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THE PERFORMANCE OF VALVELESS PULSED 
COMBUSTORS IN GAS TURBINES, USING A 
MATHEMATICAL MODEL 
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DA GEOMETRIA OTIMA E DO DESEMPENHO DE 
QUEIMADORES PULSATIVOS SEM VÁLVULA EM 
TURBINAS À GÁS 
J .A. Olorunmaiye 
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Universíty of llol'in 
Ilorin, Nigeria 

J .A.C . Kcntfteld 
Dept. of Mech. Eng. 
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ABSTRACT 
A matltematical model of valveless pulsed combustors, in which the effects of chemical 
reaction were consider'Cd, is presented. The ftows in the inlet and tail pipe were 
a.ssumed to be one-dimensional whilst lhe combustion chamber wcu treated as a 
la~e reservoir· with uniform thermodynamic properties. The .fel o! hr;perbolic partia/ 
di erential equations obtained wer·e solved by a numerical methoá of charact.erútie~. 
T e model was used lo sludy the e!Jects of chan~es ín combustor g_eometry, and intake 
pre.uure and temperature on the performance oj the combustor. The model shows that 
shortage of fresh air in tlle combu.stion chamber is what degrade• the performance of 
the pulsed combustor when tlle geometry employed di!Jers from the optimum one. The 
result' obtained also show that pulsatlon amplitude in the combustion chamber, a 
parameter for assessing lhe performance of pulsed combU$tor, increo.tes with intake 
p1-essure whereas it decrease.f with intake temperature. lt is also established that an 
optimum perjormance of valveless pulsed combustor can be obtained in gas turbine 
application, if there is intercooling between the compreuor and the pulsed combustor. 
Keywol'ds : Valveless Pulsed Combustors • Combustion Chamber • Method o{ 
Characteristics • Gás Turbine Application 

RESUMO 
Um método matemático de queimadore& pulsativos &em válvula é apresentado em que 
o& efeitos da r·eaçõo química &Õo considel'ados. 0& ftuzo& na entrada e no tubo de 
&aído &ão con&iderados unidimensionai& enquanto que a câmara de combustão foi 
tratada como um grande reser·vatório com propriedades termodinâmica& uniformes. 
O conjunto de equaçõe.s diferenciais parciais hiper·bólicas obtido foi resolvido pelo 
método numérico de caractedaticas. O modelo foi utilizado para estudar os efeitos 
das mudanças na geometria dos queimadores, da preS~Õo na entrada e da temperatura 
no desempenho do queimador. O modelo mo&tra que a diminuição de ar na camara 
de combustão é o fator de degmdaçâo do desempenho do queimador pulsativo quando 
a geometria utiliZada dijeT'e daquela ótima. 0& resultados obtido& mo&tram também 
que a amplitude de pulsação na camara de combustão, parâmetro para acessar-se o 
desempenho do que1mador pulsativo, aumenta com a pressão na entrada enquanto 
diminui com a tempemtura na entrada. Também conclui-&e do l!resente trabalho 
que um desempenho ótimo do queimador pulsativo .fem válvula poa_e ser obtido nas 
aplícaçõe& de turbinas à gás 1e houver um 1i8tema de refrigeraçao integrado entre o 
compressor e o queimador pulsativo. 
Palavl'as-chave: Queimadores Pulsativos sem Válvula • Câmara de Combustão • 
Método de Características • Aplicações em Thrbinas à Gás 

Submetido em Agoe~o/90 Aceito em Setembro/91 
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NOMENCLATURE 

Roman Letters 

Symbol 
a 

B,E,F,H,Y 

d 

E 

Ecc 

9i 

h 
H ,M,O,T 

I,J,L,M,N, V 

Nondimensional form 

A= a/ao 

c~.= cv.l Ro 

h'= hfR.oTo 

Meaning 
Speed of sound 

Group of terms defined after 
equation ( 11) 
Mass fraction of the i-th 
species 
Friction Factor 
Specific hea.t of 
gas mixture at 
constant pressure 
Specific heat of the i-th 
species at constant pressure 

Specific heat of 
gas mixture at 
constant volume 

Specific heat of the i-th 
species at constant volume 
Duct diameter 
Acitivation energy 
Internal energy of 
combustion 
chamber content 
Mole fraction of the i-th 
species 
Rate of production of the 
i-th species per unit mass 

of the gas mixture 
Enthalpy per unit mass 

Feet of characteristics (see 
Figures 2 and 3) 
Convective beat transfer 

coefficient 
Grid points (see Figures 2 
and 3) 
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K Reaction rate constant 
lo Reference length 
mcc Mcc = mcc/ Po 15 Mass of combustion 

chamber 
m 

. . 3 
M = mfp0 10 ao Mass ftow rate 

. III 
mi Mass of fuel consumed 

per unit volume 
in a unit time 

N N Number of species 
p P' = P/Po Pressure 
q Q' = qlo/aÕ Heat transfer rate 

per unit mass 
Q Heat tra.nsfer rate 
R R'= R/Ro Specific gas consta.nt 

of gas mixture 

Ri ~ = Rt/Ro Specific gas constant 
of i-th species 

Ru Universal gas constant 
s S = s/Ro Specific entropy 
t Z =tao/lo Time 
T T' = T/To Temperature 
u U = v.fao Velocity 
w W = wlo/aÕ Frictional force per 

unit mass 
X X= x/lo Axial distance 

Greek Letters 

Cl' Cl'' = Cl'/IÕ Area 

1 Cp/Cu Ratio of specific heat 
tl.t tl.Z Time step size 
tl.:t tl.X Spatial grid size 
! Emissivity 
p D =PIPo Density 
(J" Stefan-Boltzmann 

constant 

Subscripts 

CC Combustion chamber 
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g 

H,O,T 

HV 

in 
max 
rrun 

o v 

R 

TV 

v 

w 

o 

Superscripts 

z 
Z + ó.Z 

J .A. Olorunmaiye and J .A.C. Kentfteld 

Left end of the inlet 
Righl end of the inlet 
Left end of the tail pipe 

Right end of the tail pipe 

Fuel 
Internal energy, or 
enthalpy, or entropy of 

formalion of lhe i-tb 
species per unit mass 

Gas 
Feet of characteristics 

(See Figures 2 and 3) 
Along line HV 
(See Figures 2 and 3) 
Jnuer wall surface 

Maximum 

Minimum 
Along line OV 
(See Figures 2 aud 3) 
Reference pressure or 
temperature for the 

definition of enthalpby, 

internal energy, 
and change in entropy 

Along line TV 
(See Figures 2 and 3} 
Grid point V 
(See Figures 2 and 3) 
Wall 

Reference quantity; 
A mbient ai1· 

Normalized with respect to 

appropriale reference value 

Time Z 
Time Z + ó.Z 
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INTRODUCTION 

A pulsed combustor, by design , operates with combustion-driven oscillation 
which was once usually considered a nuisauce and even sometimes a danger 

[1) in practical combustion sys t.erns. Increasing interest is being shown in tbe 
application of pulsed combustors beca.use of their ability to operate witb gain 

in stagnation pressure [2), enhanced convective heat transfer to the wall [3], and 

reduced N01: formation [4). Domestic heating units in which pulsed combustors 

are wsed are currently being marketed under the trade name LENNOX PULSE 
FURNANCE. Work is being done to develop pulsed combustor for gas turbine 

application [5). 

Pulsed combustm·s of so lll <t iiY difTerent geometries have been built by various 
inventors. The ínlet of Lhe combustor· may be equipped with valves or it may be 

valveless, lhe inlet , in that case, being designed to function as an aerodynamic 
valve. The geometry of Lhe pulsed combustor ou which this work was done, 

the vaJveless SNECMA-Lockwood Type, is sbown in Figure 1. 

A disadvantage of pulsed combustors which has militated against their devel

opment is the difficulty of studying them theoretically due to the complexities 

of their working processes. This ha.s resulted in a situation whereby workers 
have relied almost exclusively on experimental cut-and-techniques to optimize 

the geometry of pulsed combustors. Servanty [6) reported that SNECMA, a 
Frene h aero-engi ne manufacturer , buílt and tested severa! thousand different 

configurations of valveless pulsed combustors between 1943 and 1971. 

Due to the realization of I h e advantages of good theoretical simulation as a cost

efTective means of predicting the efTect of design changes, severa] workers bave 

attempted to model Lhe operatíon of the pulsed combustor mathematically. 
/ 

Marzouk [7) developed a.n isentropic cold flow model to simulate the operation 

of the SNECMA-Lockwoocl combustor. The combustion process wa.s replaced 

by a s imulated instantaneous iujectíon of air resulting in a peak combustion 

chamber pressure measured experitlleutally. Cronje [8] extended this model to 
ínclude Lhe effect of heat tr·ansfPr aud frictíon. However , the a.ssumptions of 

Oow separation ÍO lhe tail pipe Atld COnStant-reaction-rate combustion OCCUring 

sequentially ínsteacl of concurrently \\'ÍLh c.harging/discharg!ng process in the 

combustion chamber, mini mised Lhe con lldence with which the mo dei could be 
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Figure 1. Proportions of a SNECMA-Lockwood valveless pulsed combustor. 
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applied as an optimizing tool. Clarke and Craigen (9] modelled tbe operation of 
an organ pipe pulsed combustor using a. simple overall reaction rate equation. 
Tbis model could not be used as a predictive too! due to tbe requirements of 
wall temperature distribution along the combustor a.nd pressure-time variation 
at the left end of the combustor as pa.rt of the data input. 

This paper describes a model which was developed to overcome the shortcom
ings mentioned above so that it can be used as an optimization too! for the 
geometry of valveless pulsed combustors. 

MATH EMATICAL MODEL 

Inlet and Tail P ipe 

Assuming the Aows in t.he inlet and tail pipe to be quasi-one-dimensional, and 
neglecting molecular diffusion, longitudinal viscous and conductive effect, tbe 
conservation equations for mass, momentum, energy a.nd species are: 

Du 1 ()P 
-+- -+w =O Dt p tJx 

Dh 1 DP 
---- =q+uw 
Dt p Dt 

(i=1,2, ... N-1) 

The chemical source function for each species 

9i = 9i(P, p, Ct, ... CN-d 

can be determined from t.he chemical rcactions t.aking place in the flow . 

The specific enthaJpy a.nd entropy are given by 

(1) 

{2) 

(3) 

(4) 

(5) 

(6) 
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and 

s = s(P,p, C1, ... CN-I) 

The gas mixture is assumed to be a perfect gas and 

N 
where R = L C; R; and 

i=l 

P = pRT 

N 

h= Cp(T- TH.) +L Ci hj, 

N 

where Cp = L CiCp, 
i= l 

i= I 

(7) 

(8) 

(9) 

Using equations (6) and (7) in equation (3) and substituting for the partia! 

derivatives and nondimensionalizing the resulting equations, the following can 

be obtained: 

where 

DS 
DZ =H+ y (ll ) 

B = ~ G { DR' [C' (T' - T' ) + h' I - p' r Ri } 
~ I C' p, R J; R' 
•=1 v 

E= ro(Q' + UW) DR' 
C' IJ 

F = U dlno 
d.X 
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__ I~ · { [ (DT8R') (c~;_ c~i) 
H- Cvf;rG, ln PR c~ c~ 

y = -ro;: D (QI + UW) 

The nondimensional form'> of equations (2) and ( 4) are 

a.nd 

(i= 1, 2, ... ,N -1) 

1 dP1 fJU ôU 
1oD ôX + ôZ + U ôX = -W 

DCi -G· 
DZ- 1 

289 

(12) 

(13) 

Equations ( 1 0)-( 13) constitute a set of quasi-linear hyperbolic partia! differen
tial equations which were solved using the method of characteristics. ln this 
method, a rectangular grid is imposed on the integration domain and the equa
tions are integrated along Lhe characteristics directions. The dependent vari

ables used are P1,U,S,CJ,C2, ···CN- l· Following the procedure given by by 
Courant and Hilbert [9] the characteristic curves and compatibiJity equations 
were derived. The characteristics having reciprocai slopes (U +A), (U -A) 
and U are labelled O V, TV, and H V respectively, see Figure 2. The finite 
difference approximation of the compatibility equations are: 

1 ( 1 ) I I ( B- E) 
Uv- Uo +lo DA ov(Pv- Po) =- AF + W + ioDA ov ôZ (14) 

l ( l ) I I ( E- B) ( ) Uv- UT- - - (Pv- PT)=- - AF + W + -- t::..Z 15 
lo DA TV -y0 DA TV 

Sv = SH +(H+ Y}fiv t::..Z (16) 
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(17) 

(i= 1,2, ... ,N -1). 

The double subscripts on a term indicates that the term is taken to be mean 

of its value at the end points indicated by the two subscripts. 

