on the quadratic
forms 'yS M{yS and Tyl K{yS which represent the kinetic and potential energies of the

i® macro-clement at the mode v. It would be all together illusory to seek to select

parameters in region having weak energies. The parameters associated with the
macro-elements whose energies are negligeable relative to the global energy of the structure
are thus eliminated a priori (or regrouped with others).

This elimination being made, the problem takes on the following form:

d=S5g " Apg, )

where S represents the sensitivity matrix with a certain pumber of columns suppressed
(or regrouped); Apg is the vector of parameters to be localized.

In(7),n*c equations are relative to the eigenvectors, s relative to the eigenvalues. In order
to manipuiate lines and columns having equations of the same dimensions, (7) is modified
in such a way that the vectors 4 and App contain the relative variations of the eigenvalues,
eigenvectors and parameters. Finally, to account for the fact that the identification of the
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eigenvalues is much more accurate than that of the eigenvectors, these #n equations are
weighted by a coefficient of the order of c. This leads then to the relation:

d' =Sg' - Apg’ . (®

It is a matter of qualitatively exploiting (8) in order 10 find which parameters allow the best
representation of the vector d' expressing the distance between the structure and its
mathematical model. A first solution consists in resolving (8) in the least squares sense:

Apg’ = ["Sg' S Sg' d ®)
Experience shows that this solution is not the best. In effect, it 1ends to give a global solution
in which the components corresponding to the weakly sensitive regions are too important.
A phenomena of compensation can also be observed where the augmentation of parameters
in one region is compensated for by the diminution of the parameters in a neighboring region
(problems of linear quasi-dependence).

As an alternative, the relation (8) can be exploited in the following fashion: Among the
columns of S§g’, the single column is sought which best represents the vector d’, then the
combination of two columns, three columns, etc. which constitute the best sub-basis for the
representation of the vector d'. Let: SR'O;) be the best sub-basis of dimension p;
ﬁpg'“’} the combination of the corresponding parameters evaluated in the least squares
sense and: d'P) = §5"®) - Ap P} the best representation of d° in the -sub-basis of
dimension p. Let the scalar ¢ be defined as the distance between d' and d'? such that:

d' —d'®
e%=1m“—,—u-. 10
Nal (5
Mocro-element number
%
100
e o P .
[
0 o e &0 o "
v
+ o+ + o+
Tt s 4§ o T R T
+: Bliffness mocro-elemant 0 Mass macro-element

Figure 1. Typical evolution of ¢ as a function of the dimention p of the sub-basis



In example of Figure 1, taking into account the stiffness parameter of the macro-clement n®
3 allows a reduction of ¢ from 100% to 80%. The addition of the column corresponding to
the mass-parameter of the macro-element n® § decrcases e to 70%. Then, taking into
account the supplementary parameters does not noticeable reduce e, It is clear that, in this
example, the regions presenting dominant errors are the macro-clements n® 3 and 5.

If the selected parameters were the "good ones”, the error e should tend toward zero. An
imporiant residual error can be attributed to gither a poor correspandance between the
macro-elements and the elements actually bearing the errors, or an incorrect modelization
of the errors, or to the influence of the higher order terms not taken into account in the local
linearization (method of Gauss-Newton). An approach such as Newton's method based on
a local quadratic model (and this including the second derivatives) is presented in a more
general manner in the following paragraph. In the relations which follow, in order to return
to a resolution of the localization problem by a deterministic Newton-type approach, the
values of the matrices Pp and Py should be takenas: Pp =0, Py =1, 4,

PARAMETRIC ADJUSTMENT BY NEWTON’S METHOD. BAYESIAN
APPROACH

Assuming that the localization phase of the dominant modelization errors has been resolved,
the next problem is that of qualitatively correcting the parameters in the regions presenting
dominant errors. This problem is resolved by iterative minimization of the following
functional:

1
) = 3 Up) Porip) + T = V) Pp (0 = £

in which:

" Ap) =" = (p) €ER*M D contains the “distances” berween the identified and
calculated eigensolutions, 7" = T(TZ" TA™); 7 (p) = (™25, k) with: 2", 2° € R™Y;
A™ 2€ € R™! formed respectively from the n sub-eigenvectors corresponding to the
¢ identified dof and the » cigenvalues.

* pip" € R%1 vectors of dimension g equal Lo the number of design variables taken into
account in the macro-elements presenting the dominant errors; p designates - the vector
of sought parameters, p° the vector of initial estimations of these parameters.

