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PREDICTION OF OPTIMUM GEOMETRY, AND
THE PERFORMANCE OF VALVELESS PULSED
COMBUSTORS IN GAS TURBINES, USING A
MATHEMATICAL MODEL

UM MODELO MATEMATICO PARA A OBTENGAOQ
DA GEOMETRIA OTIMA E DO DESEMPENHO DE
QUEIMADORES PULSATIVOS SEM VALVULA EM

TURBINAS A GAS

J.A. Olorunmaiye J.A.C. Kentfield

Dept. of Mech. Eng. Dept. of Mech. Eng.

University of Ilorin The University of Calgary

Ilorin, Nigeria Calgary, Alberta, Canada, T2N 1N4
ABSTRACT

A mathematical model of valveless pulsed combustors, in which the effects of chemical
reaction were considered, is presented. The flows in the inlet and tail pipe were
assurned to be one-dimensional whilst the combustion chamber was treated as a
large reservoir with uniform thermodynamic properties. The set oe? hyperbolic partial
d:’?eﬂential equations obtained were solved by a numerical method of characteristics.
The model was used lo study the effects of changes in combustor geometry, and intake
pressure and temperature on the performance of the combustor. The model shows that
shortage of fresh air in the combustion chamber is what degrades the performance of
the pulsed combustor when the geometry employed differs from the optimum one. The
results cbtained also show that pulsation amplilude in the combustion chamber, a
parameter for assessing the performance of pulsed combustor, increases with intake
pressure whereas it decreases with intake temperature. It is also established that an
optimum performance of valveless pulsed combustor can be obtained in gas turbine
application, if there is intercooling g::twecn the compressor and the pulsed combustor.

Keywords: Valveless Pulsed Combustors s Combustion Chamber » Method of
Characteristics » Gas Turbine Application

RESUMO

Um método matemdtice de queimadores pulsativos sem vdlvula € apresentado em gue
os efeilos da reacdo quimica sio considerados. Os fluxos na enirada e no tubo de
saida sdo considerados unidimensionais enguanto que a cdmara de combustdo foi
tratada como um grande reservatério com propriedades termodindmicas uniformes.
O conjunto de equagces diferenciais parciais hiperbdlicas obtido foi resoluvido pele
método numérico de caracteristicas. O modelo foi uliizado para estudar os efeitos
das mudangas na geometria dos queimadores, da pressdo na entrada ¢ da temperatura
no desempenho do queimador. 3 modelo mostra que a diminuigdo de ar na camara
de combustdo € o fator de degradagdo do desempenho do queimador pulsativo quando
a geometria utihizada difere daquela dtima. Os resultados obtidos mostram também
ue a amplitude de pulsagdo na camara de combustdo, pardmetro para acessar-se o
esempenho do quetrnador pulsativo, aumenta com a pressdo na entrada enquanto
diminui com a temperatura na entrada. Também conclui-se do presente trabalho
que um desempenho étimo do queimador pulsativo sem vdlvula e ser obtido nas
aplicagées de turbinas & gds se houver um sistema de refrigeragao integrado entre o
compressor e o queimador pulsativo.

Palavras-chave: Queimadores Pulsativos sem Vilvula » Camara de Combustio =
Método de Caracleristicas m Aplicagdes em Turbinas & Gés

Submetido em Agosto/90 Aceito em Setembro/91
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NOMENCLATURE

Roman Letters

Symbol Nondimensional form
a A=a/ag
B,E,F,H,Y

(of

Cy

Ch C;. = Cp,/Ro

Co Ct=C,/Ro

Cy; C;:,. = Cy,/Ro

d

E

B E:-c = EccfpothOTﬂ
fi

gi Gi = gilo/ao

h k' = h/RoTy
HMOT

he

I.J LM N,V

Meaning

Speed of sound

Group of terms defined after
equation (11)

Mass fraction of the i-th
species

Friction Factor

Specific heat of

gas mixture at

constant pressure

Specific heat of the i-th
species at constant pressure
Specific heat of

gas mixture at

constant volume

Specific heat of the i-th
species at constant volume
Duct diameter

Acitivation energy

Internal energy of
combustion

chamber content

Mole fraction of the i-th
species

Rate of production of the
i-th species per unit mass
of the gas mixture

Enthalpy per unit mass

Feet of characteristics (see
Figures 2 and 3)
Convective  heat
coefficient

Grid points (see Figures 2
and 3)

transfer
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Greek Letters
(43

vy = Gp/Cy
At

Az

€

p
o

Subscripts

cc

Me = mcc/ﬂo 13

M = 1/ pyl3ao

N
P'=P/Py
Q' = qlo/a}
R'= R/Ro
R; = Ri/Ro
S=s/Ro
Z = tag/ly
T =T/Ty
U=u/a{}
W = wly/a}
X =zl

o = a/l?
AZ

AX

D =p/p,

Reaction rate constant
Reference length

Mass of combustion
chamber

Mass flow rate

Mass of fuel consumed
per unit volume

in a unit time
Number of species
Pressure

Heat transfer rate

per unit mass

Heat transfer rate
Specific gas constant
of gas mixture
Specific gas constant
of i-th species
Universal gas constant
Specific entropy

Time

Temperature

Velocity

Frictional force per
unit mass

Axial distance

Area

Ratio of specific heat
Time step size
Spatial grid size
Emissivity

Density
Stefan-Boltzmann
constant

Combustion chamber
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€1
€2
€3
€4

in
max
min

oV

TV

v
w
)

Superscripts
!

Z
Z+AZ
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Left end of the inlet
Right end of the inlet
Left end of the tail pipe
Right end of the tail pipe
Fuel

Internal energy, or
enthalpy, or entropy of
formation of the i-th
species per unit mass
Gas

Feet of characteristics
(See Figures 2 and 3)
Along line HV

(See Figures 2 and 3)
Inner wall surface
Maximum

Minimum

Along line OV

(See Figures 2 and 3)
Reference pressure or
temperature for the
definition of enthalphy,
internal energy,

and change in entropy
Along line TV

(See Figures 2 and 3)
Grid point V

(See Figures 2 and 3)
Wall

Reference quantity;
Ambient air

Normalized with respect to
appropriate reference value
Time Z

Time Z + AZ
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INTRODUCTION

A pulsed combustor, by design, operates with combustion-driven oscillation
which was once usually considered a nuisance and even sometimes a danger
(1] in practical combustion systems. Increasing interest is being shown in the
application of pulsed combustors because of their ability to operate with gain
in stagnation pressure [2], enhanced convective heat transfer to the wall [3], and
reduced NO; formation [4]. Domestic heating units in which pulsed combustors
are used are currently being marketed under the trade name LENNOX PULSE
FURNANCE. Work 1s being done to develop pulsed combustor for gas turbine
application [5].

Pulsed combustors of so many different geometries have been built by various
inventors. The inlet of the combustor imay be equipped with valves or it may be
valveless, the inlet, in that case, being designed to function as an aerodynamic
valve. The geometry of the pulsed combustor on which this work was done,
the valveless SNECMA-Lockwood Type, is shown in Figure 1.

A disadvantage of pulsed combustors which has militated against their devel-
opment is the difficulty of studying them theoretically due to the complexities
of their working processes. This has resulted in a situation whereby workers
have relied almost exclusively on experimental cut-and-techniques to optimize
the geometry of pulsed combustors. Servanty [6] reported that SNECMA, a
French aero-engine manufacturer, built and tested several thousand different
configurations of valveless pulsed combustors between 1943 and 1971.

Due to the realization of the advantages of good theoretical simulation as a cost-
effective means of predicting the effect of design changes, several workers have
attempted to model the operation of the pulsed combustor mathematically.
Marzouk [7] developed an isentropic cold flow model to simulate the operation
of the SNECMA-Lockwood combustor. The combustion process was replaced
by a simulated instantaneous injection of air resulting in a peak combustion
chamber pressure measured experimentally. Cronje [8] extended this model to
include the effect of heat transfer and friction. However, the assumptions of
flow separation in the tail pipe and constant-reaction-rate combustion occuring
sequentially instead of concurrently with charging/discharging process in the
combustion chamber, minimised the confidence with which the model could be
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applied as an optimizing tool. Clarke and Craigen [9] modelled the operation of
an organ pipe pulsed combustor using a simple overall reaction rate equation.
This model could not be used as a predictive tool due to the requirements of
wall temperature distribution along the combustor and pressure-time variation
at the left end of the combustor as part of the data input.

This paper describes a model which was developed to overcome the shortcom-
ings mentioned above so that it can be used as an optimization tool for the
geometry of valveless pulsed combustors.,

MATHEMATICAL MODEL
Inlet and Tail Pipe

Assuming the flows in the inlet and tail pipe to be quasi-one-dimensional, and
neglecting molecular diffusion, longitudinal viscous and conductive effect, the
conservation equations for mass, momentum, energy and species are:

1 Dp du dina

p it T 0 M
% + i g—f +w=0 (2)
Bi -5 pr = e+ 3)
%‘ff:g,- (i=1,2.,.N =1) (4)
The chemical source function for each species
gi = gi(P,p,C1,...CN-1) (5)

can be determined from the chemical reactions taking place in the flow,
The specific enthalpy and entropy are given by

h=MP.p,Cy,...Cr—1) (6)
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and
s=3(P,p,C,...CNn—1) (7)

The gas mixture is assumed to be a perfect gas and

P = pRT (8)

N
where R = ZC.- R; and

=1

N
h=Cy(T—Tp)+ Y Cihy, (9)
a==]

N
where Cp, = Z CiCy,

i=1

Using equations (6) and (7) in equation (3) and substituting for the partial
derivatives and nondimensionalizing the resulting equations, the following can
be obtained:

aprP' aprP’ p GU 2
il i 8 ol R o A 1
aZ+UdX+'7cDA Y vwDA“F+ E-B (10)
DS
= Y 11
D7 H+ (11)

where

DR/ PR
B= ZG"{T;[C;-‘T’ - TR)+h}] - T}

=1

_ %(@ +UW) DR’