I 
fiZ I 

I 

(a) 

( c ) 

I O H 

v 

..() 

M 
I 

v 

\ ] fAJ 
T N O H T M N 

I âX r- - . ... . - -t 

Subsonlc Ftow to lhe Rlght ( b) Suporsonlc Flow to thc Rlghl 

v v r \~ L~_j~ I 

I I 
I o-- ___ L_ - .... 

l o M H T N I M O H T N 

su t>sonic Flow lo thc Lcfl (d) Supcrsonlc Flow lo thc l clt 

Figure 2. The characteristics reaching and inLernal grid point .. 

Combustion Ch.amber 

Trea.ting the combustion chamber as a control volume, it is assumed that 

tbe thermodynamic properties of the gas mixture in the combustion chamber 

are uniform and that the mixture has homogeneous composiLion. Neglecting 

molecular diffusion into or out of the combust.ion chamber, the finite difTerence 

approximation of the combustion chamber equantions are 
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E,z+t:.Z _ E'z [n , u (h' u;z) 
cc - cc + tz O'ez ez ez + T -

De30'~3 Ue3 ( h~3 + u;3 ) + MtC~1 1f + Mcc Q'] Z b.Z (19) 

cl;t:.z = [(ci •• Mcc)z + (De2 Ci.
2 
a~2 Ue2 - De3 Ci.

3 
a~3 Ue3 

+ Gicc Mcc)Z óz]j M~+t:.Z (20) 

(i=1,2, ... ,N-l). 

Boundary Condition 

The velocities at the inlet and tail pipe boundaries may be positive or negative. 
The flow was assurned to be quasi-stea.dy at the boundaries of the inlet and 

tail pipe. Rudinger IIO] reported that results obtained from this assumption 

for the kind of boundaries being considered in this work are in good agreement 

with experimental observations. 

lnflow through any bonundary was assumed to be isentropic since the effect 

of the factors that cause entropy increase (such as friction, mixing and 

combustion) between the lirnit of tbe flow source (ambient air or combustion 

charnber) and the boundary grid point, was expected to be srnall compared 

with the effect of these factors in the pipes (inlet or tail pipe). Therefore, the 

entropy at the grid point was the sarne as that of the flow source (ambient 

air or the combustion cha.mber) . The mass fractions of the species at the 

boundary. grid point were the sarne as those of the species in the flow source. 

Since the flow was a.ssumed to be quasi-steady, the steady fl.ow energy equation 
and the oornpatibility equation of the characteristic reaching the boundary 

were solved to obtain the rernaining dependent variables. The characteristics 

reaching bounda1·y grid point.s for different flow velocities are shown in Figure 3. 
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v 
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v 

I I I 
J I O,M 

c b) Son lc lnllow at \h c 
Alg h\ E nd 

J I O H T M 

(d) Supcnonlc 011tflow at 
thclt l ghtEnd 

v 

I I 1 
M, T N L 

(f) Sonlc lnfl ow at th c 
Lcft E nd 

(h) Supcrunlc Outflow at 
thc Lcft End 

Figure 3. The charaderistics reaching boundary grid points. 
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Since outf:!ow througb any boundary was assumed to be quasi-steady, the statíc 
pressure at the boundary was the same as that in the space into wbich discharge 
took place (the ambient or combustion chamber) if the flow was subsonic. The 
compatibility equation of the characteristics reaching the boundary were solved 
to obtain the ot.her dependent variables. 

ln the case of sonic/supersonic outflow, ali the characteristics are washed 
sownstream and the dependent variables at the boundary were obtained by 
solving the compatibility equations of ali the characteristics. 

Combustion Model 

Assuming complete oxidation of the fuel (propane), the following overall 
reaction equation was used: 

(21} 

The values of activation energy and reaction rate constant used are E = 
30 M J /kmol ánd /( = 4.5 x 106 m3 /kg.s. 

Heat Transfer and Wall Frictiou 

The rate of heat. transfer by convection and radiation from the wall is 

Q = hc O'in(Tw- Tg) + Cw; l (!Cg O'in(~- r:) (22) 

The frictional force per unit mass on the fluid element at the grid is 

4CJ 
w =- ulul 

d 
(23} 

CJ and hc were obtained using equations of the forms relating fríction factor 
and N usselt number to local flow parameters in steady flow. Gas emissitivity e9 

was ta.ken to be 0.04. This value was calculated from experimenta.lly determined 
gas a.nd wall temperatures [11]. 
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lnitial Conditions 

The flow in the pulsed combustor is cyclic unsteady flow. At the beginning of 

the first cycle, the combustion chamber was assumed to be filled with air at 
pressure J>.4 + 0.5) and temperature (7Ã + 3.5) while the inlet and tail pipe 

were assumed to be filled with air at ambient conditions. The combustion 
model was brought in, in the second cycle. By the 15th cycle the operation of 
the combustor had converged to a cyclic operation. 

Stability Criterion 

Tbe time step was chosen in accordance with the Courant-Friedrichs-Lewy 
stability criterion [12] which requires that 

t::.X 
t::.z ~A+ lU I (24) 

More detailed description of this mathematical model can be found elsewhere 

[11,13]. Good resulta were obtained when the model was applied to predict 
flows in sbock tubes and pulsed combustors. When 41 and 501 grid points 
were used in the shock tube computation, the improvement of the predicted 
result with increasing number of grid points was found to be very small - fa.r 
from being commensurate with the increase in computation time [14]. 

USE OF THE MODEL AS AN OPTIMIZATION TOOL 

Tbe geometries of tbe inlet, combustion chamber arul tail pipe were varied 

for a fuel flow rate of 7.24 kg/h. Tbe effects of these geometrical changes on 
tbe performance of the pulsed combustor were assessed in terms of the pressure 
range in the combustion chamber, the total static thrust generated at e1 and e4 , 

and tbe average fresh air aspiration rate through the inlet into the combustion 
cbamber. The performance of the combustor with its present geoemtry, which 
was optimized by experimental cut-and-try technique by earlier workers, are 
underscored with broken tines in Tables I-VII . 
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Table I. Varialion of combustor performance wíth combustion chamber, volume 
change, as predicted with lhe model for a fuel flow rate of 7.24 kg/ h . Tbe 
geomet.ries of the inlel and tail pipe were held constant. 

Combustion Nondímensional Total Air flow 
chamber pressure static thrust rate from 

volume x 1 04 range ín generated at e2 into 
(m3) combustion e1 and e4 combustion 

chamber (N) chamber kg/h 

3.348 0.512 7.68 48.06 
5.022 0.992 10.80 112.25 
6.714 1.457 31.72 128.49 

---------------------------------
10.464 

I 
1.072 

I 
25.68 

I 
112.27 

13.393 0.688 17.04 81.10 

Combustio n Chambe r 

Table I shows the results obtained by varying the combustion cbamber volume 

wbile freezing thegeometries of t he inlet. and tail pipe . It can be seen that tbe 

volume giving optimum performance is indeed the present volume. Tbe reason 

for the peaking of the performan ce at the present volume was found to be due 

to the mass of the fresh air charge inhaled being ma.ximum at tbis volume. 

Inlet Geometry 

The length of the inlet and its cross-sectíonal a.-ea at e2 were varied while 

freezing the geometries of the combustion chamber and taíl pipe. Tables II 

and III show the results. Again, it can be seen that the present ínlet geometry 

gave the best performance. The poor performance with other geometries was 

caused by shortage of oxygen in the cobustion chamber due to poor charging. 
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Table ll. Va.ria.tion of combustor performance with inlet length a.s a.s predicted 
with the model for a. fuel ftow rate of 7.24 kg/h. Inlet area.s at e1 and e2, and 
the geometries of the combustion cha.mber and tail pipe were fixed. 

Inlet Nondimensional Total Air flow 

Length pressure static tbrust rate from 

x102 range in generated at e2 into 
(m) combustion e1 and e 4 combustion 

chamber (N) chamber (kg/h) 

7.62 0.701 14.06 69.08 
12.19 1.197 21.02 124.17 

15.24 1.457 31.72 128.49 

--------------------- ------------
16.76 1.331 21 .38 108.05 
22.86 0.772 8.98 51.66 
30.48 0.504 6.26 64.14 

Table lll . Va.riation of combustor performa.nce with inlet a.rea. a.t e2 a.s predicted 
with the model for a fuel flow rate of 7.24 kg/h inlet length a..nd its divergence 
a.ngle, a.nd the geometries of the combustion chamber a.nd tail pipe were fixed. 

Inlet Nondimensiona.l Total Air flow 
Are a. pressure static thrust rate from 

ae2 x 103 range in genera.ted at e2 into 
(m2) combustion e1 and e4 combustion 

chamber (N) cha.mber (kg/h) 

0.314 0.283 0.94 52.16 
0.707 0.740 8.03 44.66 
1.131 1.457 31.72 128.49 

------------------------------- - -
1.590 

I 
0.583 

I 
18.90 

I 
69.48 

1.963 0.598 16.30 78 .37 

Tail pipe geometry 

With the tail pipe area.s at e3 and e4 fixed, a tail pipe having a length that is 
shorter than that of the tail pipe used in the present geometry by 76 mm gave 
slightly better performance than the present geometry a.s shown in Table IV. 
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Poor combustion chamber charging was observed when the other tail pipe 
lengths were used. 

Table IV. Variation of combustor performance with tail pipe length as predicted 
with the model for a fuel fiow rate of 7.24 kg/h . Tail pipe areas at e3 and e•, 
and the geometries of the inlet and combustion chamber were fuced. 

Pipe Nondimensional Total Air ftow 
Length pressure static thrust rate from 

range in generated at e2 into 
(m) combustion e1 and e4 combustion 

chamber (N) charnber (kg/h) 

0.6096 0.551 9.21 35.10 
0.8382 1.464 33.90 123.32 
0.9144 1.457 31.72 126.49 

--------------- ------------------
1.1430 

I 
0.441 l 4.61 l 48.22 

1.4478 0.512 6.61 32.98 

Table V. Variation of combustor performance with tail pipe are a at e4 as 
predicted with the model for a fuel ftow rate of 7.24 kg/h . Tail pipe length 
and its area at e3, and the geometries of the inlet and combustion chamber 
were fixed. 

Tail Pipe Noodimensional Total Air flow 
area pressure static thrust rate from 

O'e4 X 103 range in generated at e2 into 
(m2) combustion e1 and e4 combustion 

chamber (N) chamber (kg/h) 

0.575 1.512 24.09 134.31 
3.066 1.457 31.72 128.49 

---------------------------------
4.748 

1 
1.433 I 38.58 I 126.11 

6.900 1.441 43.46 126.89 

Table V shows the effect of variation of tail pipe cross-sectional area at e4 on 

the peJ;formance of the combustor. For the case witb a smaller e4 are a tban the 
present geometry, the combustion chamber fresh air charge was slightly greater 
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anda higher pressure range was developed. However, the thrust was lower due 

to the reduced area which resulted in a lower mass flow through e4 in botb 

directions. With higher areas at e4, the Cresh air charge and the pressure range 

in the combustion chamber were approximately the sarne as for the present 

geometry, but higher thrusts were generated due to larger flow areas at e4. 

The effects of cha.nges in magnitude of the tail pipe area at e3 on the 

performance of the combustor can be seen in Table VI. At first, the total 

thrust generated and the combustion chamber pressure range reduced as the 

area at e3 increased . The change in trend observed at an area of 1.59 x 10-3m2 

is believed to be due to the pulsed combustor changing its oepration from that 

of being somewha~ like a. Schmidt burner due to the closeness of the tail pipe 

diameter to that of the combustion chamber. At a slightly smaller area of e3 

than in the preseot geometry, improved performance can be obtained as shown 

in Table VI. 

Table VI. Variation of cornbustor performance with ta.il pipe area at e3 as 
predicted with the model for a fuel flow rate of 7.24 kg/h Tail pipe length 
and its area at e4 , and the geometries of the inlet a.nd combustion chamber 
were fixed. 

Tail Pipe Nondimensional Total Air flow 
are a pressure static thrust rate from 

O'ea X 103 range in generated at e2 into 
(m2) combustion e1 and e.o~ combustion 

chamber (N) chamber (kg/h) 

0.254 1.520 39.37 142.17 
0.575 1.457 31.72 128.49 

------------------------ -------- -
1.590 

I 
0.236 

1 

4.25 

1 

41.72 
3.066 0.992 17.32 74.20 

ln Table VII, the performances of three combustors having uniform diameter 

tail pipe are compared with the performance of the present geometry. It can be 

seen that the performance of a pulsed combustor ha.ving a diverging tail pipe 

is indeed superior to thaL with a uuiform diameter t.ail pipe as re ported earlier 

by Marzouk [7]. 
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Table VII. Variation of performances of pulsed combustors with tai.l pipe of 
uniform diameters to that of present geometry. 