# PP diagonal matrices, positive definite, respectively the covariance matrix of

uncertainties in the measured responses and the covariance matrix of uncertainties in the
initial estimation of the parameters p°.
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A quadratic model is constructed of flp) in the neighborhood of p =p° then the
minimization of f{p) is approximated by the minimization of this quadratic model. Letting:

Ap=p - - p°, the minimization problem is writlen: Min f(Ap) and the necessary condition
for 8 minimim: L. @ =0 leadsto:

abp

ap = [TSp") P, 5% + Pp + V) TSN P, ")
with:

=5 | e

with the general element i, J: % |

o
V(p®) € R*? with the general element i, :
ar Py

Yo=laag a1

The approximation of f{p) by a quadratic model does not allow convergence Lo be obtained
in a single calculation step. The calculation thus proceeds in an iterative fashion with, on the
one hand, a verification of the norm of the solution Ap and, on the other hand, an updating
of the sensitivity matrix § and of matrix of second derivatives at each iteration,

Normalization of the Solution Ap. This normalization can be made by muitiplying the
solution Ap by a reduction coefTicient or by introducing a weighting coefficient limiting the
norm of Ap. Tests have shown that the two methods lead to similar results and the first
technique is used as it is simpler to apply. Let /i be the maximum norm allowed for Ap (in
pratice h =< 1, which sets the upper limit on the variation of parameters at 100%). The
normalized solution Ap is obtained by:

~

8= Tiea W h<|ldells Ap=dp it h=>|lapll .

Updating of the Sensitivity Matrix 5. The sensitivity matrix involves the parameters as
well as the eigenvalues and eigenvectors of the F.E, problem. As for the parameters, p is
replaced by p + Ap. For A, Y° it is impractical to re-make a F.E. analysis after each
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iteration. However, it is possible to make an approximate calculation working in the modal
basis Y°. Letting, as before:

K'=Esil_€?, M'=Em|,
i

s

For the initial F E. Model:

K= K, M= M
) Z ! @ Z :

The first iteration yields dst"), dm!"). The new eigenvalue problem becomes:
(DK + 2 asfV kF —AD (M7 + 3 dmD MO = 0
i i i i

Let: ¥° =¥ ¢" be the new modal basis, By using an extended basis of A modes and
(o
multiplying on the left hand side by 7Y, the following equation is obtained, having taken
(@)
into account the orthonormality relation:

[A+ X as, VKTV =20 (14 Y dm, 7Y ME V)] g =0
W To o o Tm @ (O
which can be rewritten:
[A® + AKO — 2D (1 4 AMO] 1) = o (11

The matrices are strongly diagonal dominant. A resolution by the method of Jacobj is
particularly well adapted to this problem.

The resolution of (11) yields A® and Q' such that:

oW (/\e + E ds; "Y' K yf) o) = Al
@ T g @ o

TOW (r+ > dm, Ty MY ) QW =7
Piom @ (O

The new eigenvalues are defined by A‘D, the new eigenvectors by: ¥° = ¥¢ Q¥ .
(1) (0)
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The sensitivity matrix uses the matrices Y* Kf Y%, TY° Mf Y, where j is the iteration
m n ® o

number. It is thus not necessary to calculate the new Y, and the matrices can be updated

using the following relations:

g Sl L g

T

The sensitivity matrix can thus be updated at each iteration. The parameters at jteration
j are deduced from those of iteration j—1 by the relation: pf? = pf™ (1 + App))

APPLICATION TO THE TEST CASE GARTEUR N* 1

The method of parametric adjustment proposed above is applied to an initial test case
developed by R. Ohayon et H. Berger, Onera, in the context of the activities of the "Action
Group; Refinement of Structural Dynamics Computational Models, GARTEUR". The test
case consists of a pure numerical simulation. The “identified” eigensolutions are generated
by & calculation using the initial F.E, estimation M®, K° perturbed by localized parametric
modifications which the participants in the case test must attempt to find.

The considered structure is a bidimensional frame in plane vibrations (Figure 2). Each of
the 83 finite element segments is considered as a superposition of a bar element in axial
deformation with the mass concentrated at the nodes and a beam element in bending
deformation and with zero mass and inertia. The model has 3 dof per node, 78 nodes, giving
a total of 234 dof.