E &

!dlna

F= X
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n=-oi3a[m(255) (- %)

=1
Sfl C:"l N L
3 = E"&'(S_ ZT‘C, s,,) + s
: .Jct  DR'h;
g U,l C.R.IC"_‘_ I}
(Il Ve,
Y =222 (@' +Uw)

The nondimensional forms of equations (2) and (4) are

I 4P’ 8U . 8U
P’ oU L OU 12
wh ax T W agg=W (12)

DC;
52 =G (13)

=18 0 N 1)

Equations (10)—(13) constitute a set of quasi-linear hyperbolic partial differen-
tial equations which were solved using the method of characteristics. In this
method, a rectangular grid is imposed on the integration domain and the equa-
tions are integrated along the characteristics directions. The dependent vari-
ables used are P/, I/, 5,Cy,Cy,...Cy_y. Following the procedure given by by
Courant and Hilbert [9] the characteristic curves and compatibility equations
were derived. The characteristics having reciprocal slopes (U + A), (U — A)
and U are labelled OV, TV, and HV respectively, see Figure 2. The finite
difference approximation of the compatibility equations are:

Uv—Lo+l(DlA) (Pl — Pl)=— (AF+W+BDA) AZ (14)
UV-UT—%(E}—A)TV[PL PL) = (—AF+W+fﬂB§)VAZ (15)

Sy =Sy +(H+Y)ygv AZ (16)
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Ciy =Ciy + Giyy AZ (17)
(i=1,2,...,N—1).

The double subscripts on a term indicates that the term is taken to be mean
of its value at the end points indicated by the two subseripts.

v
| /
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(a) Subsonic Flew to the Right (b) Supersonic Flow Lo the Right

v

N

MO HITN

(c) Subsonic Flow te the Left (d) Supersonic Flow to the Left

Figure 2. The characteristics reaching and internal grid point.

Combustion Chamber

Treating the combustion chamber as a control volume, it is assumed that
the thermodynamic properties of the gas mixture in the combustion chamber
are uniform and that the mixture has homogeneous composition. Neglecting
molecular diffusion into or out of the combustion chamber, the finite difference
approximation of the combustion chamber equantions are

MCZC+AZ = M&% -+ (De:(}';z {,-rea - Dgaﬂ'gs Uga + A}f)z AZ (18)
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U?
E::E-FAZ = E;g * [Dg._.&;.z Ue, (h’ez + ;?)"
I I U;za o ! &
Degal, Ue, (h,a + ) +MCh T+ Mo @| AZ  (19)

CZ+&Z = [(Cichcc)Z + (DCQ C|

Tce

! g '
oy ¥ey Uey — Dey G, ey Uy

+Gio Meo)? 82) [MEFSZ (20)

(i=1,2,...,N - 1).
Boundary Condition

The velocities at the inlet and tail pipe boundaries may be positive or negative.
The flow was assumed to be quasi-steady at the boundaries of the inlet and
tail pipe. Rudinger [10] reported that results obtained from this assumption
for the kind of boundaries being considered in this work are in good agreement
with experimental observations.

Inflow through any bonundary was assumed to be isentropic since the effect
of the factors that cause entropy increase (such as friction, mixing and
combustion) between the limit of the flow source (ambient air or combustion
chamber) and the boundary grid point, was expected to be small compared
with the effect of these factors in the pipes (inlet or tail pipe). Therefore, the
entropy at the grid point was the same as that of the flow source (ambient
air or the combustion chamber). The mass fractions of the species at the
boundary grid point were the same as those of the species in the flow source.
Since the flow was assumed to be quasi-steady, the steady flow energy equation
and the compatibility equation of the characteristic reaching the boundary
were solved to obtain the remaining dependent variables. The characteristics
reaching boundary grid points for different flow velocities are shown in Figure 3.
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Since outflow through any boundary was assumed to be quasi-steady, the static
pressure at the boundary was the same as that in the space into which discharge
took place (the ambient or combustion chamber) if the flow was subsonic. The
compatibility equation of the characteristics reaching the boundary were solved
to obtain the other dependent variables.

In the case of sonic/supersonic outflow, all the characteristics are washed
sownstream and the dependent variables at the boundary were obtained by
solving the compatibility equations of all the characteristics.

Combustion Model

Assuming complete oxidation of the fuel (propane), the following overall
reaction equation was used:

mlfl = K C5%y, C&F p* exp[-E/R,T) (21)

The values of activation energy and reaction rate constant used are E =
30 MJ/kmol and K = 4.5 x 10° m3/kgs.

Heat Transfer and Wall Friction

The rate of heat transfer by convection and radiation from the wall is

Q = h, O‘in(Tw —Tg)+ St

otg 0in(Ty — Ty) (22)
The frictional force per unit mass on the fluid element at the grid is

w= —= uly| (23)

Cy and h; were obtained using equations of the forms relating friction factor
and Nusselt number to local flow parameters in steady flow. Gas emissitivity €g
was taken to be 0.04. This value was calculated from experimentally determined
gas and wall temperatures [11].
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Initial Conditions

The flow in the pulsed combustor is cyclic unsteady flow. At the beginning of
the first cycle, the combustion chamber was assumed to be filled with air at
pressure P, + 0.5) and temperature (T% + 3.5) while the inlet and tail pipe
were assumed to be filled with air at ambient conditions. The combustion
model was brought in, in the second cycle. By the 15th cycle the operation of
the combustor had converged to a cyclic operation.

Stability Criterion

The time step was chosen in accordance with the Courant-Friedrichs-Lewy
stability criterion [12] which requires that

(24)

More detailed description of this mathematical model can be found elsewhere
[11,13]. Good results were obtained when the model was applied to predict
flows in shock tubes and pulsed combustors. When 41 and 501 grid points
were used in the shock tube computation, the improvement of the predicted
result with increasing number of grid points was found to be very small — far
from being commensurate with the increase in computation time [14].

USE OF THE MODEL AS AN OPTIMIZATION TOOL

The geometries of the inlet, combustion chamber and tail pipe were varied
for a fuel flow rate of 7.24 kg/h. The effects of these geometrical changes on
the performance of the pulsed combustor were assessed in terms of the pressure
range in the combustion chamber, the total static thrust generated at e; and ey,
and the average fresh air aspiration rate through the inlet into the combustion
chamber, The performance of the combustor with its present geoemtry, which
was optimized by experimental cut-and-try technique by earlier workers, are
underscored with broken lines in Tables I-VII.
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Table I. Variation of combustor performance with combustion chamber, volume
change, as predicted with the model for a fuel flow rate of 7.24 kg/h. The
geometries of the inlet and tail pipe were held constant.

Combustion Nondimensional Total Air flow
chamber pressure static thrust rate from
volume x10* range in generated at ey into
(m*) combustion ey and eq combustion
chamber (N) chamber kg/h
3.348 0.512 7.68 48.06
5.022 0.992 10.80 112.25
6.714 1.457 31.72 128.49
10,464 1.072 25.68 112.27
13.393 0.688 17.04 81.10

Combustion Chamber

Table I shows the results obtained by varying the combustion chamber volume
while freezing the geometries of the inlet and tail pipe. It can be seen that the
volume giving optimum performance is indeed the present volume. The reason
for the peaking of the performance at the present volume was found to be due

to the mass of the fresh air charge inhaled being maximum at this volume.

Inlet Geometry

The length of the inlet and its cross-sectional area at ey were varied while
freezing the geometries of the combustion chamber and tail pipe. Tables II
and IIl show the results. Again, it can be seen that the present inlet geometry
gave the best performance. The poor performance with other geometries was

caused by shortage of oxygen in the cobustion chamber due to poor charging.
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Table II. Variation of combustor performance with inlet length as as predicted
with the model for a fuel flow rate of 7.24 kg/h. Inlet areas at e; and ey, and
the geometries of the combustion chamber and tail pipe were fixed.

Inlet Nondimensional Total Air flow
Length pressure static thrust rate from
x 10% range in generated at eq into
(m) combustion e; and ey4 combustion
chamber (N) chamber (kg/h)
7.62 0.701 14.06 69.08
12.19 1.197 21.02 124.17
15.24 1.457 31.72 128.49
16.76 1.331 21.38 108.05
22.86 0.772 8.98 51.66
30.48 0.504 6.26 64.14

Table II1. Variation of combustor performance with inlet area at e; as predicted
with the model for a fuel flow rate of 7.24 kg/h inlet length and its divergence
angle, and the geometries of the combustion chamber and tail pipe were fixed.

Inlet Nondimensional Total Air flow
Area pressure static thrust rate from
aep x 108 range in generated at eq into
(m?) combustion ey and ey combustion
chamber (N) chamber (kg/h)
0.314 0.283 0.94 52.16
0.707 0.740 8.03 44.66
1.131 1.457 31.72 128.49
1.590 0.583 18.90 69.48
1.963 0.598 16.30 78.37

Tail pipe geometry

With the tail pipe areas at e3 and eq4 fixed, a tail pipe having a length that is
shorter than that of the tail pipe used in the present geometry by 76 mm gave
slightly better performance than the present geometry as shown in Table IV.
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Poor combustion chamber charging was observed when the other tail pipe
lengths were used.

Table IV. Variation of combustor performance with tail pipe length as predicted
with the model for a fuel flow rate of 7.24 kg/h . Tail pipe areas at e3 and ey,
and the geometries of the inlet and combustion chamber were fixed.

Pipe Nondimensional Total Air flow
Length pressure static thrust rate from
range in generated at €2 into
(m) combustion ey and ey4 combustion
chamber (N) chamber (kg/h)
0.6096 0.551 9.21 35.10
0.8382 1.464 33.90 123.32
0.9144 1.457 31.72 126.49
1.1430 0.441 461 48.22
1.4478 0.512 6.61 32.98

Table V. Variation of combustor performance with tail pipe area at e4 as
predicted with the model for a fuel flow rate of 7.24 kg/h . Tail pipe length
and its area at ez, and the geometries of the inlet and combustion chamber
were fixed.