Dimensions of Performance 
Tail Pipe 

O'e3 X 103 Oe4 X 103 Length P' jn max P' in min Total Thrust 
(m2) (m2) (m) Combustion Combustion at e1 and e4 

Chamber Chan1ber (N) 
0.575 0.575 0.9144 2.307 0.782 24 .23 
3.066 3.066 0.9144 1.765 0.774 17.35 
1.591 1.591 0.9144 1.965 0.792 17.20 
0.575 3.0136 0.9144 2.234 0.777 31.72 

PREDICTING THE EFFECTS OF VARIAT ION OF INTAKE 
FLOW TEMPERATUR.E AND PRESSUR E 

Imagining that the pulsed combustor was placed in a large reservoir containing 
air, lhe pressure or Le111pcralure of tlte air in the reservoir was varied, 
hypothetically using the uumerical modt'i, to see what effect such a variation 
would h ave on the opera.tiou of lhe combustor. 

lncreasing the ambient pressure while keeping the ambient temperature fixed 
ap))l'Oxirnately simu lates inte rcooled supercharged operation. Not only d id the 
absolute values of minimum and maximum pressure in the combustion chamber 

increase with a111bient pressurP i\S expected , the pressure amplitude increased as 
well, see figure 4. This t.rend is in agreement with the work of Porter [15] who 

reported an increase of between 2 and 13% in the pulsation amplitude in the 
combustion chamber, in h is experimental runs of a va.lveless pulsed combustor 
at a pressure o f 3 a.l mospheres . 

The total tluust gencrated at e1 and e4 and the mass of fres!. charge inha.led 

through e2 increased with ambient pressure as shown in Figure 5. T he 
improvement in performa.nce with ambient pressure highcr than 1.0 was due 
to an increa.'>e in lhe densit.y o f the ambient air which resulted in more oxigen 
being available for combustion in the combustion chamber . 

When lhe ambient. pressure was fixed at 0.75 (a pressure of 66 kPa), the 
performance of the combustor was poor as can be seen in Figures .t and 5. 
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air pressure at a fuel flow rate of 7.24 kgf h . The dimensionless ambient 
temperature was fixed at 1.0. 
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This was due to shortage of oxygen in the combustion chamber. This shows 

that the comubstor with its present geometry, may need to be equipped with 

a supercharger at the inlet before it works efficiently at high altitudes. 

Above an ambient temperature of 1, the pulsation amplitude , total thrust 

generated at e1 and e4 , and the rate of flow of fresh charge through e2 reduced 

with temperature as shown in Figures 6 and 7. This was largely attributable 

to the reduction in the density of the fresh charge through e2 which caused a 

shortage of oxygen in the combustion chamber. 

Poor performance was also observed when the ambient temperature was 0.9 

( -13.05°C) as shown in Figures 6 and 7. To get a good performance under 

such operating conditions, the pulsed combustor needs to be insulated with 

suitable materiais, or with air, by shrouding it. The pulsed combustor used for 

d~icing railway track switches by Ringer et ai [16] and SWINGFIRE pulsed 

combustor used to warm up cold-soaked engines by Huber [17] were shrouded. 

ln tbe case of shrouded puJsed combustor taking its fresh air from a compressor 

outlet, the increase of ambient pressure and temperature go together. The 

performance of the combustor when it was operated in ambient air at a typical 

compressor output nondimensional pressure and temperature of 4 .0 and 1.6 

respectively, is shown in the last row of Table VIII. The performance was 

good but lower than that in ambient air of pressure 4.0 and temperature 1.0. 

This shows that an optimum performance of valveless pulsed combustors can 

be expected in gas turbine application , if there is intercooling between the 

compressor and the pulsed combustor. 
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Table VIII. Predicted performa.nce of tbe pulsed combustor with variation of 
ambient pressure and temperature. The fuel flow rate is 7.24 kg/h and reference 
pressure a.nd temperature are 88.25 kPa and 289 K respectively. 

Ambient Ambient P:WU - p:run Total thrust 
Pressure Temperature in combustion generated 

P' A T' A chamber (N) 

1.00 1.00 1.457 31.72 
3.00 1.00 2.301 54.00 
4.00 1.00 2.548 56.51 

1.00 1.00 1.457 31.72 
1.00 1.20 0.871 15.71 
1.00 1.60 0.727 13.80 

4.00 1.60 2.196 46.95 

CONCLUSIONS 

A mathematical model for optimizing the geometry of pulsed combustors has 
been presented. The model shows that the alteration of the gas dynarnics 
causing shortage of fresh air in the combustion chamber is wbat degrades tbe 
performa.nce of the pulsed combustor when the geometry employed differs from 
the optimum oue. 

Results obtained show that pulsation amplitude in the combustor increases 
with intake pressure whereas it decreases with intake temperature. ln gas 
turbine application of valveless pulsed combustors, a.n optimum performance 
can be expected if there is intercooling between the compressor and the pulsed 
combustors. 
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INTRODUCTION 

Euler numerical simulation codes, besides severa! other important character

istics, have to provide some means for cont.rolling nonlinearities. This must 
be so, because the Euler equations constitute an inviscid model and, conse
quently, as opposed to the Navier-Stokes equations, do not contain any natural 

dissipation mechanism that would eliminate high frequencies dueto non-linear 

effects. ln general, there are two ways of handling this problem. Either one 

should explicitly introduce artificial dissipation terms to a centered difference 
algorithm, or an upwind difference algorithm should be used. Moreover, there 

is a.lways the possible drawback of solution oscillations in the passage through 
shock waves, which, by the way, is one of the main sources of nonlinearities in 

the flowfield. 

A typical example of a centered difl'erence scheme is the well-known Beam 

and Warmíng algoríthm [1], [2]. This algorithm, to which artificial díssipation 
terms of linear a.nd non-linear nature have been systematically aggregated, has 

been successfully applied to a wide va.riety of problems (see, for example, [3], 

[4], [5) and (6)). Another notable example is the wmk of Jameson et ai. [7], 
where the time integration is performed through the use of an explicít Runge

Kutta procedure. ln contrast to lhese, another class of schemes can be found in 

the literature, under such names as monotone, Rux split, flux difference, total 
variation diminishing (TVD), tha.t employs some form of upwind differencing. 

Representatives of this catego1·y are the works of Steger and Vlarmining (8], 

Harten [9], Osher and Chakravarthy (10). van Leer [11], a.nd Roe [12]. 

The main objective of this paper is the implementation of a number of 
algorithms belonging to both classes in order to test and confront their 

abilities in terms of overall accuracy, stability, computer costs, and discontinuity 

capturing and resolulion. This, we hope, will permit the reader a quick 
assessmeot of tbe severa! techniques employed and also provide some hints 

for the proper selection of one of those schemes. The flow in a shock tube of 
infinite extent is selected as Lhe test ca<Se . The reason for this choice rests on the 

fact that this flow contains different types of discontinuites, such as shock and 

expansion waves as well as cont.act surfaces. As one of the primary interests 

of this research is to invcstigate the behavior of t.he solution in the crossing of 

discontinuities , lhe sl,o.:k tube 1::> a natural choice. Mathematically, the flow 
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in a shock tube of inllniLe extenL can be recognized as a lliemann problem. 

Details of this flow are described in standard gasdynamic texts [13). 

The algorithms selected for the sol~tion of the shock tube are: the Beam 

and Wa.rming a.Jgorithm with non-linear artlficial dissipation, the Steger a.nd 

Warming flux vector splitting scheme, a.nd Harten's TVD method. Tbe work 

lo be reported herein is organized in the following way. Initia.lly, the Euler 

equations and lhe essentials of the severa! algoritbms are int.roduced. After 

Lhis, resulls are present.ed and discussed. 

THE EULER EQUATIONS 

Consider a long tube in which two nta.':lses of ga.s witb different. static pressures 
are initially at rest and separa.Led by a diaphragrn. The diaphragm is suddenly 

burst., and then an expansion wave propagates into the high-prcssure chamber, 

while a shock wave, followed by a contact discontinuity, propagates into the 

low-pressure chamh~r . With tlte exception of the thin boundary layer that 
grows from bebind the wave frouts, the flcw in Lhe tube is essentially cne

dimensional. The modelling of the gas as an inviscid fluid makes the geometry 

cf the problem perfect ly cne-dimensional. ln view of this, the develcpments 

that follow will consider only one space coordinate. IL shou ld be borne in mind, 

hcwevcr, that mo5L of Lhe theory here treated is straightforwa.rdly extended to 

two and three dimensions. 

The cne-dimensional I:nlcr equations in strong couservation-law form can be 

writte n as 

(1) 

where 

[ 

pu l E= pu.2 + P 
(e+p)tl 

(2) 

Here p is the density, v j,. t lae velocity, and p is the pressure. The total energy 

per unit volume, e, is rel <1 tcd to the specific internal eucrgy, ei, by 

(3) 
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The fiuid is considered to be a perfect ga.s and, then, the equation of state is 

(4) 

where -y::;: Cp/Cv . The specific heats, Cp and Cv, are taken as constants. 

THE ALGORITHMS 

The Beam and Warming Algorithm 

Linear Dissipation 

The structure of the Beam and Warming algorithm, as implemented in this 
work, is based on the implicit time-marching Euler scheme, which can be 
written as 

(5) 

The objective now is to write the algoritbm in tbe so called delta forro. To 
this end, we substitute Eq.(l) in tbe above equation. After tbis, tbe algebraic 
steps are: (i) linearization of the flux vector E by means of a simple Taylor 
expansion and (ii) introduction of centered differences to approximate the 
spatial derivatives. The delta forro is finally obtained as 

(6) 

where D..tQn = t;,.Qn = (Qn+l_Qn), A= (8Ej8Q) is the flux Jacobian matrix 
and 6:z: is a centered difference operator. The algorithm represented by Eq.(6) 
is first order accurate in time and second order accurate in space. 

ln order to maintain the numerical stability of the scheme represented by 
Eq.{6), we have to introduce artificial dissipation terms. Hence, we rewrite 
this equation as 

(7) 

where 

(8) 
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is the implicit second-difference dissipation, and DE is the explicit artificial 
dissipation term. ln its simplest fol'm, this term would be given by a fourth
difference formula as 

(9) 

Here, €[ and t:E are constant (linear) coefficients that control the amount of 
added artificial dissipation. The Ll.x and \1 x are standard, first order, forward 
and backward difference operators, respectively. 

As can be realized, a fourth-order term was added to the right side of the 
basic algorithm to control nonlinear instabilities. Ideally, in order to balance 
the algorithm, a fourth-difference term should also be added to the left side. 
However, this would imply the inversion of a sparse pentadiagonal block matrix, 
and tbis is too expensive. For the sake of cost-effectiveness, a second-difference 
implicit dissipation is added to stabilize the implicit term. It is important 
to observe that these added terms modify the original partia! differential 
equations and the coefficients used should be kept as small as possible while 
still maintaining stability. As a starting point the parameter €E can be chosen 
to be 0(1) andE:[ = 2t:E (see [14]). The dissipation tenns are scaled with Ll.t 

in arder to guarantee steady state solutions independent of the time step. 

Nonlinear Dissipation 

ln smooth regions of the fiowfield, the scheme represented by Eq.(7) is 
sufficiently strong to control oscillations that might appear. On the other 

hand, when faced with strong discontinuities, as for example shock waves, 
severe oscillations ca.n occur. These localized instabilities can be traced to the 
problem of differencing across the discontinuity, where too big of a differencing 
stencil is employed. ln order to avoid this drawback, Jameson et a.l. [7) have 
introduced the idea of switching between a fourth-differe·nce dissipation term, 
which gives l'ise to a five point differencing stencil, to a second-order term 
whenever the pressure gradient becomes too strong. This is the essence of the 

non-linear artificial dissipation scheme. Pulliam [14) has adapted Jameson's 
model to the present notation a.nd the following e>.1>ression results: 
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c~2) = k2Llt max(Ti+l• T;, T;_J) , 

c~4) = max(O, k4 6t- c12
)) . 

Typical values ofthe constante are k2 = 1/4 and k4. = 1/100 and the maximum 
function is used to spread the second-difference dissipation range over a few grid 
points. V alues of T; are given by 

T · - IPi+l- 2p; +Pi-li 
' - IPi+l + 2p; +Pi-li 

The term cr; is a spectral radius scaling defined by 

cr; = u +a , 

wbere a is tbe local speed of sound. 

By observing Eq. (10), one can understand the logic of the scheme. The first 
term of this equation is a second-difference dissipation with an extra pressure 
gradient coefficient to increase its value near shocks. Besides enhancing tbe role 

ofthe second-difference term, the coefficient e~2) also a.cts through e~4) until the 
fourth-difference dissipation is switched off. This happens when the pressure 
gradient is such that the second-difference nonlinear coefficient is larger than 
the constant fourtb-difference coefficient. This occurs near shocks or in regions 
of steep pressure variations as, for example, at the nose region of an airfoil. 

The Flux Splitting Scheme of Steger and Wanning 

N umerical schemes for tbe solution of tbe unslea.dy inviscid gasdynamic 
equations can be ba.sed on approxímating spatial derivatives through the 
use of centered or one-sided difference operators. ln subsonic regions, 
however, only centered difference operators leád to numerical'methods that are 
símultaneously stable for both the positive and negative characterístic speeds 
[8] . Notwithstandíng this, severa! stable upwind methods have been developed 
and are in wide use today. The stabílizing techníque that each of these methods 
aggregates corresponds to some form of flux splitting. 