- - A A

3m

\
\
\

Sm 5m Sm

Figure 2. Geometry of the structure and finite element mesh
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The Following Data are furnished by the Onera. a) Initial estimation: geometrical and
mechanical characteristics: E = .75 10 '! Pa, p = 2800kg/m>, I moment of inertia =
=756 107! m"; cross-sections of the vertical elements: .6 1072 mz; of the horizontal

elements: 4 1072 m%; of the diagonal elements: .3 1072 m? In order to verily the
dynamic characteristics of this model, the first 20 eigenfrenquencies provided along with
the first 5 sub-eigenvectors on 78 dof (whose positions are indicated in Figure 5) and the
first 5 generalized masses.

b) Identified eigensolutions: the first eigenfrequencies of the structure: M™ = MT,
K™ = K* 4+ AK; the first § sub-eigenvectorson the 78 preceeding dof; the generalized
masses associated with the first 5 eigenmodes. In the test case, the parameiric

modifications have only been introduced in the design variables influencing the stiffness
matrix.

Results obtained from the Localization Parametric Adjustment. Three analyses, differ-
ing by the dimension of the macro-element introduced are performed.For each of these
analyses, the method of Gauss-Newton has been used with: P, = 0; P, = .

Analysis N? 1: Partitioning into 13 "physical” beams defined by the plan of the structure.
The following design variables have been introduced for the localization: | parameter | per
beam; 1 parameter § per beam; giving a total of 26 parameters.

The results of the localization and of the parametric correction are reported in Figure 3 and
the residual differences in the eigenfrequencies after the parametric correction in Figure
6.1.

Analysis N® 2: Partitioning into 26 half-beams (each physical beam from analysis n° 1 is
divided in two parts). The following design variables have been introduced: 1 parameter
I' per half-beam; 1 parameter § per half-beam, giving a total of 52 parameters.

The results of the localization and of the parametric correction are reported in Figure 4 and

the residual differences in the eigenfrequencies alter the parametric correction in Figure
6.2,

Analysis N¢ 3: The partitioning corresponds to the 83 finite elements ¢f the model. The
following design parameters are introduced: One parameter I per finite element; one
parameter § per finite element; giving a total of 166 parameters,

The results of the localization and of the parametric correction are reported in Figure 5 and
the residual differences in the eigenfrequencies after the parametric correction in Figure
6.3a and 6.3b.
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Treatment N* 1: 13 Macroelements; one macroelement = one beam
One parameter I per beam; one parameter S per beam. Total Nb. of parameters: 26

L
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Treatment N® 2: 26 Macroelements; one macroclement = half a beam
One parameter | per half beam; one parameter S per falf beam. Total Nb. parameters: 52

é. Positions of the pick-ups (26 pick-ups)

Results of the localization process: dominant areas

P s l -
for §: T i e
~ | | |
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Figure 4
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Treatment N¢ 3: 83 Macro-clements: one finite-element = one macro-clement
One parameter | per finite element; one parameter S per finite clement. Total Nb. of
parameters = 166

-3 bbb bbb
Wy
b A R, b N

Positions ¢) the pick-ups (76 pick-ups)
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Synthesis of the Results. The following data have been taken into account in the three
performed analyses:

+ number of identified eigensolutions exploited in the localization and parametric
correction: §

- number of calculated eigensolutions exploited in the evaluation of the first derivations
of the eigenvectors: 15

+ number ¢ of pick-up degrees of freedom: analyses n° 1 and n®2: ¢ = 26; analysis n°3;
¢ =78

The positions of these degrees of freedom have been arbitrarily chosen. A method for
optimizing the repartition of the pick-ups is currently under development, but has not been
applied to this test case,

Figure 6 and Table 1 regroup the values of the "distances” betwecn the culeulated and
identified eigensolution belore and after the parametric correction, These “distunces” are
defined as follows:

a) Distances relative to the eigenfrequencies:

o O st
— % = A X 100

% £

where: j‘{,’"’ is the v** identified eigenfrequency, p‘] isthe v* eigenfrequency calculated
using the finite element model and matched to #"™

b} Distances re]ative to the sub-eigenvectors:

Let C designate the mtal number of degrees of freedom of Lhe finite element model, The
calculated eigenvector y(‘} € R%' is normalized such that:

BOMORO =1, v=12.