Tail Pipe Nondimensional Total Air flow
area pressure static thrust rate from

ae, x 103 range in generated at e, into
(m?) combustion e1 and ey combustion

chamber (N) chamber (kg/h)

0.575 1.512 24.09 134.31
3.066 1.457 31.72 128.49
4.748 1.433 38.58 126.11
6.900 1.441 43.46 126.89

Table V shows the effect of variation of tail pipe cross-sectional area at e4 on
the performance of the combustor. For the case with a smaller e4 area than the
present geometry, the combustion chamber fresh air charge was slightly greater
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and a higher pressure range was developed. However, the thrust was lower due
to the reduced area which resulted in a lower mass flow through e4 in both
directions. With higher areas at e4, the fresh air charge and the pressure range
in the combustion chamber were approximately the same as for the present
geometry, but higher thrusts were generated due to larger flow areas at e4.

The effects of changes in magnitude of the tail pipe area at ez on the
performance of the combustor can be seen in Table VI. At first, the total
thrust generated and the combustion chamber pressure range reduced as the
area at e3 increased. The change in trend observed at an area of 1.59 x 10~3m?
is believed to be due to the pulsed combustor changing its oepration from that
of being somewhat like a Schmidt burner due to the closeness of the tail pipe
diameter to that of the combustion chamber. At a slightly smaller area of e3
than in the present geometry, improved performance can be obtained as shown

in Table VI.

Table VI. Variation of combustor performance with tail pipe area at e as
predicted with the model for a fuel flow rate of 7.24 kg/h  Tail pipe length
and its area at e4, and the geometries of the inlet and combustion chamber
were fixed.

Tail Pipe Nondimensional Total Air flow
area pressure static thrust rate from

ey X 10% range in generated at ez into
(m?) combustion ey and eq combustion

chamber (N) chamber (kg/h)

0.254 1.520 39.37 142.17
0.575 1.457 31.72 128.49
1.590 0.236 425 41.72
3.066 0.992 17.32 74.20

In Table VII, the performances of three combustors having uniform diameter
tail pipe are compared with the performance of the present geometry. It can be
seen that the performance of a pulsed combustor having a diverging tail pipe
is indeed superior to that with a uniform diameter tail pipe as reported earlier
by Marzouk [7].
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Table VII. Variation of performances of pulsed combustors with tail pipe of
uniform diameters to that of present geometry.

Dimensions of Performance
Tail Pipe
ey X 102 e, X 10° Length | P’ in max P"in min | Total Thrust
(m?) (m?) (m) | Combustion | Combustion | at e; and eq4
Chamber Chamber (N)
0.575 0.575 0.9144 2.307 0.782 24.23
3.066 3.066 0.9144 1.765 0.774 17.35
1.591 1.591 0.9144 1.965 0.792 17.20
0.575 3.066 0.9144 2.234 0.7717 3172

PREDICTING THE EFFECTS OF VARIATION OF INTAKE
FLOW TEMPERATURE AND PRESSURE

Imagining that the pulsed combustor was placed in a large reservoir containing
air, the pressure or temperature of the air in the reservoir was varied,
hypothetically using the numerical model, to see what effect such a variation
would have on the operation of the combustor.

Increasing the ambient pressure while keeping the ambient temperature fixed
approximately simulates intercooled supercharged operation. Not only did the
absolute values of minimum and maximum pressure in the combustion chamber
increase with amibient pressure as expected, the pressure amplitude increased as
well, see Figure 4. This trend is in agreement with the work of Porter [15] who
reported an increase of hetween 2 and 13% in the pulsation amplitude in the
combustion chamber, in his experimental runs of a valveless pulsed combustor
at a pressure of 3 atimospheres.

The total thrust generated at e; and e4 and the mass of fresh charge inhaled
through ey increased with ambient pressure as shown in Figure 5. The
improvement in performance with ambient pressure higher than 1.0 was due
to an increase in the density of the ambient air which resulted in more oxigen
being available for combustion in the combustion chamber.

When the ambient pressure was fixed at 0.75 (a pressure of 66 kPa), the
performance of the combustor was poor as can be seen in Figures 4 and 5.
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This was due to shortage of oxygen in the combustion chamber. This shows
that the comubstor with its present geometry, may need to be equipped with

a supercharger at the inlet before it works efficiently at high altitudes.

Above an ambient temperature of 1, the pulsation amplitude, total thrust
generated at e; and e4, and the rate of flow of fresh charge through e; reduced
with temperature as shown in Figures 6 and 7. This was largely attributable
to the reduction in the density of the fresh charge through ez which caused a

shortage of oxygen in the combustion chamber.

Poor performance was also observed when the ambient temperature was 0.9
(=13.05°C) as shown in Figures 6 and 7. To get a good performance under
such operating conditions, the pulsed combustor needs to be insulated with
suitable materials, or with air, by shrouding it. The pulsed combustor used for
de-icing railway track switches by Ringer et al [16] and SWINGFIRE pulsed

combustor used to warm up cold-soaked engines by Huber [17] were shrouded.

In the case of shrouded pulsed combustor taking its fresh air from a compressor
outlet, the increase of ambient pressure and temperature go together. The
performance of the combustor when it was operated in ambient air at a typical
compressor output nondimensional pressure and temperature of 4.0 and 1.6
respectively, is shown in the last row of Table VIII. The performance was
good but lower than that in ambient air of pressure 4.0 and temperature 1.0.
This shows that an optimum performance of valveless pulsed combustors can
be expected in gas turbine application, if there is intercooling between the

compressor and the pulsed combustor.
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Table VIII. Predicted performance of the pulsed combustor with variation of
ambient pressure and temperature. The fuel flow rate is 7.24 kg/h and reference
pressure and temperature are 88.25 kPa and 289 K respectively.

Ambient Ambient Brag =Pl Total thrust
Pressure Temperature in combustion generated
P, ¢ chamber (N)
1.00 1.00 1.457 31.72
3.00 1.00 2.301 54.00
4.00 1.00 2.548 56.51
1.00 1.00 1.457 31.72
1.00 1.20 0.871 15.71
1.00 1.60 0.727 13.80
4.00 1.60 2.196 46.95

CONCLUSIONS

A mathematical model for optimizing the geometry of pulsed combustors has
been presented. The model shows that the alteration of the gas dynamics
causing shortage of fresh air in the combustion chamber is what degrades the
performance of the pulsed combustor when the geometry employed differs from
the optimum one.

Results obtained show that pulsation amplitude in the combustor increases
with intake pressure whereas it decreases with intake temperature. In gas
turbine application of valveless pulsed combustors, an optimum performance
can be expected if there is intercooling between the compressor and the pulsed
combustors.
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ABSTRRACT

Solutions for the flow in a shock tube of infinite extent are presented for several values
of the initial pressure ratio. The physical situation is modelled through the use of the
one-dimensional Euler equations and the solution is numerical. Three algorighms are
implemented, each representative of a certain class, namely, the centered difference
algorithm of Beam and Warming, the fluz vector splitting upwind difference algorithm
of Steger and Warming and ¢ TVD - Total Variation Diminishing - scheme due
to Harten. The main objective of the paper is to compare the performance of
these numerical procedures for a non-steady flow with strong discontinuities. Resulls
show that the best perfornung scheme is the TVD, followed by the flur-split upwind
procedure.
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RESUMO

Solugoes para o escoamento em um tubo de chogque de comprimento infinito sdo
apresentadas para vdriog valores da razdo tnicial de pressées. A situagdo fisica
é modelada por meto das equagées de Euler e a solugdo final € numérica. Trés
algoritmos foram implementados, cada um representativo de uma certa classe, a
saber, algorilmo de diferengus centradas de Beam e Warming, slgoritmo tipo vetor
de fluro separado de Steger ¢ Warming e algoritmo tipo TVD devido a Harten. O
principal objetivo deste trabalho é comparar o desempenho desses esquemnas numéricos
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obtidos mostram que o esquema com melhor desempenho é o método TVD seguido
do algoritmo de Steger ¢ Warming.
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INTRODUCTION

Euler numerical simulation codes, besides several other important character-
istics, have to provide some means for controlling nenlinearities. This must
be so, because the Euler equations constitute an inviscid model and, conse-
quently, as opposed to the Navier-Stokes equations, do not contain any natural
dissipation mechanisin that would eliminate high frequencies due to non-linear
effects. In general, there are two ways of handling this problem. Either one
should explicitly introduce artificial dissipation terms to a centered difference
algorithm, or an upwind difference algorithm should be used. Moreover, there
1s always the possible drawback of solution oscillations in the passage through
shock waves, which, by the way, is one of the main sources of nonlinearities in
the flowfield.

A typical example of a centered difference scheme is the well-known Beam
and Warming algorithm [1], [2]. This algorithm, to which artificial dissipation
terms of linear and non-linear nature have been systematically aggregated, has
been successfully applied to a wide variety of problems (see, for example, [3],
[4), [5] and [6]). Another notable example is the work of Jameson et al. [7],
where the time integration is performed through the use of an explicit Runge-
Kutta procedure. In contrast to these, another class of schemes can be found in
the literature, under such names as monotone, flux split, flux difference, total
variation diminishing (TVD), that employs some form of upwind differencing.
Representatives of this category are the works of Steger and Warmining [8],
Harten [9], Osher and Chakravarthy [10], van Leer [11], and Roe [12].