Severa! reasons justify lhe use of one-sided difference operators. For an implicit 
algorit.hm, the one we have implemented , there is a definite gain in efficiency, 
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because the sebe me can lead to sparse lower, o r upper , trianguJar banded 
ma.trices, that are more easily inverted than the tridiagonal and pentadiagonal 
rnatrices usually associated with centered methods. ln this item we present the 
rnain featUl'es of the flux splitting idea together with the pr incipal points of the 
Steger and Warming algorithm. 

Flu.x Splitting 

By usicg Eq. (2) the flux Jacobian matrix A= (ôEjôQ) can be easily obtained, 

[ 

o 1 

A = i(-r - 3) u2 (3 - -y) u 

h'- l)u3
- T 'Y~- ~('r -l)u2 

(11) 

The characteristic speeds, i.e., eigenvalues, of A are 

~3 = u- a. (12) 

ln subsonic regions lu! < a , and the eigenvalues are of mixed sign since u +a 
and u -a are of opposite sign . 

Suppose, for now,. that the flux vector E can be splít into two parts as 

(13) 

such that tlie subvector e+ is associated with the positive eigenvalues of A 
and E- is associated with lhe negative eigenvalues. Substituting the relation 
above in Eq .(l) there results 

(14) 

what wou ld allow the use of a backward difference operator to approximate 
(()E+ j8x) aud a fonvard opera.tor to approximate (8E- f8x). By virtue of 
these one-sided approximat.ions we a re, in fact , respecting the directions of 
characteristic signal propagatiou. 

The question to be po.<;ed now is: IJ ow can Lhe flux vector E be, effectively, 
split? To auswer this question one has to rely on two fundamental properties. 
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The first conesponds to the fact that the flux Jacobian matrix A has a complete 
set of real eigenvalues. The second concerns the structure of the inviscid 
gas-dynamíc equations ín conservation-law form. These equatíons have the 
remarkable property that if the equation of state has the functional form 

p=pf(ci), (15) 

then the nonlinear flux vector E(Q) is a homogeneous function of degree one in 
Q. This means that E(aQ) = aE(Q) for any value of a. By simply inspecting 
the equation of slate, Eq.(4) , one can see that it has the form of (15), what 
guarantees that E(Q) is a hornogeneous fuuction of degree one. Hence, it is 
easy to show th at 

E=AQ. (16) 

The basis, then , for splitting vector E are the two properties mentioned above 
((15], [16]). Let us proceed and derive the split form of E to be used in the 
next item. 

The starting point is the fact that there is a similarity transforrnation for the 
matrix A [8), such that 

T- 1 AT= A. (17) 

where , for the inviscid gasdynarnic equations , T = M X I r- 1 = x-1 M-1 and 
A is a diagonal matríx whose diagonal terms are the eigenvalues of A. Matrices 
M and X and their inverses for one and two space dimensions are given in Ref. 
[15) and for three space dimensions in [17). From Eq. (17) we obtain 

A= TT- 1 ATT-1 = TAT- 1 , (18) 

which , substituted in Eq. (16) , gives 

E= AQ = TAT- 1 Q. (19) 

Any eigenvalue Ài can be written as 

(20) 

where 

(21) 
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Observe that if Ài ~ O, then >.t = .À; , .>.;- = O, with the converse result for 
À; < O. Considering the above expressions, it is possible to split the diagonal 
matrix 

(22) 

wbere A+ and A- h ave as diagonal elements >.t and .>.;-, respectively. 
Substituting Eq. (22) in Eq. (19) one obtains 

where 

and 

(25) 

The eigenvalues of A, given by Eq. (12), are then split, according to Eqs. (20) 
and (21 ) , into 

,+ _ u +lu! 
"1 - 2 ' 

, __ u - lu! 
"I - 2 ' 

1 + _ u +a+ lu + ai 
-'2 - 2 I 

, __ u+a-lu+al 
"2 - 2 ' (26) 

.>. + _ u - a + lu - ai 
3 - 2 I 

_ u-a- lu-al 
.>.3 = 2 

The subvectors e+ and E-, for the case when O~ u ~a, are given by 

[ 

2{u +a- u l 
2(1'- 1)u2 + (u + a)2 , 

( "' _ l)u3 + 1 (u + a)3 + (3 --y){u+a)a
2 

I 1 2(-y-1) 

(27) 

{28) 
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If u > a, the subvectors are simply 

E+= E I E-= o I (29) 

wbere vector E is given in Eq. (2). 

Finally, it is important to observe that the eigenva.lue splitting represented by 
Eq. (26) is not unique and other splittíngs into positive and negative parts are 
possible (see, for details (8]). 

The Algorithrn of Steget· a nd Warming 

Without approximating spatial derivatives by difference operators, Eq.(ô) can 
be rewritten as 

(30) 

Introducing Eqs. (23) a.nd (25) into the expression a.bove, lhe following relation 
is obtained 

(31) 

Approxima.ting, now, spatial deriva.tives by one-sided, first-order, difference 
operators, there results 

The final form of lhe algorilhm can be established by profitting from tbe 
approximate factorization idea due to Beam and Warming (2). One finally 
obtains 

As the reader can readily observe, this scheme involves the inversion of only 
triangular banded matrices and, consequently, tridia.gonal matrices are avoided. 

A linear analysis would easily show that, in this case, no error is íntroduced by 
the approximate factorization . The spatial accuracy of the scheme proposed can 
be improved , without impairing efficiency- specially for steady sta.te problems 
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- if we use secoud-ordcr. one-sided difference operators in the right hand side 
of the algorithw. 

TVD - Total Variation Di1niuishing Scheme 

The Concept of Tot~I Variatiou Diminishing Algorithms 

ln general. melhods bascd on centered difference approximations do not behave 

well in the caiculat.ion of flowfields with strong discontinuities, because even 

seemingly small oscillations can be disastrous in these cases. The reasons for 

this have been already discussed above. VVhen facing this kind of difficulty, 

upwind schemes have proven to be much more robust. However1 upwind 

strategies lose, in what concerns code simplicity and computational efficiency. 

For example 1 the forn•ation I in every cycle, of matrices A+ and A-, and vectors 

E+ andE- , is very cxpensive. Furthermore, upwind methods have a different 

drawback - lhey possess numerically stable, nonphysical ~xpansion shocks [10]. 

A new class of med10dsl known as TVD - Total Variation Diminishing -

schemesl has, recently, called the attention of many authors, due to its 

robustness and its remarkable capabilit.y of reproducing strong discontinuities 

with great accuracy and resolution, even for extreme high Mach numbers. 

Other authors argue, howevet·, that TDV schemes are complicated and that 

the developmeut of (mainly) implicit algorithms for more complex fiowfield 

situations is a very difficult task [14]. 

The basic idea undel'lying TVD schemes is not exactly new; it rests upon the 

pioneel'ing work of Godunov [18]. Considering that the TVD theory is really 

much involvedl there is no room, in a paper of this nature, to present it. We 

refer the reader, then , to the pertinent lit.erature (for example, Refs. [9] and 

(10]). Next, we will try, however, to give the gener·al idea of lhe fundamental 

concepts involved in a total variation diminishing scheme. Let us represent by 

Qi the numerical approximation to l he solution of Eq.( 1) at grid point i and 

at time nLlt. We define the total variation of the solution as 

00 

TV(Q) = -L IQi+l - Qd · (34) 

i=-oo 
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ln our notation, the general form of a the TVD algorithm is 

(35) 

wbere, typically, the numerical flux function has the following generic form: 

- - 1 [ {Q,+l ] 
E,+t = E(Qi-k+l• ... ,Q,+k) = 2 E(Qi) + E(Q,+I)- JQ, F(Q) dQ 

(36) 
ln tbe above expression, F(Q) is some function of the vector of conserved 
variables. If m = n the method is explicit, otherwise, if m = n + 1 it is 
implicit . 

A finite-difference numerical method such as given by Eq. (35) is said to be 
total variation diminishing - TVD - (sometimes also called total variation 
nonincreasing - TVNJ) if, for every solution Q", which has a limited total 
variation, it is possible to write 

(37) 

The Method of Harten 

We consider now the 5-point, second order accurate, explicit TVD scheme of 
Harten [9). The basic form of the algorithm when applied to general systems 
of conservation laws can be wrilten as 

n+l n - -
Qi = Qi - .\h(Ei+í- E,_t) ' (38) 

where Àh = (t::.tjt::.x) and 

(39) 

It is important to observe that, in tbese ~xpressions, veclors Q and E are still 
given by Eq.(2) . We describe below the severa! new parameters appearing in 
Eq. (39) . 
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Function Fk 

ln this scheme, this function conesponds to the artificial dissipation. 1t is given 
by 

Fk(Y) = <le +t:, for IYI < 2t:, { ~ 1111 , for IYI 2: 2t: 
(40) 

Harten suggests the usage of é = 0.1 for genuinely nonlinear fields (shock 
and expansion waves) and t: = O for linearly degenerated fields (contact 
discontinuities). The symbol y in the formulas above is a dummy variable. 

Argument of Function Ft 
The argument of Fk is given by the sum 

k k 
11.+ 1 + 'Y '+ l 

I 2 I 2 

The first term, v~ 1 , h as the form •+, 

where >.! are the eigenvalues of the problem 

d_ "'a- u- a' 
>.2- u 
a- ' 

>.~ = u +a, 

(41) 

(42) 

(43) 

and vi+! is an average of vector Q in lhe interval i and i+ 1. Harten suggests 

a simple arithmetic average, i.e., 

(44) 

ln spite of Ha.rten 's suggestion we have implement.ed Roe's averaging scheme 
(see [9]). Having determined this average, other quantities can be calculated 
at the positi.on (i + ~ ). For cxample, 

(45) 
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The second te1·m in Eq. (41) is wri tten as 

{ 

(g~tl+g~) h k _J. o 
1: 1 w ena. 1 .,.. 1 

k o l •+2 
'Y· l = I± '1 •+1 k O 1 when <r. 1 = O . 

•+2 

Values for the parameter ci 1 will bc given below. 
•+ 2 

Function gf 

Tbe expression for function g7 is 

(46) 

(47) 

The symbol R"' stands for lhe eigenveclors to the right of Jacobian matrix A. 
They are 

R3
(Q) = [ u+a ]~ (48) 

H+ ua 

where H= (e+ p)fp is the total enthalpy. 

Values of a:k are given by 

where 

1 1 2 
a = 2(ct -c2) I a = (p]-ct, 

[e] + ~ ü2 [p] + it(pu] 
Ct = h - I) • 2 • a 

(ptt)- u[pJ 
C2 = . 

a 

( 49) 

(59) 
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The symbol [] indicates a jump variation, i.e., for any property b, 

(51) 

On the other hand, ü and â stand for average values of velocity and local 

speed of sound, respectively. These averages are referred to the state defined 
by Eq.(44), or its corresponding with Roe's averaging procedure, and Eq.(45). 

Initially, tbe algorithm, as defined by the equations above, was implemented, 
and the parameter! was given the value 0.1. However, there was a severe loss 
of resolution at the contact surface. The reason for this solution behavior is 
most certainly due to this value of ', which introduces an amount of artificial 
dissipation that is excessive fo1· a linearly degenerated field . ln order to 

circunwent this siLuation, a modification was introduced in the function gf 
(see, for details, Ref. [9J, p. 377). Resolution was, then, completely recovered. 

RESULTS AND DISCUSSIO N 

The flow development iu the shock tube was obtained for severa! values of the 

ratio P41Pt. where subscripts 4 and I indicate properties at the high and at 
the low pressure chambers, respeclively, before the rupture of the diaphragm. 
ln ali cases we h<~.ve made T1 = T4 , just as a matter of convenience. 

ln ali the figures presented in this work, dashed !ines correspond to the 
analytical solution, whereas solid !ines and/or symbols represent the present 
numerical solutions. Figs. 1 t.o 12 illustrate the relative performance of the 

three algorithms implement.ed. Figs. 1 to 6 refer Lo Lhe case (p4/pJ) = 5, and 
Figs. 7 to 12 refer to t.hc (p4 fpt) = 20 case. The TVD algorithm of Harten is 

the one lhat gives lhe best. performance, both in terms of accura.cy as well as 

resolution. The upwind scheme of Steger and Warming presents good accuracy, 
but lacks in resolut.ion, while Lhe nonlinear artificial dissipation algorithm of 

Beam and \·Va.rming does not perform well, especially for high pressure ratios. 

It is imporlant to observe that Lhe upwind scheme maintains good accuracy, 

even in tht> case (p.1/pt) = 20, but there is oscillation, an overshoot before 
the comact. surfa.ce Md an undershool before the s hock wa.ve. Both upwind 
and centered algorithms do not give good resolution at the crossing of the 
contact disconLinuit.y. This is to be cxpected, because these schemes do not 
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aggregate a special numerical mechanism to handle this kind of situation. On 
the contrary, the method of Harten, as we have mentioned above, is prepared 
to deal with such form of discontinuity. ln order to gain in resolution at the 
contact surface, we are, at present, in corporating to the nonlinear artificial 
dissipation algorithm, an additive procedure which relies on the value of the 

temperature gradient. 