The associated eigenvector yf,"") of the structure is also normalized, using a definition which
is coherent with the preceeding one:

TS0m) pgtm) gom) = v=1105

Let yi™ € R*! designate the sub-eigenvector of yE,’"} identified from tests on the structure

and y{) € R®! the homologous sub-eigenvector extracted from . The distances
between the sub-eigenvectors are defined by:
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o N et 3 1N

= 100
Y | 1y}

T’{m}ﬂt}
L™ - 1)

(1 -MAC,) % = (1 - ) x 100

Table 1 summarizes the distances between the eigensolutions:

+ in column n® 2, the initial distances (with y{") and y{) € R**1)

* in column n° 3, the initial distances (with y{™ and y! € R™ ")

* in column n? 4, the initial distances after the parametric correction of analysis n® |
¢ and y{) € R?Y)

- in column n? 5, the residual distances after the parametric correction of analysis n? 2
o™ and yi9 e R*Y)

* in column n° 6, the residual distances after the parametric correction of analysis n® 3
o$™ and yi¥ € R™ 1y,

Finally, Figure 6 reports in detail, mode by mode for the first 20 modes, the distances in the
eigenfrequencies respectively before and after the parametric corrections.

Note again that only the first 5 "identified” eigenmodes have been exploited for the
localization and for the parametric correction.

As the distances in the cigenfrequencies becomes very small after analysis n9 3, they have
becn simultancously plotted using both a lincar scale (Figure 6.3a) and a logarithmic scale
(Figure 6.3b).

Comparison with the Exact Solution. Conclusions. The relative parametric variations
effectively introduced (defining the model M™; K™ sought) and furnished by the Onera
after the participants returned their solution are represented in Figure 7. In comparison with
the resulis obinined here, the following remarks can be made:

Analysis n? I: the macro-clement partitioning was much too crude and docs nol lcad 1o
a good solution The localized regions however are nol altogether erroncous.

Analysis n® 2! the localization is not perfect, bul by and large concern the regions
effectively perturbed. The reduction of the "distances” between the ecigensolutions is
already lairly satisfactory.
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In order to augment the efficiency and the applicability of parametric correction methods
to technical problems, current research is directed towards:

a) the development of methods allowing the measured frequency (or time) responses to be
treated directly,

b) improving the robustness of the methods with respect to the errors contained in the
measured data,

¢) the optimal definition of the measurement points (pick-up mesh),

d) the elimination of the matching problems between calculated and observed

eigensolutions.
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Analysis n? 3: overall, the localizations are good, except in the region of the nodes n? 71,
74 and 76 which is completely hidden. In fact, this region has very low strain energies for
the five observed modes and thus, by the method presented here, is practically
unobservable.

Table 1. Synthesis of the "distances" between eigensolutions

Tnitial | Initial | Analysis | Analysis | Analysis
c=26 | c=T8 [ N®1 ¢=26 | N°2 ¢=26 | N*3 ¢=T8
3 A
é > 1w res | 166 2 = 04
e fo
X
?zl?r > I%l% 151 | st 41 27 13
ve] *
5 ‘Ap. !
D -y’l % | 1472 | 1390 | 584 3.46 8
vl ¥
1 5
< Y -Macy% 282 | 264 n 08 641073
v=1 f
+1 41
l g}
I M - *
[ 20 il P
for 5t ‘ // I // //
L I~ Pl L
+1
i |
-~ - >l
for It ol ~ i I
i -~ / |
- ¥ o i
P ~ v
- _J-os
+0,5 -0,5

Figure 7. Perturbed regions defining the model K™. Relative variations of § and of [,

(sm;s';r"-f)

r



OBJETIVO E ESCOPO

A Revista Brasileira de Ciéncias Mecénicas visa a publicacio de trabalhos voltados a0 projeto,
pesquisa e desenvolvimento nas grandes dreas das Ciéncias Mecénicas, B importante apresentar
os resultados ¢ as conclusbes dos trabalhos submetidos de forma que sejam do interesse de
engenheiros, pesquisadores e docentes.

O escopo da Revista ¢ amplo ¢ abrange as dreas essenciais das Ciéncias Mecdnicas, incluindo
interfaces com a Engenbaria Civil, Elétrica, Metalirgica, Naval, Nuclear, Quimica e de Sistemas.
Aplicactes de Fisica e de Matemitica 4 Mecdnica também serfo consideradas.

Em geral, os Editores incentivam trabathos que abranjam desenvolvimento ¢ a pesquisa de métodos
tradicionais bem como a introdugio de novas idéias que possam potencialmente ser aproveitadas
na pesquisa e na indistria.

AIMS AND SCOFPE

The Journal of the Brazilian Society of Mechanical Sciences of concerned primarily with the
publication of papers dealing with design, research and development relating to the general areas
of Mechanical Sciences. It is important that the results and the conclusions of the submitted papers
are presented in & manner which is appreciated by practising engineers, rescarchers, and
educationalists.