The main objective of this paper is the implementation of a number of
algorithms belonging to both classes in order to test and confront their
abilities in terms of overall accuracy, stability, computer costs, and discontinuity
capturing and resolution, This, we hope, will permit the reader a quick
assessment of the several techniques employed and also provide some hints
for the proper selection of one of those schemes, The flow in a shock tube of
infinite extent is selected as the test case. The reason for this choice rests on the
fact that this flow contains different types ol discontinuites, such as shock and
expansion waves as well as contact surfaces. As one of the primary interests
of this research is to investigate the behavior of the solution in the crossing of
discontinuities, the shock tube 15 a natural choice. Mathematically, the flow
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in a shock tube of infinite extent can be recognized as a Riemann problem.
Details of this flow are described in standard gasdynamic texts [13].

The algorithms selected for the solution of the shock tube are: the Beam
and Warming algorithm with non-linear artificial dissipation, the Steger and
Warming flux vector splitting scheme, and Harten's TVD method. The work
to be reported herein is organized in the following way. Initially, the Euler
equations and the essentials of the several algorithms are introduced. After
this, results are presented and discussed.

THE EULER EQUATIONS

Consider a long tube in which two masses of gas with different static pressures
are initially at rest and separated by a diaphragm. The diaphragm is suddenly
burst, and then an expansion wave propagates into the high-pressure chamber,
while a shock wave, followed by a contact discontinuity, propagates into the
low-pressure chamber. With the exception of the thin boundary layer that
grows from behind the wave fronts, the flow in the tube is essentially one-
dimensional. The modelling of the gas as an inviscid fluid makes the geometry
of the problem perfectly one-dimensional. In view of this, the developments
that follow will consider only one space coordinate. It should be borne in mind,
however, that most of the theory here treated is straightforwardly extended to
two and three dimensions.

The one-dimensional Luler equations in strong conservation-law form can be
written as

c:—f— + g—f =l (1)
where
7 pU
Q=|pu E=| put+p (2)
¢ (e +p)u

Here p is the density, u i~ the velocity, and p is the pressure. The total energy
per unit volumne, e, is related to the specific internal energy, ¢;, by

2

e= p(e£+ %) (3)
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The fluid is considered to be a perfect gas and, then, the equation of state is

p=(r—-1pe, (4)
where ¥ = cp/cy. The specific heats, ¢, and ¢y, are taken as constants.

THE ALGORITHMS
The Beam and Warming Algorithm

Linear Dissipation

The structure of the Beam and Warming algorithm, as implemented in this
work, is based on the implicit time-marching Euler scheme, which can be
written as

oQ

Q™ = Q4 At (_a?)““ + ALO(AL) . (5)

The objective now is to write the algorithm in the so called delta form. To
this end, we substitute Eq.(1) in the above equation. After this, the algebraic
steps are: (i) linearization of the flux vector £ by means of a simple Taylor
expansion and (ii) introduction of centered differences to approximate the
spatial derivatives. The delta form is finally obtained as

(I + A6 A™) AQ™ = —At(6,E™) (6)

where A;Q" = AQ™ = (Q"*!1-Q"), A = (9E/0Q) is the flux Jacobian matrix
and 6 is a centered difference operator. The algorithm represented by Eq.(6)
is first order accurate in time and second order accurate in space.

In order to maintain the numerical stability of the scheme represented by
Eq.(6), we have to introduce artificial dissipation terms. Hence, we rewrite
this equation as

(I+ Até,A™ + Dy) AQ™ = —AL(6:E™) + DE , (7)

where
Dy = —e1 At(V2A,) (8)
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is the implicit second-difference dissipation, and Dg is the explicit artificial
dissipation term. In its simplest form, this term would be given by a fourth-
difference formula as

Dg = —egA(VzAL)? . (9)

Here, ¢ and ¢g are constant (linear) coefficients that control the amount of
added artificial dissipation. The A; and V, are standard, first order, forward
and backward difference operators, respectively.

As can be realized, a fourth-order term was added to the right side of the
basic algorithm to control nonlinear instabilities. Ideally, in order to balance
the algorithm, a fourth-difference term should also be added to the left side.
However, this would imply the inversion of a sparse pentadiagonal block matrix,
and this is too expensive. For the sake of cost-effectiveness, a second-difference
implicit dissipation is added to stabilize the implicit term. It is important
to observe that these added terms modify the original partial differential
equations and the coefficients used should be kept as small as possible while
still maintaining stability. As a starting point the parameter eg can be chosen
to be O(1) and e; = 2eg (see [14]). The dissipation terms are scaled with At
in order to guarantee steady state solutions independent of the time step.

Nonlinear Dissipation

In smooth regions of the flowfield, the scheme represented by Eq.(7) is
sufficiently strong to control oscillations that might appear. On the other
hand, when faced with strong discontinuities, as for example shock waves,
severe oscillations can occur. These localized instabilities can be traced to the
problem of differencing across the discontinuity, where too big of a differencing
stencil is employed. In order to avoid this drawback, Jameson et al. [7] have
introduced the idea of switching between a fourth-difference dissipation term,
which gives rise to a five point differencing stencil, to a second-order term
whenever the pressure gradient becomes too strong. This is the essence of the
non-linear artificial dissipation scheme. Pulliam [14] has adapted Jameson’s
model to the present notation and the following expression results:

Dg = Va(oig1 + )6 AQ; — €8 A, V:A,Q;) (10)
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where
e = kyAtmax(Tigy, T, Tiz1)
sf‘” = max(0, k4 At - s?)) 3
Typical values of the constants are k3 = 1/4 and k4 = 1/100 and the maximum

function is used to spread the second-difference dissipation range over a few grid
points, Values of T; are given by

_ s = 2pi + pia|
" lpigr + 2pi + pial

The term o is a spectral radius scaling defined by
gi=u++a,
where a is the local speed of sound.

By observing Eq. (10), one can understand the logic of the scheme. The first
term of this equation is a second-difference dissipation with an extra pressure
gradient coefficient to increase its value near shocks. Besides enhancing the role
of the second-difference term, the coefficient E‘(-?} also acts through EE” until the
fourth-difference dissipation is switched off. This happens when the pressure
gradient is such that the second-difference nonlinear coefficient is larger than
the constant fourth-difference coefficient. This occurs near shocks or in regions
of steep pressure variations as, for example, at the nose region of an airfoil.

The Flux Splitting Scheme of Steger and Warming

Numerical schemes for the solution of the unsteady inviscid gasdynamic
equations can be based on approximating spatial derivatives through the
use of centered or one-sided difference operators. In subsonic regions,
however, only centered difference operators lead to numerical methods that are
simultaneously stable for both the positive and negative characteristic speeds
[8]. Notwithstanding this, several stable upwind methods have been developed
and are in wide use today. The stabilizing technique that each of these methods
aggregates corresponds to some form of flux splitting.

Several reasons justify the use of one-sided difference operators. For an implicit
algorithm, the one we have implemented, there is a definite gain in efficiency,
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because the scheme can lead to sparse lower, or upper, triangular banded
matrices, that are more easily inverted than the tridiagonal and pentadiagonal
matrices usually associated with centered methods. In this item we present the
main features of the flux splitting idea together with the principal points of the
Steger and Warming algorithm.

Flux Splitting
By using Eq. (2) the flux Jacobian matrix A = (0E/3Q) can be easily obtained,

0 1 0
A=| }(r-3) B-7u (v=1) (11)
(p— Nu® =2 & v —1)u? qu

The characteristic speeds, i.e., eigenvalues, of A are
Ay B Ay =u+a, A3=u—a. (12)

In subsonic regions |u] < a, and the eigenvalues are of mixed sign since v + a
and u — a are of opposite sign.

Suppose, for now, that the flux vector £ can be split into two parts as
E=EY+E~ (13)

such that the subvector E* is associated with the positive eigenvalues of A
and E'~ is associated with the negative eigenvalues. Substituting the relation
above in Eq.(1) there results

_8.9_ 4 aEt " OE~
at dx Oz

=0, (14)

what would allow the use of a backward difference operator to approximate
(OE* /8z) and a forward operator to approximate (9E~/8z). By virtue of
these one-sided approximations we are, in fact, respecting the directions of
characteristic signal propagation.

The question to be posed now is: llow can the flux vector E be, effectively,
split? To answer this question one has to rely on two fundamental properties.
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The first corresponds to the fact that the flux Jacobian matrix A has a complete
set of real eigenvalues. The second concerns the structure of the inviscid
gas-dynamic equations in conservation-law form. These equations have the
remarkable property that if the equation of state has the functional form

p=pflei), (15)

then the nonlinear flux vector £(Q) is a homogeneous function of degree one in
Q. This means that E{aQ) = aE(Q) for any value of a. By simply inspecting
the equation of state, Eq.(4), one can see that it has the form of (15), what
guarantees that E(Q) is a homogeneous function of degree one. Hence, it is
easy to show that

E=AQ . (16)

The basis, then, for splitting vector E are the two properties mentioned above
([15], [16]). Let us proceed and derive the split form of E to be used in the
next item.

The starting point is the fact that there is a similarity transformation for the
matrix A [8], such that
T-VAT = A, (17)

where, for the inviscid gasdynamic equations, T'= M X, T-1=X-1M"! and
A is a diagonal matrix whose diagonal terms are the eigenvalues of A. Matrices
M and X and their inverses for one and two space dimensions are given in Ref.
(15] and for three space dimensions in [17]. From Eq. (17) we obtain

A=TT YATT ' = TAT™? | (18)
which, substituted in Eq. (16), gives

E=AQ=TAT!Q. (19)

Any eigenvalue A; can be written as

A=At a7, (20)

T

where

Yo B (21)
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Observe that if A; > 0, then ,\;" = A, A, = 0, with the converse result for
A; € 0. Considering the above expressions, it is possible to split the diagonal
matrix

A=AY 4 A, (22)

where At and A~ have as diagonal elements ,\;-" and A7, respectively.
Substituting Eq. (22) in Eq. (19) one obtains

E=TAY*+A7)T71Q=(A*+47)Q=E*+E—, (23)
where
ATY=TATTY, A= =TA"T"!, EY=ATQ, E-=4A"Q, (29

and
A= Ati A . (25)

The eigenvalues of A, given by Eq. (12), are then split, according to Egs. (20)
and (21), into

+ [yl - _ u—uf
Y 20 0L AT =
X 2 X z
u+a+|u+al _ u+a-|u+al
A2+= 92 ! A2= 2 ] (26)
+_u—a+|u—a - u—a-|u—a

The subvectors ET and E~, for the case when 0 < u < a, are given by

t 27vu+a—u
m Et= 21 2(y = 1)u? + (u+a)? K (27)
(y = Dud + %(u +a)+ La—";-?:(;:—t}ﬂi
u—a
E-=£ u— a)? 28
= (u—a) (28)
T (u—a)? ¥ (3=+)(u—a)a?
2 2(v-1)
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If u > a, the subvectors are simply
Et=E, E =0, (29)
where vector E is given in Eq. (2).