However, perhaps even more disturbing than the oscillations at shocks or 
contact discontinuities is the ina.bility of the centered scheme to capture the 
correct shock speed. This is quite eviclent from Figs. 1 anel 7. Moreover, 

Fig. 9 seems to indicate tha.t the speecl of the contact discontinuity is not 
being correctly captured by Lhe centered scheme eit.her. This type of behavior 
is typically associated with nolJ·conse1·vative schemes, which is not the case 
here. At the moment, lhese observations are still being further investigated, 
but there is some expectation that this behavior could be traced to the use of 
rather different artificial dissipation models on the left- and right-hand sides of 
the present implementation of lhe Beam and Warming algorithm. 

6.00 

5.00 Beom ond Worming - NLO 

p4/p1 .... 5 k2 :a 1.0 
4.00 

-200.00 o 200.00 400.00 600.00 
along the shock tube axis 

Figure 1. Pressure distribution aftcr t = 1 s for the Beam and Warming scheme. 
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Figure 2. Pressure <.listribution after t = l s for the Steger and Warming 

scheme. 
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Figure 3. Pressure distribuLion afl.er t = 1 s for thc TVD scheme. 
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Figure 4. Temperature distributjon after t = 1 s for the Beam and Warming 
sebe me. 
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Figure 5. Temperature distribution after t = 1 s for the Steger and Warmjng 
scheme. 
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Figure 6. Temperature distribution after t = 1 s for the TVD scheme. 
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Figure 7. Pressure distribution afl.er t = 1 s for the Beam and Warming scheme. 
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Figure 8. Pressure distribution after t = 1 s for the Steger and Warrning 
scheme. 
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Figure 9. Pressure dístribution after t = 1 s for the TVD scheme. 
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Figure 10. Temperatu re dislr ibution at t = 1 s for the Beam and Warrning 
scheme. 
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Figure 11. Temperatu re distl'ibution at t = 1 s for the Steger and Warming 
scheme. 
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Horten - l\10 
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Figure 12. Temperature dis tribution at t = 1 s for the TVD scheme. 

ln Figs. 13 and 14 one can see the Dca111 and \Vanning algorit.hm solution for 

(P4/Pt) = 1.56 and k7. = 0.25. For the cases rcported in F igs. 1, 4, 7 and 10, 

we have used k2 = 1.0 in order to avoid large oscillatious at the shock. The 

idea now is lo Lest thc behnvior o f lhe algorithm in thc transonic r<mge - the 

shock wave Mach nuluber is 1.1. As ca n be observcu, there is good accuracy 

and resolution, but, uncxpec tedly, ther~ appearcd l:nge oscillations at the tai l 

of the expausion 1-vavc. Wc havc <tbo run the n eam aud Warming algorithm 

for (P·dPl) = 5 1111d k2 = 0.2!) in order to assess lhe influence of the amount of 

artificial dissipat.io n. These rcsull.s are show11 in Figs. 1& a nd 16. Thc code ra.n 

s tably anel , in fact, l.hcre \\'crc no major diffcrcnccs to the case k2 = 1.0 (see 

Figs. 1 anel 4). 

Finally, Figs. 17 a11J 18 ,11ow the solulio11 of the shock tuhe problt>rn for 

(p4jp 1) = 50. 'l'his is a ra.l.lwr sev0.re t.est problem and, as can bc seen from 

lht~t· figure,, tlw IH'rfor ma!l{'l! of thc T\'D schcme of ll arlen is outstanding . lt 

mw;t be obscrved, l tOII'<! \'CI' , tl tat tll l' sd1<~me o f ll urtcn is clesigned for the kind 

of physic:d situ.il i011 t.l1at. w;,s t rc·;ttPd in t l1i , work. 'flw; l' Xplains. <t t least in 

parL, llt•: ):,Uv<l J•tTI'unllaltn: of thc: llto:t.l!o d. 
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Figure 13. H.esults for centered a.lgori thm with small p.ressure ratio (t = 1 s). 
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Figure 14. Results for cent.ered algorithm with small pressure ratio (t = 1 s). 
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Figure 15. Effect of explicit artificial dissipaLíon term on the pressure (t = 1 s). 
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Figure 16. Effect of expliciL artificial dissipation tem1 on Lhe Lernperat.ure 
(t=ls). 
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Figure 17. Dt>h<lviot· of TVO scheme for very high pressure ratio (t = I s). 
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The codes were run in an IBJ\·1-Iike PS-386/33 microcomputer and lhe 
computation limes per cycle were 1.3 s, 2.3 s a.nd 1.8 s, respectively, fo r t.he 

TVD, flux-split upwind and centered difference schemes. ln ea.ch case the 

numerical grid consisted of 200 equally spaced poinls. The reader should keep 

in mind , however, tha.L the TVD scherne involves much more op~rations per 
time step tha.n the othe r two schemes. The reason why the comput.a.tion al times 

reported above seem to favor the TVD scheme is t.hat wc are comparing a.n 

explicit TVD algorithm wilh two implicit schemes. Hence, this is actually not 
a fa.ir comparison of con1put.at.ional etlicie ncy. Explicit versions of the ccntered 
and flux-split upwind schemes would ce1·tainly run much faster than the TVD 

scheme. 

CON C LUDING R EMARKS 

Tbe wave system developlltent in a sltock tubc of inllnit.e extenl, which 

corresponds to a one-dimeusional, unsteady llow, \\'iL'> modelcd lhrough tlte 
use of the Euler equa.tions and soh·ed m11nerically by means of the Deam 

and Wa.rming algorithm with nonlinear artificial diss ipation , the Steger a.nd 
Warming fiux-split upwind schcme , anel llarte u 's TVD metltoJ . A systemalic 

comparison has ~hown t.hat the best suited numerical t cchnique for the physical 
situation considercd here is a TVD a lgorithm. This conclusion can certainly be 

exlended to oLhe r !Hoblems involving strong discontinuities. ln spit.e of sorne 
oscillatíons, Lhe flux-spliL upwind scheme behaved also quite well, maintaining 
accuracy even for high values of the initial pressurc ralio. This was not the 

case for the centerecl differcnce algoritllln, which performed well on ly for low 

values of the p ressu re ratio. 

Neverlheless, it. is imponant to remind t.hnl the flow in a shock tube is a 

very specific example of movement. in a fluid, in t.he sense th at. it is a s imple 
geometry, or configuratiou. while lhe physics involved can represent a very 

;;evere tesl case for numerícal nte thods. ln general , fluid flow problcms of great 

interest, especially in aerodynamics, are steady, a nel the bodies involved ha\·e 
complicated two and three dimensional geometries. ln tht.>se cases, algorit.hms 

based on centered differences, or those baseei on flux vector spliUing techniCjues 

and one-sided differences, have also shown cxcellent performa.nce. In tenns 
of the underlying mathema.li<'.al theory, t here is no guarAntPe that T\' 0-like 
schemes will rcmain TVD, or monotonc, in ulllltidimensions. 1\loreovc r, t.he 
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implementalion of implicit TVD formu lations typically renders schemes which 
are not necessarily TVD for lhe transient portion of the solution. The result.s 
here obtaincd , however, indicate that TVD scbemes can be a very good option 
in any case in \vhich strong slaocks, or strong discontinuities in general, are 
present. 
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ABSTRACT 

ln t.he present wor·k or1 olgoríthm for o local .tímulation of lhe energy tran.tfer 
pllenomenon in o binary (solid-fluid} rnouing saturated mixture is propo.ted. An 
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seconcl orde1· partia/ def'ivatives on x-direction) consists of an effectiue way to perform 
this simulation. 
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RESUMO 

Neste tmbalho propõe-se um algor'ilmo par'O a símulação local do fenômeno de tmn.J· 
fer·ência de energia numa mütura binár·ia {sólido-fluido} saturada em movimento. A 
transjer·éncia de calor· num escoamento saturado atmués de um meio poroso, limitado 
por duas placas planas pamlelas isotth·mícas, foi simulada por· um processo iteratiuo 
usando-se uma abor·clagem de diferenças finitas. O processo íteratiuo permite que se
jam obtidas aproximações numér-icos par·a a soi11ÇÕO do problema pr·escrevendo-se uma 
única condição de conto mo na direçào do escoamento (x ): a temperaura de entrada 
do constituinte fluido. Um mímero exaustivo de casos testados mostrou que o proced
imento mencionado (que independe das estimativas iniciais das derivadas parei ai.! de 
segunda ordem na drreçõo x para os dois constituintes) é eficiente paro a .Jimulaçõo 
em questão. 
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NOMENCLATURE 
Ci i-Lh specific hea.L 
H channel widtb 

I< specific permeability 

ki i-th thermal condutivity 

L channellength 
Qi i-th constit.uent partia) beat flux 

R positive factor related to energy generat.ion function 
Ti i-th constituent temperature 

vp fluid constituent velocity (vector field) 

VF x-component of fluid constituent velocity 
h heat transfer coefficient 

,\ parameter depending on porous matrix 

!1. pararneter related to mixt.me structurc 
Pi i-th constituent density 
cp porosity 

tPi i-th constituent energy generation function 

Subscripts 

F fiuid constituent 
S solid constituent 

Superscripts 

l global iteraction 

k Gauss-Seidel iteraction 

INTRODUCTION 

The interest on flow through porous media taking into account heat and/or 
mass transferis growing significantly nowdays. Interactions betweeu fluids and 

solids are present in many industrial processes. These Ouids ma.y be passed over 
packed beds of solid material so that a large ratio of surface area to volume is 

obtained and phenomena such as heat. and mass lransfer a.nd chemical reactions 
may occur. The 111a.iu purpose of t.his work is Lo present a procedure which, 

despite its simpliciLy, is an effective wa.y to perform a local simulation of the 

forced convection heat trausfer process which occurs when a Ouid Oows t.hrougb 
a porous chanuel considering only realistic boundary conJitions. 
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White the well known classical (single continuum) energy transfer model [1] 
describes adequately the thennomechanical behaviour ofmaterials such as steel, 
water, rubber or air, it is not so appropriate for a local description of the 
heat transfer process in a ftow of a newtonian fluid through a porous medium. 
Such a description would tequire the solut.ion (for the fluid) of both Navier
Stokes and ene.rgy equations in a domaín defined by ali active pores. Boundary 
conditions, such as no-slip condition and prescribed tempera.ture (and/or heat 
fluxes), should be considered on all pore walls. Tbe currently available tools 
are not adequate to allow a simulation of so great complexity. 

ln order to construct a local description, the problem is regarded througb a 
Continuum Theory of Mixtures viewpoint [2]. A binary (solid-fluid) mixture 
is considered, in which the fluid, represented by the "fluid constituent", is 
assumed newtonian and incompressible, while the porous medium, represented 
by the "solid constituent", is assumed rigid, homogeneous, isotropic and at 
rest. 

This model, supported by a theory with thermodynamical consistence, which 
generalizes the Classical Continuum Mechanics, allows a local description of 
the heat transfer phenomenon in a porous medium saturated by a fluid. 

The forced convection heating of a fluid which flows through a porous channel, 
bounded by two impermeable isothermal flat plates, is simulated with the 
aforementioned model. 

When the energy transfer between solid and fluid constituents is studied in a 
Continuum Theory of Mixtures viewpoint, the existence of two temperatures 
at each spatial point of the domain is allowed (the fluid and the solid 
constituents temperatures) giving rise to the Energy Generation Function [3) 
( which describes the thermal interaction between both constituents of the 
mixture). The Continuum Theory of Mixtures demands each constituent to 
satisfy a given set of balance equations, while a global set of balance equations 
must be satisfied by the rnixture. 

When the forced convection heating of a fluid flowing tbrough a porous channel 
is considered, in a two-dimensional geometry (as shown in Figure 1), a system 
of two second-order partia! differential equations on both x- and y-variables 
is to be solved. The characteristic nature of the energy equat ions allows this 
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system to be solved with only one boundary condition on x-direction. Ftom a 
mathematical viewpoint, this staternent rnay sound absurd, but from a physical 
viewpoint, if both constituents temperatures are prescribed on the cbannel 

superior and inferior boundaries (y-direction) and the fluid inlet ternperature 
is known, no additional boundary condition seems necessary to determine both 

constituents temperature fields. The use of additional boundary conditions 
could, even, give rise to an unrealistic behaviour near the boundaries. 

The main objective ofthis work is to present asimple, but effective, procedure, 
capable of selecting the physically expected solution for a system of second

order partia! differential equations, in two variables each, ernploying only five 
boundary conditions (instead of the usual eight): four on y-direction and 

only one on x-direction. This procedure can be employed in any situation, 
provided that the fluid constituent velocity is not zero. The porous channel 

shown in Figure 1 could be regarded as a sirnplified packed-bed heat exchanger 
whose description, using a two-temperatures model, would require the previous 
knowledge of boundary conditions such as ternperature or heat transfer for both 

constituents, at the channel entrance and exit. These quantities, except for the 
fluid constituent temperature, are not easily evaluated in heat exchangers, but 
can be estimated by means of the simple procedure presented in this work. 

ln fact, the exaustive number of examples taken into consideration has shown 
that the temperatures in the domain interior are not affected by additional 
boundary conditions on x-direction, which can Jead to unrealistic situations on 

the boundaries. 