The escope of the Journal is broad and encompasses essential areas of Mechanical Enginecring
Sciences, In addition, interface with Civil, Eletrical, Metallurgical, Naval, Nuclear, Chemical and
System Engineering as well as in the areas of Physics and Applied Mathematics, are welcomed.

In general, the Editors arc looking for papers covering both development and research of
traditional methods and the introductions of novel ideas which have potential in science and
manufacturing industry.

Note and Instructions To Contpbutors

1. The Editors arc open 10 receive contributions from all parts of the world, and manuscripts for
publication should be sent to the Editor-in-Chief or ta the appropriate Associate Editor.

2. (i} Papcrs offered for publication must contain unpublished materials and will be refereed and
assessed by reference 1o the aims of the Journal as staled above. (ii) Reviews should constituie
outstanding critical appraisals of published materials and will be published by suggestion of
the Editors. (i) Letters and communications 1o the Editor should not exceed 400 words in
length and may*be: Criticisms of articles recently published in the Joumnal; Preliminary
announcements of original work of importance warranting immediate publications; Comments
on current engineering matters of considerable moment.

3. Only papers not previously published will be accepted and authors must agree not 1o publish
elsewhere a paper submitted (o and accepted by the Journal. Exception can be made in some
cases of papers published in annals or proceedings of conferences. The decision on acceptance
of papers 15 1aken by the Editors on behelf of two reviews of outstanding scientists and will take
into consideration their originality, contribution to science and/or technology.

4. All contribution are to be in English or portuguese. However Spanish will also be considered.

5. Manuscripts should begin with the title of the article, always including the english title the
author's name, and 1he address from which communication comes, In the case of co-autors,
respective addresses should be clearly indicated. Follow with the abstract in the paper’s
language; if different from english an extended summary in this language shell be included.
Give also key words for the paper. Next, it possible, the nomenclature list shell be presented,

6. Manuscripis should be typed with double spacing with ample margins, in accordance o other
published material submitted in triplicate. Pages should be numbered consecutively.

7. Figures and line drawing should be originals and include all relevant details; only excelent
photocopies should be sent. Photographs should be enlarged sufficiently to permit clear
reproduction in hall-tone. If words or numbers are to appear on a photograph then they should
be sufficiently large to permil the necessary reduction in size. Figure captions should be typed
on a separate sheet and placed at the end of the manuscript,



H.G. NATKE

B. HOROWITZ

J.C.M. CARVALHO
V. STEFFEN JR.
and

F.P. LEPORE NETO

P.D. PANAGIOTOPOULOS

G. LALLEMENT
J. PIRANDA
and

A. HAMRANI

Retent developments in
experimental modal analysis
- trends and needs

293

Decomposition scheme for
a class of design optimization
. problems

307

Modelos geométricos direto ¢
inverso no estudo de robds
manipuladores

323

On the behaviour of adhesive
joints via hemivariational
inequalities. Necessary and
sufficient conditions

Parametric identification of
conservative self adjoint
structures




	z0001
	z0002
	z0003
	z0004
	z0005
	z0006
	z0007
	z0008
	z0009
	z0010
	z0011
	z0012
	z0013
	z0014
	z0015
	z0016
	z0017
	z0018
	z0019
	z0020
	z0021
	z0022
	z0023
	z0024
	z0025
	z0026
	z0027
	z0028
	z0029
	z0030
	z0031
	z0032
	z0033
	z0034
	z0035
	z0036
	z0037
	z0038
	z0039
	z0040
	z0041
	z0042
	z0043
	z0044
	z0045
	z0046
	z0047
	z0048
	z0049
	z0050
	z0051
	z0052
	z0053
	z0054
	z0055
	z0056
	z0057
	z0058
	z0059
	z0060
	z0061
	z0062
	z0063
	z0064
	z0065
	z0066
	z0067
	z0068
	z0069
	z0070
	z0071
	z0072
	z0073
	z0074
	z0075
	z0076
	z0077
	z0078
	z0079
	z0080
	z0081
	z0082
	z0083
	z0084
	z0085
	z0086
	z0087
	z0088
	z0089
	z0090
	z0091
	z0092
	z0093
	z0094
	z0095
	z0096
	z0097
	z0098
	z0099
	z0100
	z0101
	z0102
	z0103
	z0104
	z0105
	z0106
	z0107