Finally, it is important to observe that the eigenvalue splitting represented by
Eq. (26) is not unique and other splittings into positive and negative parts are
possible (see, for details [8]).

The Algorithm of Steger and Warming

Without approximating spatial derivatives by difference operators, Eq.(6) can
be rewritten as B A BE

(1+at -5:—) AQ =—m( - ) ,
Introducing Egs. (23) and (25) into the expression above, the following relation

is obtained

[I+At(?—z++%§)] AQ™ = —At (%+Q§T_) . (31)

(30)

Approximating, now, spatial derivatives by one-sided, first-order, difference
operators, there results

[T+ AUVAY + 8:A7)) AQ™ = ~AYVEY + AE7) . (32)

The final form of the algorithm can be established by profitting from the
approximate factorization idea due to Beam and Warming [2]. One finally
obtains

[I+ At(Vo AT+ At(AzA7)) AQ™ = AUV EY + AE™) . (33)

As the reader can readily observe, this scheme involves the inversion of only
triangular banded matrices and, consequently, tridiagonal matrices are avoided.

A linear analysis would easily show that, in this case, no error is introduced by
the approximate factorization. The spatial accuracy of the scheme proposed can
be improved, without impairing efficiency — specially for steady state problems
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- if we use second-order, one-sided difference operators in the right hand side
of the algorithin.

TVD - Total Variation Diminishing Scheme
The Concept of Total Variation Diminishing Algorithms

In general, methods based on centered difference approximations do not behave
well in the calculation of flowfields with strong discontinuities, because even
seemingly small oscillations can be disastrous in these cases. The reasons for
this have been already discussed above, When facing this kind of difficulty,
upwind schemes have proven to be much more robust. However, upwind
strategies lose. in what concerns code simplicity and computational efficiency.
For example, the formation, in every cycle, of matrices AT and A~ and vectors
E* and E~, is very expensive. Furthermore, upwind methods have a different
drawback - they possess numerically stable, nonphysical éxpansion shocks [10].

A new class of methods, known as TVD - Total Variation Diminishing -
schemes, has, recently, called the attention of many authors, due to its
robustness and its remarkable capability of reproducing strong discontinuities
with great accuracy and resolution, even for extreme high Mach numbers.
Other authors argue, however, that TDV schemes are complicated and that
the development of (mainly) implicit algorithms for more complex flowfield
situations is a very difficult task [14].

The basic idea underlying TVD schemes is not exactly new; it rests upon the
pioneering work of Godunov [18]. Considering that the TVD theory is really
much involved, there is no room, in a paper of this nature, to present it. We
refer the reader, then, to the pertinent literature (for example, Refs. [9] and
[10]). Next, we will try, however, to give the general idea of the fundamental
concepts involved in a total variation diminishing scheme. Let us represent by
Q7 the numerical approximation to the solution of Eq.(1) at grid point i and
at time nAt. We define the total variation of the solution as

TV(Q) = -)_ 1Qis1 - Qil - (34)

1= =00
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In our notation, the general form of a the TVD algorithm is
% =
1 nl
it =Qf - &7 (Bl - ETy). (35)

where, typically, the numerical flux function has the following generic form:

Qi+1

Bivy = @ik, Qi) = 3 [B@0 + E@i) - [ 7(@ 4a]

(36)
In the above expression, F(Q) is some function of the vector of conserved
variables. If m = n the method is explicit, otherwise, if m = n+ 1 it is
implicit.

A finite-difference numerical method such as given by Eq. (35) is said to be
total variation diminishing - TVD - (sometimes also called total variation
nonincreasing - TVNI) if, for every solution Q™, which has a limited total
variation, it is possible to write

V(™) < TV(Q™) . (37

The Method of Harten

We consider now the 5-point, second order accurate, explicit TVD scheme of
Harten [9]. The basic form of the algorithm when applied to general systems
of conservation laws can be written as

Qrtt=Qr - Ah(E',-+% - E',»_%) i (38)

where Ay = (At/Az) and

It is important to observe that, in these expressions, vectors ) and E are still
given by Eq.(2). We describe below the several new parameters appearing in
Eq. (39).
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Function F,’;'

In this scheme, this function corresponds to the artificial dissipation. It is given

by

2
sl Te e o)
lvl,  forlyl 22 .

Harten suggests the usage of ¢ = 0.1 for genuinely nonlinear fields (shock
and expansion waves) and € = 0 for linearly degenerated fields (contact
discontinuities). The symbol y in the formulas above is a dummy variable.

Argument of Function F,.f
The argument of Ffi‘ is given by the sum

uE gk (41)
The first term, u:.:_%, has the form

Yy = MAa(vy) (42)

where A% are the eigenvalues of the problem

,\:=u—-a,
A=y, (43)
«\2=u+a.

and Yiy} is an average of vector @ in the interval i and i 4+ 1. Harten suggests
a simple arithmetic average, i.e.,

Visl = Q{+a} = % (Qi + Qiy1) - (44)

In spite of Harten's suggestion we have implemented Roe's averaging scheme
(see [9]). Having determined this average, other quantities can be calculated
at the position (i + %) For example,

(pll)'-_'_%

U= u; = (‘15}
+ Piyl
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The second term in Eq. (41) is written as

k k
. [i«_:l::g_-}_ , when “ﬂ.l. #0,
hy=q " ik (46)
0, wl1enui+%=0,

Values for the parameter ni_‘+1_ will be given below.
2

Function gf

The expression for function g"-’ is

e il : - - k ol
07 =8,y max 0,111m(|gl.+%|, LI y‘._%)] .
R i gk
54k = s:gn(g‘._‘_%) . (47)

1
-k ko k k
Yig: = §[Fh("s+§) gx ("£+§32](“.‘+§] g

k k
Values of R|.+% and aﬂ_%
The symbol R* stands for the eigenvectors to the right of Jacobian matrix A.
They are

1 1 1
R@=|u-a |, RBQ)=| u |, RYQ)=| u+a |, (48)
H — ua %u? H + ua

where H = (e + p)/p is the total enthalpy.

Values of a* are given by

ol=bei-e), al=pl-a, o=ita),  (49)
where
s et [e] + %ﬁza[g]+ ifpu] .
el (59)

o



Comparison of Some Numerical Schemes for the Computation 323

The symbol [ ] indicates a jump variation, i.e., for any property b,
(6] = bg = b = (biy1 — by) . (51)

On the other hand, u and a stand for average values of velocity and local
speed of sound, respectively. These averages are referred to the state defined
by Eq.(44), or its corresponding with Roe’s averaging procedure, and Eq.(45).

Initially, the algorithm, as defined by the equations above, was implemented,
and the parameter £ was given the value 0.1. However, there was a severe loss
of resolution at the contact surface. The reason for this solution behavior is
most certainly due to this value of £, which introduces an amount of artificial
dissipation that is excessive for a linearly degenerated field. In order to
circumvent this situation, a modification was introduced in the function g:-‘
(see, for details, Ref. [9], p. 377). Resolution was, then, completely recovered.

RESULTS AND DISCUSSION

The flow development in the shock tube was obtained for several values of the
ratio py/p;, where subscripts 4 and 1 indicate properties at the high and at
the low pressure chambers, respectively, before the rupture of the diaphragm.
In all cases we have made Ty = Ty, just as a. matter of convenience.

In all the figures presented in this work, dashed lines correspond to the
analytical solution, whereas solid lines and/or symbols represent the present
numerical solutions. Figs. 1 to 12 illustrate the relative performance of the
three algorithms implemented. Figs. 1 to 6 refer to the case (py/p;) = 5, and
Figs. 7 to 12 refer to the (py/py) = 20 case. The TVD algorithm of Harten is
the one that gives the best performance, both in terms of accuracy as well as
resolution. The upwind scheme of Steger and Warming presents good accuracy,
but lacks in resolution, while the nonlinear artificial dissipation algorithm of
Beam and Warming does not perform well, especially for high pressure ratios.

It is important to observe that the upwind scheme maintains good accuracy,
even in the case (py/p1) = 20, but there is oscillation, an overshoot before
the contact surface and an undershoot before the shock wave. Both upwind
and centered algorithms do not give good resolution at the crossing of the
contact discontinuity. This is to be expected, because these schemes do not



324 M.A. Ortega, M.A.M. Carvalho and J.L.F. Azevedo

aggregate a special numerical mechanism to handle this kind of situation. On
the contrary, the method of Harten, as we have mentioned above, is prepared
to deal with such form of discontinuity. In order to gain in resolution at the
contact surface, we are, at present, incorporating to the nonlinear artificial
dissipation algorithm, an additive procedure which relies on the value of the
temperature gradient.

However, perhaps even more disturbing than the oscillations at shocks or
contact discontinuities is the inability of the centered scheme to capture the
correct shock speed. This is quite evident from Figs. 1 and 7. Moreover,
Fig. 9 seems to indicate that the speed of the contact discontinuity is not
being correctly captured by the centered scheme either. This type of behavior
is typically associated with non-conservative schemes, which is not the case
here. At the moment, these observations are still being further investigated,
but there is some expectation that this behavior could be traced to the use of
rather different artificial dissipation models on the left- and right-hand sides of
the present implementation of the Beam and Warming algorithm.