Since both constituents energy equations are elliptic, four boundary conditions 

should, in principie, be prescribed on x-direction. The f.luid constituent energy 
equa.tion, however, because of its physical nature, is treated as a sequence 

of parabolic equations, suggesting that only one boundary condition (at the 

channel entrance) seerns to be necessary for its solution. Some tests, in which 

the fiuíd constituent inlet temperature was known and severa! values of the solid 
constituent partia! heat flux (defined soas to be proportional to the difference 
between solid and fluid constituents temperatures) at the channel entrance and 

exit were used, have confirmed the rnenüoned- expecta.tion. 
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The coupling of both energy equations suggested a step forward: to prescribe 
no condition for the solid constituent, neither at the channel ent rance nor at its 
exit. The verificatíon of the possibility to determine the solution of the system 

with only one boundary condition on x-direction, which allows the phenomenon 
to be studied in a more (pbysically) realistic way, has motivated the present 
work . 

IMPERMEABLE ANO ISOTHERMAL SURFACES 

( j ) 

F'igme 1. Problem Scheme 

MATHEMATICAL MODEL 

Considering t.he mass and linear momentum balance equations for the fluid 
constituent (the porous rnedíum is assumed l'igid an<l at rest) and the two-di
mensional geometry, presented in Figure 1, and cne-dimensional steady-state 
flow, the following velocit.y profile is obtained: 

v p =C (1- cosh ~) 
cosh ../K,\ 

( 1) 

for -H /2 ::; y ::; H /2, iu which C is a constant [4]. H the channel width, K 
the porous medium specilic perrnea.bilit.y. and ). a parameter depending on the 
porous matrix. 
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The energy balance (2] must be satisfied by each constituent of the mix
ture. Supposing steady-state conditions and zero heat generation for both 
constituents, it can be stated as: 

(2) 

wbere i = S and i = F stand for the solid and the fluid constituents, 
respectively, p; stands for the i-constituent density, T; for its temperature, 
Q i and '1/Ji represent, respectively its partia! heat flux and energy generation 
function and, finally, Ci representa the specific heat of the i-constituent, 
regarded as a continuum. 

As the mixture theory viewpoint allows the existence of a different temperature 
for each constituent, at each spacial point, in order to determine the two 
temperature fields (TF and Ts), both energy equations are to be solved. 

Equation (2) requires some constitutive hypotheses. The partia! heat fluxes 
for solid and fluid constituenls ( Qs and QF ) , according to the model used by 
Saldanha da Gama [3], are stated as: 

Qs = -Aks(l- tp)grad Ts 

QF = -AkFtpgrad TF 

(3) 

where A represents an always positive parameter which may depend on both 
the internal structure and the kinematics of the mixture, ks and kF are, 
respectively, the solid and the fluid thermal conductivities and tp lhe fluid 
fraction (coincident to the porosity, for saturated flows) . 

The total heat flux (per unit of time and area) for the mixture is given by the 
sum of Qs and QF. 

The energy generation function, t/J, which is an internal contribution, representa 
the energy supply to a. given constituent, arising from its (thennal) interaction 
with the other constituents of the mixture. The t/J function is zero at a given 
point only if all the constituents are at the same temperature at this point. 
According to Martins Costa [5], the energy generation function for solid and 
fluid constituents are given by : 

(4) 
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where R is an always positive factor , which represents the heat transfer 
coefficienl between constituents, assumed constant in this work. 

Considering these constitutive hypotheses, the balance of energy for the fluid 
and the solid constituents can be written as: 

ppcp(g,·ad TF) · vF = Akp<pó.(Tp) + R(Ts- Tp) (5) 

O= Aks(l- tp)ó.(Ts) + R(Tp- Ts) (6) 

Since the Auid velocily is non zero only in the x-direction aod considering tbe 
two-dimensional geometry of the problem, as shown in Figure 1, tbe balance 
of energy can be reduced t.o: 

where: 

ôTp [ô
2
Tp ô

2
Tp] 

a ôx = ôx2 + ôy2 + {J(Ts- Tp) 

éJ2Ts éJ2Ts 
O= ôx2 + 8y'l + -y(Tp- Ts) 

ppcpVp 
cr = '-':..-:-'--.....:_ 

Akptp 

/3=~ 
AkpfP 

R 
1=----

Aks(l-cp) 

subject ~o t.he following boundary conditions: 

Tp(O,y) =O 

Tp(x, O)= Ts(x, O)= 1 

TF(x, H)= Ts(x, H)= 1 

NUMERICAL METHOD 

(7) 

(8) 

(9) 

(10) 

The problem consists of a syst.em of two second order equations, on both x 
a.nd y-variables, subjected to four boundary conditions on y-direction and to 



344 M.L. Martins Costa, R. Sampaio and R.M.S. da Gama 

only one boundary condition on x-dírection. From a mathematical viewpoint, 
a problem of this kind, consisting of two elliptic equations, on both x- and 
y-variables, even if physically l"ealistic, could give rise to an infinite number 
of solutions. However, a great number of tested situations has shown that 
additional boundary conditions on x-direction have no inftuence on both solid 
and fluid constituents bulk temperatures. 

An iterative procedure is used, so tha.t two second-order equations on x
variable can be solved with the help of a single boundary condition on x

direction: the fiuid constituent inlet temperature. The problem is treated as 
a succession of modified problems in which the second-order derivatives on x
direction, for both constituents, are treated as previously known fields, that 
is: the fluid constituent cnergy equation is treated as a sequence of parabolic 
problems on x-variable, while the solid constituent energy equation can be 
considered as a sequence of ordinary problems on y-variable. This procedure 
can bc summari1.ed in thc following way: to start the scheme, initial values 
are estimated for the second-order derivatives with respect to x . With this the 
equations below are solved and the temperalure fields are calculated. For the 
following iteractions, the value of ~};· for both constituents are computed from 
the previous step. The process is carried on until convergence is achieved. The 
original system of equations is modified to: 

[
fPTF] l-t 
âx2 

[
82Ts ] ,_, 
âx 2 

(11) 

(12) 

where the derivatives a;;; and a;;; are calculated from the previous iteration . 

Since no analytical solution to the system of equations describing the problem is 
known, numerical approximations to its solution are searched with the help of a 
finite difference approach [6] . For the diffusive terms, a central finite difference 
scheme discretization was used, while an "Upwind" scheme [6] was employed 
in lhe convective term discretization. 

As the ternperat.ure coefficicnts matrix (associated to the modified system of 
equations) is sparse, a e,rid description, in which each constituent temperature 
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possesses two indexes, according to its position on the grid, is used. Each 

itcraLion I is then solved wílh the help of the Gauss-Seidel method, according 

Lo the following discrelized syslem: 

+v[r;+l(i,j- 1)]1 + .B[T~(i,j)]l + F (a;~;] 1-1 

J.1[T~+ 1 (i,j)] 1 = 8{[T~+1 (i- l,j)]1 + [Tg(i + l,j))1}+ 

(13) 

(14) 

ln (13) a.nd (14), 2 ~i~ Nx and 2 ~ j ~ Ny, in which Nx and Ny are the 

nwnber of divisions on x- and y-directions, respectively. The approx.irnations 

for both coustituents second-order partia) derivatives, calculated from a 
previous (/-1) iteration, are given by the following discretized equat ions: 

(15) 

{16) 

where .6. x is the mesh size on x-direction, l represents lhe global íteration, k 
tbe Gauss-Sei dei iteratiou aud: 

2 
J.l = (óy)2 +I 

1 
ó = (óy)2 

o 
v=--

( Ó.t:) 

( 17) 
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Equations (13) and (14) represent the modified problem in a very simple way, 
which aUows an effective stot·age scheme, with memory reutilization. 

The iterative procedure, represented by equations (13) to (17), was repeated to 

a large variety of initial estimate values of the second-order partia! derivative 

on x-direction, ranging from -104 to +104 . ln all these cases the sarne results 

for tbe solid and fluid constituents temperature fields were obtained, a.lthough 

the rate of convergence showed a slight variation. ln some of the tested 

cases, not only the derivatives initial estimates, but also the factor R (which 

influences both solid and fluid constituents energy equations coupling) was 

varied. Convergence to a same set of temperature fields (according to the va.lue 

of R) was observed for ali tested cases. This is a strong argu ment for the validity 

of the procedure. Another meaningful argument is that two different sets of 

similar problems, where the complete energy balance equations are considered 

( one without the described itera.ti ve procedure to calculate the second-order 

derivative approximations and the other using it only for the fluid constituent) 

together with different boundary conditions, were simula.ted a.nd compared to 

tbe problem in question. ln Lhe flrst type of problem, severa! fluid constituent 

outlet temperatmes (ranging from O to 1) were prescribed, while zero heat 

flux was prescribed for the solid constituent both at the channel entrance and 

exit. For the second type of problern, a. similar iterative procedure was used 

only for the fluid constituent, and seve.ral values of Lhe solicl constituent heat 

flux were also considered, both at inlet and outlet, by varying a hea.t transfer 

coefficient, h, analogous to the one usually employed in the classical Newton's 

law of cooling, in equations: 

DTs , 
Aks(l- <p)-ô (O ,y) = h[1s(O,y)- TF(O,y)] 

X 
( 18) 

ôTs 
-i\ks(l- ;p) fJx (L, y) = h.[Ts(L, y)- TF(L, y)] 

ln a.ll these cac;es no alterat.ion on bolt. constituents temperature profile, except 

for the channd entrance and/or exit, is observed. 

The above stated argument.s seem sufficient. to valida.te the numerical procedure 

employed i11 the present work. 
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The convergence criterium for both Gauss-Seidel and global iterations was: 

where 1 ~i~ (Nx + 1), 1 ~ j ~ (Ny + 1) 

A very quick convergence of the global-iterations was observed, four global 
iterations being sufficient for the worst case. The rate of convergence of the 
intermediate iterations (Gauss-Seidel method) changed also, aCC.)tdíng to the 
second-order partia) derivatives initial values. 

RESULTS 

ln this section some results, considering a long porous cha.nnel (with length 120 
a.nd heigh 1) divided ínto a 13x13 grid as default, are presented. ln Figures 2 
and 3 this default problem is compared, respectively to a problem where zero 
hcat fiux is prescribed for the solid constil.uent on both channel extremities, 
while severa! values for the fluid constituent outlet temperature are prescribed, 
and to a.nother problem where two different va.lues of solid constituent heat 
flux are considered (on both channel extremities) whiJe no boundary condition 
is imposed t.o the fluid constituent at the channel e:"<it. 

Table 1 represents the convcrgence process, wbich can be considered fast, for 
a point, located at the geometrica.l center, without loss of generality. Severa! 
initial values of second-order partia] derivatives on :z:-direction were used, and 
the same curves were obtained for the last iteration, indicating convergence 
independence from initiaJ estimates. Tbis procedure was repeated for other 
values of the Energy Generation Function (which causes the coupling of both 
constituents energy equa.tíons, acting as a source term) by varying the factor R 
and using several initia.l estimates for each considered value of R. In aU cases 
convergence to Lhe same set of temperature fields ( one set for each va.lue of R) 
was obtained. 

Figures 4 and 5 plot both coustit.uents temperature (in the channel central 
point) for different mesh sizes and its percentual diiTerence, related to the most 
refined grid considered, 1·espect.ively. Figures 6 and 7 compare the temperature 
behaviour when mesh size is reduced 50 % on :1:-direction. ln Figure 8 tbe 
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ô2T &'lT 
Table 1. Con vergence Process- Central Point TemperaLure (for éJxf and eh/ 
= 104

, = -104 and = O ) 

FLUID CONSTITUENT'S CENTRAL POINT TEMPERATURE 
estimate(*) lat iter. zud iter. 3rd iter. 4th iter. 

w• .7906 X 103 .6018 .6053 .6053 
o .6053 .6053 .6053 -

- to• -.7894 x lO;;s .6089 .6053 .6053 
SOLID CONSTITUENT'S CENTRAL POINT TEMPERATURE 

estimate (*) l"t iter. znd iter. 3rd iter. 4th iter. 
104 .1132 x to• .8827 .8862 .8862 

o .8862 .8862 .8862 -
-104 -.1131 X 104 .8897 .8862 .8862 

(*) initial values for cP T{ and ~~?~s 
Da: o:J: 

channel lengt.h is made five times Slna.ller than the defa.ult length and two 

different values for the nuid constituent mean velocity are considered: the 
default va.lue , used in l he preced ing figures and a va.]ue ten times smaller. 

Figure 9 compares tbe default lluid constituent me<m vclocity to one ten times 

greater, using a channel lcngth 11ve times grea.t.er Lhan Lhe value considered in 
Figures 2 t.o 7. The innu ence of the fluid constituent meau velocity on bot.h 
constituents temperatures is shown in F'igure 10. 

Figure 2 shows both constitue nts centedine temperatmes versus Lhe x-variable 
in two different cases. The first one (represented by the dashed !ines, for both 

constituent curves) shows the problem, whose simulation originated t.he present 

work: no bouudary conditions are prescribed cither for lhe fluid constituent 

at the channel exit or for the solid conslilúeut both at the channel entrance 
and exit, as s t.atcd in equation (10). The contiUUQUS cu1·ves correspond to 

the second case , where zero heal flux w<tS prescribed for the solid constituent, 

both at inlet and out.let. Six dirfe1·ent Ruid coustituent curves correspond Lo 
the described solicl consl.ituent. curve, according to lhe prescribed outlet fluid 
constituent tcmperatures. Severa! values we re considered for this temperature, 
varying fr0 111 O (tire fluid consLituent. prescribed inlet tcmperat.ure) to I 
( the impermeable isot.hcrma l surfaces prese ri bed t.c~ lllJH'I'(tl.n rc ). This second 
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problem, in which four boundary conditions were prescribed on :t-direction, 
shows an artificial behaviour, both at the channel entrance and exit. Except 
for these va.lues, complete agreement can be verified between the temperature 
fields, for both cases taken iuto consideration. 
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Figure 2. Centerline Temperatures vs x ( varying Tp at the channel exit) 

Figure 3 shows a comparison between two different problems, the first one, 
represented by the dashed tines, as in Figure (2), is the one described by 
equations (7) to (10), while in the other case severa! heat ftuxes are considered, 
by va.rying the heat transfer coefficient h in equation (18), for the solid 

constituent, both at the channe l entrance and exit, while no boundary condition 
for the fluid constituent at the outlet is prescribed. The latter problem, 
represented by the cont.inuous I ines, is solved by 1neans of an iterative scheme, in 
which the e llipt.ic fluid constituent problem is solved as a sequence of parabolic 
problerns. This schcme is similar to lhe ou e describeJ in the present work, 
but only the fluid COll SLitut~ llt second-order partia! derivative on .r-direct.ion 
is t.reated as a known fidd . ll. is remnrkah lc t.hat. no variat.ion on the fluid 
constiLuent tempera.ture curve is obser\'t'd , wht' ll no boundary condition or 
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Figure 3. Centerline Temperatures vs x (varying qs both a.t inlet a.nd outlet) 

zero heat flux was prescribed for the solid constituent. A very slight difference 

between these mentioned cases is observed a.t the c.hannel exit, while a more 

signific.ative differenc.e ca.n be observed at its entrance. Tbe use of a hea.t 
transfer coefficient so grea.t as h = 1000 is a.lmost equivalent to prescribe 

both solid and fluid constituents tempera.tures with the sarne va.lue. As a 
consequence , a value very close to zero is observed at the channel entrance 

for the solid constituent temperature, while a.pparently the sarne temperature 

values for both constituents can be ob.$erved at the channel exit. This problem 
was considered for severa! va.lues of h, between O and 1000, and, except for 
tbe channel entrance and exit, no difference on both constituents temperature 

fields is observed, as occurred on the case shown in Figure 2. 

Table 1 shows Auid and solid constituents temperature values at the geometrical 
center of the channel , that is, for x = 60 and y = 0.5, for the four global 

iterations, requested to obtain convergence, in the worst cases. Three different 
values for solid and ftuid partia! second-order derivatives on x-direction, among 
the severa! oncs used as initial values, were chosen to be listed . Significative 
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differences can be observed between first and second iterations, when the 

deriva.tive initial values are considered 104 or -104 , while a lmost no difference 

is observed if second and third iterations are compared. If the derivatives 

are initialized as zero, only three global it.erations are requested to achieve 

convergence. An analogous behaviour is verified if the fluid constituent mean 

velocity is made 1000 times smaller: convergence is reached after three global 

iterations, if boLh derivatives are initialized as zero, while five global iterations 

are requesled if they are initialized as -10'1 or 104 
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Figure 4. Central Point Temperatures (for differcnt mesh sizes) 

Figure 4 shows both constituents temperatures at a point located at the 

centerline center, for different meshes, from a 3x3 to a 25x25 mesh. The 

percentual difference among Lhe latter mesh and the remaining ones, at. 

the central poinL , is plotted for both constituents temperatures in Figure 5. 

E.xamining Figures 4 and 5 togelhcr , it can be noticed thal Lhe 13.xl3 grid , 

used for the majority of the rcsu lls present.ed in this work, shows a rcasonable 
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Figure 5. Percentual Di!Te rence among Central point Tempera.t.ure (for different 
mesh sizes, rela.ted to the most refined grid) 

agreement to the most re fined one used : Lhe 25x25 grid , for both constitucnts 
temperatures. 

Figure 6 shows bot.h constit.uents centerline temperaturcs for two different mesh 

sizes: 25xl3 and 13xl3. A very slight difference is observed for thc fluid 

conslituent temperat.ure, while a lmost no diffet·ence can be noticed for the 
solid constituent , as t.he grid is re nned on x-direction. The sarne grids are 

compared in Figure 7, where both const.i tuent.s temperatures a re plotted for a 
section x = 110, near lhe channe l exit , whe re the difference between the curves 
representing lhe two considered mcsh sizes is m01·e acute as it cau be seen in 
Figure 6. 

Figures 8 and 9 represenl bot.h constit,uents centerline tempcratures versus x

variable for diffcrcnt va lues of thc channel Jength anel different. Ouid constituent 

mean velocities. l n Figure 8 the chRIHlel length is five times sma.ller than the 
default VêLIIH~ (1, = 24) a11d l.hc average vdocitics a re COII!;idercd 10-:l (the 
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default value) and 10-4 . A significative difference between both constituents 
centerline temperatures can be observed for the dcfault velocity, while these 
temperatures lend to a common value at tbe channel exit, for an average 
velocity ten times sma.Uer. An analogous behaviour is noticed in Figure 9, in 
which the channellength is five times greater tha.n the default value (L = 600): 
both constituents centerline temperatures are almost coincident at the second 
half of the channel for the default fluid constituent a. ver age velocity ( l0- 3 ) but 
they show a large difference if Lhe mean velocity is made ten times greater 

(10-2). Comparing these lwo figures to Figure 6, in which L = 120, a fully 
developed temperature field, for a giveu mean velocity, becomes a natural 
expectation. 
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Figure 8. Centerline Temperatures vs x {for L = 24 and two mean values for 

VF) 

Figure 10 illustratcs the influence of the Ruid constiLuent mean velocity on 

both constituents centerline t.emperaturcs. Jt c<tn be seen that a decrease 
on the mean velocity mn.kes both constit.uents centerline temperatures tcnd 
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to a common value. (For a ver age velocities of w-6 or 10-7 , both curves 
are coincident, except at the channel entrance, where the fluid constituent 
temperature is prescribed. On the other hand, for an average velocity of 1, 
Tp is almost zero and Ts ahnost constant.) This leads to the conclusion that 
as the fluid constituent mean velocity decreases, thermal equilibrium between 
constituents is reached after a shorter channel length. 

The effect of the fluid constituent mean velocity on both constituents temper
atures ca.n be regarded ín a símpler way, usíng the new variables x"' = ax and 

y"' = ay, in equations {7) and (8), which become: 

(20) 
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Figure 10. Ccnterliue Te111pcrat ures vs x (va.rying fluid const.itue nt mea n 
velocity) 

Using these ncw equn t ions, in which Lhe factor o may be regarded as a 

"geometric scaling factor'' , " variation on the channel length would inc.lude 

effects of variation o f the fluid constituent velocity ou both constitueDts 

tcmperatures, shown in Figures 8 to 10. 

ADDITIONAL COMMENTS 

Figure 11 shows cenlcrline t.cmperatmi'S vs position x for t.wo diffcrcnt cases: 

the dcfault problem. rt·prcst·IJI.I.'d by cquation:> (7) to (10), a nd an a lt.ernativc 

prob lem, whcre equatÍOIIS (7) auu (8) ill'C subjccted lo another set of boundary 

conditious: zero hcat nux, in,tead o f l1.'111perature, is prescribed for the fluid 

constitueut o n both impermeablc surfaces, so that instead of equation (10), the 

ho undary condilions IJecome: 

TF(O, y) = O 

FLUI O 
SOLID 
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ÔTF ÔTF 
-
8 

(x,O) = -
8 

(x,H) =O 
y y 

(21) 

Ts(x, O)= Ts(x, H)= 1 

The sarne previously described procedure was used to solve this problem, and 

convergence was obLained iu three global iterations, as occurred to equations 
(7) to (lO), if both fluid and solid constituents partia! derivatives on x-direction 

initial estimates were zero. Examining Figure 11 it is observed that the curves 
describing the two mentioned case~ are almost coincident. This means that 
an alteration on the fluid constituent boundary condition on y-direction from 

prescribed temperature t.o zero beat ftux causes almost no alteration on both 
constituents centedine temperatures . Significative variation is noticed only if 

fluid constitueot cross sections ternperatures are compared for both cases, as 

shown in Figure 12, where a central section (x = 60) is considered. 
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Figure 12. Temperatu re vs y · Section x = 60 ( varying bou ndary conditions 
on y-direction) 

FINAL REMAitKS 

When a probleu1 like the one stated iu equations (7) and (8) is simu lated, 

usually a total of eight boundary couditious is required. However , the practic.al 

situation considered in the present work becomes unrealistic if ali the usual 

boundary condilions are prescribed. 

This work presents an algorithm which allows lhe local simulation of the cnergy 

transfer process in a saturated now through a rigid porous medium, using a 

Mixtures T heory viewpoint , in which a system of two elliptic equa.tions on 

both x- and y-variables are solved with only one boundary condition on x

direction: lhe fluid constituent inlet temperaLure. Additional data like the fluid 

constituent temperature or heat transfer and Lhe solid constituent inlet and 

outlet temperature and/or heat transfer, which are not available in practical 

problems, ueed nol to be l;nown . 
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Some prev ious works (e. g. Vafai and Sozen (7] and Lage and Bejan (8]) 
have alrcady used a two-tempcratures model lo describe Lhe momentum and 
heat transfer process in saturated porous media. These models, obtained from 
a Continuum 1\'lechanics approach, present a t.erm, analogous to the energy 
gcneration fuuction, which tôkes into a.ccounL solid and fluid temperature 
differences. Bot h temperatures, ho\vever, are calculated as intrinsic volume 
averages, ea.ch one in a volume associated to the respeclive phase. (As the 
Mixtures Theory basic llypothcsis states that each constituent occupies the 
whole volume of thc mixture, the iut.ri nsic volume can be th e sarne for both 
phases, in this case.) 
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P n l l'\Vl'EI.::!-clllwc: P.sm<tmcn~o S11 bsônico N ào Est.acioHário • Represenla.çàes I ntegrais 

Submetido em Jullw/90 
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NOMEN CLATURE 
Ci(x) Cosine integral function 

E1 (x) Exponential integral function = J:O e;1 
dt 

E;(x) Complementa.ry exponential function = f~oo ~ dt 
Fv(x) Function defined in equation (7) 
f(x) First auxiliary function of the trigonometric integral function 

= Ci(x) sin(x)- si(x) cos(x) 
g(x) 

H,.(x) 
h,.(x) 

I,.(x) 
J,.(x) 
k 

I<~-'(x) 

L'"'(x) 
.CIJ (X) 
Moo 
Afv(x) 
qoo 
R 
r 

Si(x) 

sí(x) 
Uoo 
u 

w(x, y , z) 
(x,y,z) 
(xo, Yo. Zo) 
Y,.(x) 

{3 

Second auxiliary function of Lhe trigonometric integral function 

=- Ci(x) cos(x)- si(x) sin(x) 
Struve function of arder J.l 

H'"'(x)- Y,. 
R 
Modified Bessel fuuction of first kind and order J.l 

Bessel function of first kinc.l and order ll 

reduced frequency, considered as a constant real non-negat.ive 

patameter = ~ 
Kernel function relating normalwash at point (x, y, z) to unit pressure 
difference at point (Ç , 17,() 

Modified Bessel function of second kiud and order J.l 

Modified Struve function of ordcr 11. 

= /'"'(x)- LJJ(x) 
free stream rvtach number 

Funct ion defined in equation (6) 

Free stream dynamic pressure = 1P=U! 
Jx~ + f32r2 
J(y _ '7)2 + (z _ ()2 

Sine integr·al functior. 