5.00 Beam and Warming - NLD
pA/p1 = 8 k2 = 1.0

0.00

00  —400.00
Distance along the shock tube axis

Figure 1. Pressure distribution after t = 1 s for the Beam and Warming scheme.
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Steger and Warming — VS
p4/pl = 5

.00 -200.00 0.00  200.00 400.00 _ 600.00
Dnstonce along the shock tube axis

Figure 2. Pressure distribution after ¢ = 1 s for the Steger and Warming

scheme.

~800. .00 .00 -200.00 000 20000 400.00 _ 600.00
Distance along the shock tube axis

Figure 3. Pressure distribution aftler t = 1 s for the TVD scheme.
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.00

Figure 4. Temperature distribution after ¢ = 1 s for the Beam and Warming

scheme.

1.40
1.20

1.00

a8

T

0.80

Steger and Warming - VS

Q.60

0.40

= .00 —400.00 -200.00 0.00 200.00 40000 600,00
Distance along the shock tube axis
Figure 5. Temperature distribution after ¢ = 1 s for the Steger and Warming

scheme.
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.00 -200.00 O, 200.00  400.00  600.00
Distance along the shock tube axis

Figure 6. Temperature distribution after ¢ = 1 s for the TVD scheme.
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| -800.00 —-600.00 —400.00 -200.00  0.00 00.00  400.00  600.00

[ Dlstance along the shock tube axis

Figure 7. Pressure distribution after t = 1 s for the Beam and Warming scheme.
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Figure 8. Pressure distribution after t = 1 s for the Steger and Warming
scheme.
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Figure 9. Pressure distribution after ¢t = 1 s for the TVD scheme.
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Figure 10. Temperature distribution at ¢t = 1 s for the Beam and Warming
schermne.
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Figure 11. Temperature distribution at ¢ = 1 s for the Steger and Warming
scheme.
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Figure 12, Temperature distribution at ¢t = 1 s for the TVD scheme.

In Figs. 13 and 14 one can see the Beam and Warming algorithm solution for
(pa/p1) = 1.56 and kg = 0.25. Tor the cases reported in Figs. 1, 4, 7 and 10,
we have used &, = 1.0 in order to avoid large oscillations at the shock. The
idea now is to test the behavior ol the algorithm in the transonic range - the
shock wave Mach numnber is 1.1. As can be observed, there i1s good accuracy
and resolution, but, unexpectedly, there appeared large oscillations at the tail
of the expansion wave. We have also run the Beam and Warming algorithm
for (p4/p1) = 5 and &y = 0.25 in order to assess the influence of the amount of
artificial dissipation. These results are shown in Figs. 15 and 16. The code ran
stably and, in fact, there were no major differences to the case ky = 1.0 (see
Figs. 1 and 4).

Fmally, Figs. 17 and 18 show the solution of the shock tube problem for
(pa/p1) = 0. This is a rather severe (est problem and, as can be seen from
these figures, the perlormance of the TV scheme of Harten is outstanding. It
must be observed, however, that the scheme of Harten is designed for the kind
of physical situaticn that was treated o this work. “This explains, at least in

part, the good performance of the method.
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Figure 13. Results for centered algorithm with small pressure ratio (t = 1 s).
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Figure 14. Results for centered algorithm with small pressure ratio (t = 1 s).
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Figure 15. Effect of explicit artificial dissipation term on the pressure (f = 1 s).
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Figure 16. Effect of explicit artificial dissipation term on the temperalure
(t=1s).
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Figure 17. Behavior of TVD scheme for very high pressure ratio (2 = 1 s).
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Figure 18 Behavior of TVD scheme [or very high pressure ratio (1 = | s).
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The codes were run in an IBM-like PS-386/33 microcomputer and the
computation times per cycle were 1.3 s, 2.3 s and 1.8 s, respectively, for the
TVD, flux-split upwind and centered difference schemes. In each case the
numerical grid consisted of 200 equally spaced points. The reader should keep
in mind, however, that the TVD scheme involves much more operations per
time step than the other two schemes, The reason why the computational times
reported above seem to favor the TVD scheme is that we are comparing an
explicit TVD algorithm with two implicit schemes. Hence, this is actually not
a fair comparison of computational efficiency. Explicit versions of the centered
and flux-split upwind schemes would certainly run much faster than the TVD
scheme,

CONCLUDING REMARKS

The wave system development in a shock tube of infinite extent, which
corresponds to a one-dimeusional, unsteady flow, was modeled through the
use of the Euler equations and solved numerically by means of the Beam
and Warming algorithm with nounlinear artificial dissipation, the Steger and
Warming flux-split upwind scheme, and Harten’s TVD metliod. A systematic
comparison has shown that the best suited nuimerical technique for the physical
situation considered here is a TVD algorithm, This conclusion can certainly be
extended to other problems involving strong discontinuities. [n spite of some
oscillations, the flux-split upwind scheme beliaved also quite well, maintaining
accuracy even for high values of the initial pressure ratio. This was not the
case for the centered difference algorithm, which performed well only for low
values of the pressure ratio.

Nevertheless, it is important to remind that the flow in a shock tube is a
very specific example of movement in a fluid, in the sense that it is a simple
geometry, or configuration, while the physics involved can represent a very
severe test case for numerical methods. In general, fluid flow problems of great
interest, especially in aerodynamics, are steady, and the bodies involved have
complicated two and three dimensional geometries. In these cases, algorithms
based on centered differences, or those based on flux vector splitting techniques
and one-sided diflerences, have also shown excellent performance, In terms
of the underlying mathematical theory, there is no guarantee that TVD-like
schemes will remain TVD, or monotone, in multidimensions. Maoreover, the
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implementation of implicit TVD formulations typically renders schemes which
are not necessarily TVD for the transient portion of the solution. The results
here obtained, however, indicate that TVD schemes can be a very good option
in any case in which strong shocks, or strong discontinuities in general, are
present.
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ABSTRACT

In the present work an algorithm for a local simulation of the energy transfer
phenomenon in a binary (solid-fluid) moving saturated mizture s proposed. An
iterative procedure is used to simulate (employing a Finite Difference approach) the
heat transfer in a saturated flow (through a porous medium) between two parallel
isothermal plates in which the fluid constituent inlet temperature ig the only boundary
condition prescribed on x-direction. An ezhaustive number of tests have shown that the
mentioned procedure (which is independent from initial estimates for both constituent
second erder partial derivatives on z-direction) consists of an effective way to perform
this simulation.

Keywords: Energy Transfer » Porous Medium = Theory of Mixtures = Numerical
Scheme

RESUMO

Neste trabalho propée-se um algorilmo para a simulagdo local do fenémeno de trans-
feréncia de energia numa mistura bindria {sdlido-fluido) saturada em movimento. A
transferéncia de calor num escoamento saturado através de um meio poroso, limitado
por duas placas planas paralelas isotérmicas, foi simulada por um processo iterativo
usando-se uma abordagem de diferencas finilas. O processo sterativo permile que se-
jam oblidas aprorimagdes numéricas para a solugdo do problema prescrevendo-se uma
tnica condigao de contorno na diregdo do escoamento (z): a lemperaura de entrada
do constituinte fluido, Um nitmero exaustivo de casos testados mostrou que o proced-
imento mencionado (que independe das eslimativas iniciais das derivadas parciais de
segunda ordem na diregdo 2 para os dois constiluintes) é eficienle para a simulagdo
e questao.

Palavras-clhiave: Transleréncia de Energia s Meio Poroso s Teoria de Misturas =
Esquema Numérico

Submetido em Setembro /91 Aceito em Novembro/81
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NOMENCLATURE

c; i-Lth specific heat

H channel width

K specific permeability

k; i-th thermal condutivity

L channel length

q; i-th constituent partial heat flux

R positive factor related to energy generation function
T i-th constituent temperature

VF fluid constituent velocity (vector field)

vE x-component of fluid constituent velocity
k heat transfer coefficient

A parameter depending on porous matrix

A parameter related to mixture structure

Pi i-th constituent density

@ porosity

Yy i-th constituent energy generation function
Subscripts

F fluid constituent

S solid constituent

Superscripts

! global iteraction

k Gauss-Seidel iteraction
INTRODUCTION

The interest on flow through porous media taking into account heat and/or
mass transfer is growing significantly nowdays. Interactions beiween fluids and
solids are present in many industrial processes. These fluids may be passed over
packed beds of solid material so that a large ratio of surface area to volume is
obtained and phenomena such as heat and mass transler and chemical reactions
may occur. The main purpose of Lhis work is Lo present a procedure which,
despite its simplicily, is an effective way to perform a local simulation of the
forced convection heat transfer process which oceurs when a fluid lows through
a porous channel considering only realistic boundary condilions.
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While the well known classical (single continuum) energy transfer model [1]
describes adequately the thermomechanical behaviour of materials such as steel,
water, rubber or air, it is not so appropriate for a local description of the
heat transfer process in a flow of a newtonian fluid through a porous medium.
Such a description would require the solution (for the fluid) of both Navier-
Stokes and energy equations in a domain defined by all active pores. Boundary
conditions, such as no-slip condition and prescribed temperature (and/or heat
fluxes), should be considered on all pore walls. The currently available tools
are not adequate to allow a simulation of so great complexity.

In order to construct a local description, the problem is regarded through a
Continuum Theory of Mixtures viewpoint [2]. A binary (solid-fluid) mixture
is considered, in which the fluid, represented by the "fluid constituent”, is
assumed newtonian and incompressible, while the porous medium, represented
by the "solid constituent”, is assumed rigid, homogeneous, isotropic and at
rest.

This model, supported by a theory with thermodynamical consistence, which
generalizes the Classical Continuum Mechanics, allows a local description of
the heat transfer phenomenon in a porous medium saturated by a fluid.

The forced convection heating of a fluid which flows through a porous channel,
bounded by two impermeable isothermal flat plates, is simulated with the
aforementioned model.