= Si(x)-! 
Free stream velocity in x direction 
Real argument = M{J~;·:xa 
Normal velocity at point (x, y, z) 
Coordinates of the nonnalwash point 

(X - Ç, y- 1], Z - (} 

Bessel function of second kind and order p 

=~ 
j1- M&, 
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r(x) 

'Y 
t:..p 

Poo 
<P(x) 

(~. f] ,() 
w 

}r 
)s 
) ,~.~ 

)v 
)' 

Gamma function 
Local dihedral angle 
Pressure difference 
Free strel'l.IH air density 
First auxilia ry fuuction of the exponential integral functions 
=e~' El(x) +e-x Ei(x) 
Second auxíliary functíon of the exponentíal integral functions 
= e:~.· Et(x)- e-:r. Ei(x) 
Coordinates of the doublet point 
Frequency of oscillation 
Receivin g point 
Sending poi nt 
O, 1,2,3 . ... 
J 3 5 7 I 
1· 2•1 •'i : . .. = J.l. + 2 
d 

J1; 

INTRODUCTION 

Since the l\iissner1 de rivation of the integral equation relating the pressure 
to the normalw<~sh dist.ribut.ion in subsonic unsteady potential flows, many 
aut.hors2 - 5 contribnted to the reduction of this equation to forms suitable for 

numerica.l comput.ations . l'vlany numerical approximations were proposed for 
the e valuatio n o f the no n-ele mentary part of t.he Kernel function 2•3•6•7 . These 

approxima t.e solut.ions have c:m a.ccuracy of t.wo to three digits and are time 
consuming in U·rms of ro1npula.tiona.l e!Torts. Exact solutions of the ínvolved 

integrais of the 1\t, rne l funct.io u were preseuted in reference [8}. The solutions 
presented h ave becn obt.ained in t.erms of new funct.íons and efficíent numerícal 

e valualion of thesc functio11s ha ve been proposed8 . ln refereuce (9] the unsteady 
supersonic flow case I~<L-; been t.reated a.nd it. is shown that the solution of the 

non-clcme nt.ary part of the s upersonic Kernel is related t.o the same functional 
solutions of t.hc s ubsonic 1\ernel. Furt.her, reference [9} gives simple and direct 
expressio w; for lhe eva.lu at.ion of t.he supersonic l\ernel. 

The prcsent pape r (li'C:'it' lll.!:i St' \'t' ral integral representat.ions o r t.hese funct.ional 
solutions. f'urt.hn . so 11H.' lll'\1' int L'gral t.ransforms deJuced from t.hcse integral 

rcpresent.at.io ns are gi\'('JI . Th,:st' 111.' \\' intt>gral represent i\lions a.nd integral 
t.ransror~ns are COiillt'ckd t.o t.h•' lkssd ;nHl St.ru,·e funct.ions. These functions 
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are of great importa.nce í n applíed 111at hema.tícs and mechanics, and their 
integral transforms and integral reprcscntations appear íu many fields of 
engineering sciences, e.g. , elastic vibrations1 potential flows, heat aud mass 
transfer 1 electromagnetic field problems, etc. It is believed tbat the results 
obta.ined in the present paper will be useful in such engineering applications. 

STATEMENT OF THE PROBLEM 

The integral equation relating Lhe pressure and the normalwash can be wr1tten 
asl 

1 

w(x,y,z) _ _!__jj [" (' () K(Ç,'T] ,(;x ,y,z;k,Moo )] i' l 
U 

- 8 up r...' 1/ , " <<,C '7 
oo 71' qoo1'" 

(l) 

The I<ernel fu nction K reads 1 

(2) 

where T1 and T2 are geometric relations and read4 ·5 

T1 = cos (;r --y3 ) (3a) 

T2 = -;. (zo COS')'r- Yo sin ')'r)(Zo COS')'s- YoSÍll1's) (3b) 
r 

and Kt and K2 are given by 

where 

ikM2 1.2e-iku 
K-2=- 2~ -3N5;2(u) 

R l +u 

M001·e-iku [ (1 + u2) /32 1·2 + 2R2 + M00Rr·u] 

R3 (1 + u2)3/2 

(4a) 

( 4b) 

(5a} 
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(5b) 

Consider 11ow Lhe integral, 

(6) 

where k is considc::rcd as a constanl non-negative para:meter, v= ~ ~ ~ ~ ~·~· · · · 
a.nd defining the function T..,(u) as8, 

Tv(-u) = NRc., ( tt) sin(ku) + Nrm., ( u) cos(ku) (7) 

a.nd using equation (5), iL can be shown that the fundion T..,(u) satisfies the 
d ifferent.ial equation, 

with the following boundary conditions, 

a-~,.1"..,(0) = ( -1)1'+1 ~ P' .C-~-'(k) 

c~~,.F~(O) = k/J+l l\'j.l(k) 

and recunence relations!!, 

(8) 

(9a) 

(9b) 

k 
4v (1 +v) fv+2(u) = k2 .F..,(u) + 2 v(2v + I) f v+I (u) + 2)" (lO) 

( 1 + 'U 

The solution for F..,(u) was given in reference [8] and efficient evaluation of 
these functions \vere trea.ted . Furt.her, an integral represent.ation for F..,(u) was 
given and reads8 , 

l
oo -ut 

of.!Tv(u) =- k t/J J~1 (t) +--k2 di 
o t + . (11) 

Once the funclion T..,(u) has bel' ll ohtained, t.he int.egrals given in equa.tion (6) 
can be evaluated from , 

.11/nc...(u) = .F..,(u)sin(ku) + f,.r~(u) cos(ku) ( 11n) 
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.N'Im.,(u) = J".,(u)cos(ku)- ~J"~ (u)sin(ku) (12b) 

INTEGRAL REPRESENTATIONS OF .1'11 (u) IN TERMS OF THE 
STRUVE FUNCTION 

Consider tbe integral representation of the Bessel function of the first kind 10•11 , 

JJJ(t) = - sin2
JJ O [cos(t cosO)] df) ti-' l1f 

CIIIJ7r O 

and the Fourier cosine transform12 , 

11 t 2 u loo c os( t x) d e -- x 
- t o x2 + u2 

for u > O 

(13) 

( 14) 

Substituting equations ( 13) and ( 14) into thc integral representatiou of .1".,( u) 
given in equation (11), étlld changing the order of integration, we obtain, 

.1"1/2(u) = -f(ku).Co(k)- ~ (X> Ho(t)tj>(ut) dt (15a) 
7r lo (2 + k2 

Higher order relations can be obtained using equations (15), the recurrence 
rela.tions of Lhe 13essel and Struve functions, and the recurren<:e rela.tion of 

Tv(u). The limitation of u >O is because of equation (14). 

Now, using the diJTerential equation (8) and equa.tions (15), the following H., 
transforms of the auxiliary exponential integral functions a.re obtained: 

100 7r 

Ho(t)<P(ut) dt = -~ 
o 1 + u 

100 7r 

lfo(t) 1/>(ul) dt =-~ 
o u 1 + u 

fooo _H.-:..l..:....(t...:...)t_.<P...:...(t_ti~) dl = 7r [ ~- u] 
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{ rx' H1(t) tj;(ttl) dt = 1f [ 1 _ ~] 
lo t ~ u for u > O (16) 

and the following relatiou::. are verified 12 : 

.Co(k) = ~ roo t llo(t) dt = 2 k roo Jo(t) dt 
1f lo t2 + J,:2 1T lo t2 + k2 

2k iro H!(t) 2k2 100 J 1(t) .Ct(k) =- --- dt =- dt 
1f o t2 + .P 1f o t (t2 + k2) 

(1 7) 

To thc author's knowledge, the relations given in equations (15) and (16) are 
new. 

INTEGRAL REPRESENTATIONS OF .1"v(tt) lN TERMS OF THE 
MODIFIED BESSEL FUNCTIONS OF THE SECOND KI ND 

Consider Lhe integral representation of the Struve function 12 , 

h11 (t} = -- e-t2.· 1 + x2 dx 21v !coo ( )~-1/2 
1fet,, o 

(18) 

and the Han kel- Nicholson trnnsform11 •12 , 

[ 4tv+l ]1oo K(x) 
hJ.t(t) = ( - 1)1

'-2- ( ~ 2) dx 
1T 0 x,.. x + t (19) 

Applying Laplace transfonn operations on equation (8) and using the integral 
relations (18) and ( 19) and lhe recurrence relation of .:Fv(u), equation (10), we 
obtain 

[ 
1f J.:l'] 

CtJ.I .:Fv(U) = ( -l)p+J 2 c_,_.(k) COs(ktt) + k~' f\11(/.:) SÍll(ku) 

2/.: laoo 1,, 1• () cos(ku)- cos(tu) l + - t \,, l 1,:2 2 d 
1f o - l 

(20) 

Using now equat.ion ( 20) anel the di ITcrent i;:d cquat ion (8}. t.laP following 1\·,.. 
transform is verified: 

1,01:• ;r 11,, 
11' /,·,,(/) co,.;(/u) d/= , 1, 

o :!(l+u-) 
(:! I ) 
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Consider now tbe Fou ri e r cosi ne transform 12 , 

e-ut = ~ f':.o cos(ux) dx for u >O 
7r lo t2 + x2 

(22) 

Substituting equation (22) inlo lhe integral represe11tat.ion of F,..(u), equation 

{11), changing the order of integration, aml using equation (27) of reference 
(8], we obtain 

for u >O (23) 

Using now equations (23) and (20), the following J(~, transform is obtained: 

roo tJ.t 1\~,(t) dt = (-1)"' 11'
2 

kiJ- 1 (._ (k) 
lo k2 - t2 4 ~' 

(24) 

and, therefore, from equat ion (24) a.nd equation (20) o r equation (23), we obtain 

The relationships given in equations (20), (23), and (25) connect the new 
function T..,(tt) to integral transforms of the modified Bessel functions of the 
second kind. Therefore, these integral transforms cau be evaluated in terms of 
T..,(u) . 

INTEGRAL REPRESENTATIONS OF .1',..(u) lN TERMS OF THE 
MODIFIED BESSEL AND STRUVE FUNCTIONS 

Consider the integral represenLalion of thc auxiliary exponentia.l function 12 , 

.I.( ) _ 2 !ooo si n(ux) d 
Y' tLl - t 2 2 X 

0 X + t (26) 

Substituting equation (26) into equation (15), a.nd changing the order of 
integration, we obtain 

1
00 C.o(k)- C.o(t) 

.1"1t 2(u) = f (k u) L:o(k) - k sin(ut) 2 1.:2 dt 
o t -

(27a) 
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F3;2(u) = -k [ ~- u] + k f(ku) .Ct(k) 

k'l rXJ. < )t.c1(k)-k.c1ct> d 
+ . lo stn ut t (t2- k'l) t 
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(21b) 

Higher order relatioos can be obtained using equations (27), the recurrence 
relaiion of Fv(tt), equation ( 11 ), and the recurrence relations of the modified 
Bcssel and SLruve funclions. 

N ow, using the Fourier sine tra.nsform 12 , 

r .>O sin(ut) 1 11' lo k'l _ t2 dt = k f (ku)- 2 cos(ku) (28) 

in equation (27), we obtaín 

11' roo . .Co(t) 
F 1; 2(u) = - 2 cos(kH).Co(k) - k lo sm(ut) k2 _ t 2 dt (29a) 

F3;2(u) = -k [ ~- u] + 1r
2
k cos(ku) .C1(k) 

3 { 00 
. CI (t) 

+ k lo slll(ut)t(k2 -t2) dt (29b) 

Applying thc differential cq u<t Lit' ll (8) 011 equa.tions (29), we obtain the following 
Lransforms: 

lo
oc ] 

sin(ut) .Co(t) dt = r.-;--:') for u >O 
o v 1 + u· 

(30a) 

rco sin(ut) .Ct(f) dt = ~- u for tJ >o 
lo t 

(30b) 

Now, consider t.he f'ourier sine t.ransform12 , 

e-ut=- . dx 2100 
J: sin( ux) 

;r o x2 + (2 
fot· u >O (31) 

Substituting eq11ation (:31) inl.o the integral represcnt.ation of Fv(u), equation 
( ll ), ancl using equat.ion ( 16) of rcference [8]. we obt ain, 
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for u >O (32) 

and 

(33) 

The relationsh ips givt>u in equations (27), (29), (32), and (35) connect Lhe new 
function Fv to integral ~ransfonns of the modified Desse) and Strllve functions. 
Therefore, t.hcse in~egral trnnsforms can ue evaluated in t.erms of F~.~. To t.he 
author's knowledge, the integral represcntatiou given in cquat.ions (30) are new. 

CONCLUSIONS 

Integral represent.ations of t hP fun c l'.ion of lhe liO JI ·e lcmen~ary part of 1 h e Kcrnel 
of the int.egral equalion relat.iug llu"' prcssure lo t.he norm<dwMb dil>trihution 
occurring in unsteady subsonic potential nows hare been presenteei. It. is 
believed that t heJw integra l rcpr·esen l at.ious will h e use fui for evaiiHi! ing thc 
integrations givcn in t.ernJ:; of i.he function F'.,(u). 'l'he resu lt .~ obt.aincd can bt> 
extended to other fields of applica.Lion and. therefore, are not limited to t.he 
solution of unst.eady pot enl.ial Oow probh~n1s. 
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