When the energy transfer between solid and fluid constituents is studied in a
Continuum Theory of Mixtures viewpoint, the existence of two temperatures
at each spatial point of the domain is allowed (the fluid and the solid
constituents temperatures) giving rise to the Energy Generation Function [3]
(which describes the thermal interaction between both constituents of the
mixture). The Continuum Theory of Mixtures demands each constituent to
satisfy a given set of balance equations, while a global set of balance equations
must be satisfied by the mixture.

When the forced convection heating of a fluid flowing through a porous channel
is considered, in a two-dimensional geometry (as shown in Figure 1), a system
of two second-order partial differential equations on both z- and y-variables
is to be solved. The characteristic nature of the energy equations allows this
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system to be solved with only one boundary condition on z-direction. From a
mathematical viewpoint, this statement may sound absurd, but from a physical
viewpoint, if both constituents temperatures are prescribed on the channel
superior and inferior boundaries (y-direction) and the fluid inlet temperature
is known, no additional boundary condition seems necessary to determine both
constituents temperature fields. The use of additional boundary conditions
could, even, give rise to an unrealistic behaviour near the boundaries.

The main objective of this work is to present a simple, but effective, procedure,
capable of selecting the physically expected solution for a system of second-
order partial differential equations, in two variables each, employing only five
boundary conditions (instead of the usual eight): four on y-direction and
only one on z-direction. This procedure can be employed in any situation,
provided that the fluid constituent velocity is not zero. The porous channel
shown in Figure 1 could be regarded as a simplified packed-bed heat exchanger
whose description, using a two-temperatures model, would require the previous
knowledge of boundary conditions such as temperature or heat transfer for both
constituents, at the channel entrance and exit. These quantities, except for the
fluid constituent temperature, are not easily evaluated in heat exchangers, but
can be estimated by means of the simple procedure presented in this work.

In fact, the exaustive number of examples taken into consideration has shown
that the temperatures in the domain interior are not affected by additional
boundary conditions on z-direction, which can lead to unrealistic situations on
the boundaries.

Since both constituents energy equations are elliptic, four boundary conditions
should, in principle, be prescribed on z-direction. The fluid constituent energy
equation, however, because of its physical nature, is treated as a sequence
of parabolic equations, suggesting that only one boundary condition (at the
channel entrance) seems to be necessary for its solution. Some tests, in which
the fluid constituent inlet temperature was known and several values of the solid
constituent partial heat flux (defined so as to be proportional to the difference
between solid and fluid constituents temperatures) at the channel entrance and
exit were used, have confirmed the mentioned expectation.
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The coupling of both energy equations suggested a step forward: to prescribe
no condition for the solid constituent, neither at the channel entrance nor at its
exit. The verification of the possibility to determine the solution of the system
with only one boundary condition on z-direction, which allows the phenomenon
to be studied in a more (physically) realistic way, has motivated the present
work,
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Figure 1. Problem Scheme

MATHEMATICAL MODEL

Considering the mass and linear momentum balance equations for the fluid
constituent (the porous medium is assumed rigid and at rest) and the two-di-
mensional geometry, presented in Figure 1, and one-dimensional steady-state
flow, the following velocily profile is obtained:

h
o (1 fﬁ) (1)

cosh His
A

for —H/2 <y < H/2 in which C is a constant [4], H the channel width, K
the porous medium specific permeability, and A a parameter depending on the
porous matrix.
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The energy balance [2] must be satisfied by each constituent of the mix-
ture. Supposing steady-state conditions and zero heat generation for both
constituents, it can be stated as:

pici(grad T3) - vy = —div q; + ¢ (2)

where i = § and 1 = F stand for the solid and the fluid constituents,
respectively, p; stands for the i-constituent denmsity, T; for its temperature,
q; and ¥; represent, respectively its partial heat flux and energy generation
function and, finally, ¢; represents the specific heat of the i-constituent,
regarded as a continuum,

As the mixture theory viewpoint allows the existence of a different temperature
for each constituent, at each spacial point, in order to determine the two
temperature fields (T and Tyg), both energy equations are to be solved.

Equation (2) requires some constitutive hypotheses. The partial heat fluxes
for solid and fluid constituents (qg and qp), according to the model used by
Saldanha da Gama [3], are stated as:

qs = —Aks(l - p)grad Ts (3)
qr = —Akppgrad Tp

where A represents an always positive parameter which may depend on both
the internal structure and the kinematics of the mixture, kg and kg are,
respectively, the solid and the fluid thermal conductivities and ¢ the fluid
fraction (coincident to the porosity, for saturated flows).

The total heat flux (per unit of time and area) for the mixture is given by the
sum of qg and qF.

The energy generation function, ¢, which is an internal contribution, represents
the energy supply to a given constituent, arising from its (thermal) interaction
with the other constituents of the mixture. The 4 function is zero at a given
point only if all the constituents are at the same temperature at this point.
According to Martins Costa [5], the energy generation function for solid and
fluid constituents are given by:

Vs =—yr = R(Tp-Ts) (4)
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where R is an always positive factor, which represents the heat transfer
coeflicient between constituents, assumed constant in this work.

Considering these constitutive hypotheses, the balance of energy for the fluid
and the solid constituents can be written as:

prer(grad Tr) - vE = AkpeA(TF) + R(Ts - Tr) ®)
0= Aks(l - ¢)A(Ts) + R(Tf — Ts) (6)
Since the fluid velocity is non zero only in the z-direction and considering the

two-dimensional geometry of the problem, as shown in Figure 1, the balance
of energy can be reduced to:

aTr [0%Tp 0Tp
oTF = | G5+ BT+ b5 - 1) ™
2 2T
0= 3 TS 33 2 ++(Tp - Ts) (8)
where:
_ PFCFVF
T Akpyp
R
= (9)
e
T Akg(1- )

subject to the following boundary conditions:
Tp(0,y) =0
Tr(z,0) =Tg(z,0) =1 (10)
Tr(x,H)=Tg(z,H)=1
NUMERICAL METHOD

The problem consists of a system of two second order equations, on both x
and y-variables, subjected to four boundary conditions on y-direction and to
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only one boundary condition on z-direction. From a mathematical viewpoint,
a problem of this kind, consisting of two elliptic equations, on both z- and
y-variables, even if physically realistic, could give rise to an infinite number
of solutions. However, a great number of tested situations has shown that
additional boundary conditions on z-direction have no influence on both solid
and fluid constituents bulk temperatures.

An iterative procedure is used, so that two second-order equations on z-
variable can be solved with the help of a single boundary condition on z-
direction: the fluid constituent inlet temperature. The problem is treated as
a succession of modified problems in which the second-order derivatives on -
direction, for both constituents, are treated as previously known fields, that
is: the fluid constituent energy equation is treated as a sequence of parabolic
problems on z-variable, while the solid constituent energy equation can be
considered as a sequence of ordinary problems on y-variable. This procedure
can be surnmarized in the following way: to start the scheme, initial values
are estimated for the second-order derivatives with respect to x. With this the
equations below are solved and the temperature fields are calculated. For the
following iteractions, the value of -a—-f- for both constituents are computed from
the previous step. The process is carried on until convergence is achieved. The
original system of equations is modified to:

2 2
[6222 - 80 _ iz 1, = ”] (1)
2 1=
122 —sire-19)] = [2%] (12)

N 2 52 o .
where the derivatives %gf and %{f are calculated from the previous iteration.

Since no analytical solution to the system of equations describing the problem is
known, numerical approximations to its solution are searched with the help of a
finite difference approach [6]. For the diffusive terms, a central finite difference
scheme discretization was used, while an " Upwind” scheme [6] was employed
in the convective term discretization.

As the temperature coefficients matrix (associated to the modified system of
equations) is sparse, a grid description, in which each constituent temperature
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possesses two indexes, according to its position on the grid, is used. Each
iteration ! is then solved with the help of the Gauss-Seidel method, according
to the following discretized system:

TR ) = TR G - LA + [TEG+ 1, ) 1+

o7 -1
+TEH G = DI + BTSG ) + F [aaff] (13)
ulTs ) = (TG = 1)+ (TG + L0+
2 -1
+TEH )+ F [@aj;] (14)

In (13) and (14), 2 < i < Nz and 2 € j < Ny, in which Nz and Ny are the
number of divisions on z- and y-directions, respectively. The approximations
for botli constituents second-order partial derivatives, calculated from a
previous ([l-1) iteration, are given by the following discretized equations:

[E)?Tp]‘ " TV g #0)= T ) + T i = 1) i

dr? (Az)?

F[asz]‘z'Jé‘lu,w1)—2T§“1(s,j)+T§*‘(=',f—1) (1)
Jx? (Az)?

where A 2 is the mesh size on z-direction, { represents the global iteration, k
the Gauss-Seidel iteration and:

o 2
"= o Y

et 4 (17)
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Equations (13) and (14) represent the modified problem in a very simple way,
which allows an effective storage scheme, with memory reutilization.

The iterative procedure, represented by equations (13) to (17), was repeated to
a large variety of initial estimate values of the second-order partial derivative
on z-direction, ranging from —107 to +107. In all these cases the same results
for the solid and fluid constituents temperature fields were obtained, although
the rate of convergence showed a slight variation. In some of the tested
cases, not only the derivatives initial estimates, but also the factor £ (which
influences both solid and fluid constituents energy equations coupling) was
varied. Convergence to a same set of temperature fields (according to the value
of ) was observed for all tested cases. This is a strong argument for the validity
of the procedure, Another meaningful argument is that two different sets of
similar problems, where the complete energy balance equations are considered
(one without the described iterative procedure to calculate the second-order
derivative approximations and the other using it only for the fluid constituent)
together with different boundary conditions, were simulated and compared to
the problem in question. In the first type of problem, several fluid constituent
outlet temperatures (ranging from 0 to 1) were prescribed, while zero heat
flux was prescribed for the solid constituent both at the channel entrance and
exit. For the second type of problem, a similar iterative procedure was used
only for the fluid constituent, and several values ol the solid constituent heat
flux were also considered, both at inlet and outlet, by varying a heat transfer
coefficient, h, analogous to the one usuvally employed in the classical Newton’s
law of cooling, in equations:

bop
Aks(1 = )22 (0,0) = MT5(0,3) ~ Tr(0,0)] (18)
Te
~Aks(1 = )55 (L,y) = T5(L,) = Tr(L,)]

In all these cases no alteration on botl constituents temperature profile, except

for the channel entrance and/or exit, is observed.

The above stated arguments seem sufficient to validate the nuinerical procedure
employed in the present work,
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The convergence criterium for both Gauss-Seidel and global iterations was:

rg;g{l?ﬁ"(f, )= TEEHLITEG ) =TS 65 <1078 (19)

where 1 <i< (Nz+1),1<j<(Ny+1)

A very quick convergence of the global-iterations was observed, four global
iterations being sufficient for the worst case. The rate of convergence of the
intermediate iterations ((Gauss-Seidel method) changed also, according to the
second-order partial derivatives initial values.

RESULTS

In this section some results, considering a long porous channel (with length 120
and heigh 1) divided into a 13x13 grid as default, are presented. In Figures 2
and 3 this defaull problem is compared, respectively to a problem where zero
heat flux is preseribed for the solid constituent on both channel extremities,
while several values for the fluid constituent outlet temperature are prescribed,
and to another problem where two different values of solid constituent heat
flux are considered (on both cliannel extremities) while no boundary condition
is imposed to the fluid constituent at the channel exit.

Table 1 represents the convergence process, which can be considered fast, for
a point, located at the geometrical center, without loss of generality. Several
initial values of second-order partial derivatives on z-direction were used, and
the same curves were obtained for the last iteration, indicating convergence
independence from initial estimates. This procedure was repeated for other
values of the Energy Generation Function (which causes the coupling of both
constituents energy equations, acting as a source term) by varying the factor R
and using several initial estimates for each considered value of R. In all cases
convergence to the same set ol temperature fields (one set for each value of R)
was obtained.

Figures 4 and 5 plot both constituents temperature (in the channel central
point) for different mesh sizes and its percentual difference, related to the most
refined grid considered, respectively. Figures 6 and 7 compare the temiperature
behaviour when mesh size is reduced 50 % ou a-direction. In Figure 8 the
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Table 1. Convergence Process - Central Point Temperature (for 95—3;5 and Qc,:—};-'i
=104 =—10*and =10 )

FLUID CONSTITUENT’S CENTRAL POINT TEMPERATURE

estimate(*) P ier. 24 jter. 3" iter. 4'" jter.

104 .7906 x 10° 6018 .6053 6053

0 6053 .6053 ,6053 —

- 10* - 7894 x 10° .6089 .6053 6053
SOLID CONSTITUENT’S CENTRAL POINT TEMPERATURE

estimate (*) 1*F jter. 2nd jter, 3™ jter. 4™ jter.

104 1132 x 10* 8827 .8862 .8862

0 8862 8862 .8862 J—

-104 -.1131 x 10% 8897 L8862 L8862

v v at
(*) initial values for 5’-,5;5 and ’L—f;s—

channel length is made five times smaller than the defaunlt length and two
different values for the fluid coustituent mean velocity are considered: the
default value, used in the preceding figures and a value ten times smaller.
Figure 9 compares the default fluid constituent mean velocity to one ten times
greater, using a channel length five times greater than the value considered in
Figures 2 to 7. The influence of the Auid constituent mean velocity on both
constituents temperatures is shown in Figure 10.

Figure 2 shows both constituents centerline temperatures versus the z-variable
in two different cases. The first one (represented by the dashed lines, for both
constituent curves) shows the problem, whose simulation originated the present
work: no boundary conditions are prescribed either for the fluid constituent
at the channel exit or for the solid constituent both at the channel entrance
and exit, as stated in equation (10). The continuous curves correspond to
the second case, where zero heat flux was prescribed for the solid constituent,
both at inlet and outlet. Six different fluid constituent curves correspond Lo
the described solid constituent curve, according to the prescribed outlet fluid
constituent temperatures. Several values were considered for this temperature,
varying from 0 (the fluid constituent prescribed inlet temperature) to 1
(the impermeable isothermal surfaces prescribed temperature). This second
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problem, in which four boundary conditions were prescribed on z-direction,
shows an artificial behaviour, both at the channel entrance and exit. Except
for these values, complete agreement can be verified between the temperature
fields, for both cases taken into consideration.
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Figure 2. Centerline Temperatures vs x (varying T at the channel exit)

Figure 3 shows a comparison between two different problems, the first one,
represented by the dashed lines, as in Figure (2), is the one described by
equations (7) to (10), while in the other case several heat fluxes are considered,
by varying the heat transler coefficient h in equation (18), for the solid
constituent, both at the channel entrance and exit, while no boundary condition
for the fluid constituent at the outlet is prescribed. The latter problem,
represented by the continuous lines, is solved by means of an iterative scheme, in
which the elliptic fluid constituent problem is solved as a sequence of parabaolic
problems. This scheme is similar to the one described in the present work,
but only the fluid constituent second-order partial derivative on r-direction
is treated as a known field. [t is remarkable that no variation on the fluid
constituent temperature curve is observed, when no boundary condition or
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Figure 3. Centerline Temperatures vs z (varying gg both at inlet and outlet)

zero heat flux was prescribed for the solid constituent. A very slight difference
between these mentioned cases is observed at the channel exit, while a more
significative difference can be observed at its entrance. The use of a heat
transfer coefficient so great as h = 1000 is almost equivalent to prescribe
both solid and fluid constituents temperatures with the same value. As a
consequence, a value very close to zero is observed at the channel entrance
for the solid constituent temperature, while apparently the same temperature
values for both constituents can be observed at the channel exit. This problem
was considered for several values of h, between 0 and 1000, and, except for
the channel entrance and exit, no difference on both constituents temperature
fields is observed, as occurred on the case shown in Figure 2.

Table 1 shows fluid and solid constituents temperature values at the geometrical
center of the channel, that is, for z = 60 and y = 0.5, for the four global
iterations, requested to obtain convergence, in the worst cases. Three different
values for solid and fluid partial second-order derivatives on z-direction, among
the several ones used as initial values, were chosen to be listed. Significative
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differences can be observed between first and second iterations, when the
derivative initial values are considered 10% or —10%, while almost no difference
is observed if second and third iterations are compared. If the derivatives
are initialized as zero, only three global iterations are requested to achieve
convergence. An analogous behaviour is verified if the fluid constituent mean
velocity is made 1000 times smaller: convergence is reached after three global
iterations, if both derivatives are initialized as zero, while five global iterations
are requested if they are initialized as —10% or 104
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Figure 4. Central Point Temperatures (for different mesh sizes)

Figure 4 shows both constituents temperatures at a point located at the
centerline center, for different meshes, from a 3x3 to a 25x25 mesh. The
percentual difference among the latter mesh and the remaining ones, at
the central point, is plotted for both constituents temperatures in Figure 5.
Examining Figures 4 and 5 together, it can be noticed that the 13x13 grid,
used for the majority of the results presented in this work, shows a reasonable
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Figure 5. Percentual Difference among Central point Temperature (for different
mesh sizes, related to the most refined grid)

agreement to the most refined one used: the 25x25 grid, for both constituents
temperatures.

Figure 6 shows both constituents centerline temperatures for two different mesh
sizes: 20x13 and 13x13. A very slight difference is observed for the fluid
constituent temperature, while almost no difference can be noticed for the
solid constituent , as the grid is refined on a-direction. The same grids are
compared in Figure 7, where both constituents temperatures are plotted for a
section £ = 110, near the channel exit, where the difference between the curves
representing the two considered mesh sizes is more acute as it can be seen in
Figure 6.

Figures 8 and 9 represent both constituents centerline temperatures versus z-
variable for different values of the channel length and different fluid constituent
mean velocities. In Figure 8 the channel length is five times smaller than the
default value (L = 24) and the average velocities are considered 1072 (the
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Figure 6. Centerline Temperatures vs z (for 25x13 and 13x13 grids)
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default value) and 10~%. A significative difference between both constituents
centerline temperatures can be observed for the default velocity, while these
temperatures tend to a common value at the channel exit, for an average
velocity ten times smaller. An analogous behaviour is noticed in Figure 9, in
which the channel length is five times greater than the default value (L = 600):
both constituents centerline temperatures are almost coincident at the second
half of the channel for the default fluid constituent average velocity (10~2) but
they show a large difference if the mean velocity is made ten times greater
(10~?). Comparing these two figures to Figure 6, in which L = 120, a fully
developed temperature field, for a given mean velocity, becomes a natural
expectation.
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Figure 8. Centerline Temperatures vs x (for L = 24 and two mean values for
vF)

Figure 10 illustrates the influence of the fluid constituent mean velocity on
both constituents centerline temperatures. It can be seen that a decrease
on the mean velocity makes both constituents centerline temperatures tend
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Figure 9. Centerhine Temperatures vs z (for L = 600 and two mean value for
vF)

to a common value. (For average velocities of 10% or 10~7, both curves
are coincident, except at the channel entrance, where the fluid constituent
temperature is prescribed. On the other hand, for an average velocity of 1,
Tr is almost zero and T5 almost constant.) This leads to the conclusion that
as the fluid constituent mean velocity decreases, thermal equilibrium between
constituents is reached after a shorter channel length.

The effect of the fAuid constituent mean velocily on both constituents temper-
atures can be regarded in a simpler way, using the new variables £ = az and
y™ = oy, in equations (7) and (8), which become:

arE O*Tr T Il

- P iy 2
oz~ = [0 * o] T et TS TF) 29
PTg 8Ts
V= 56y ottt TS
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Figure 10. Centerline Temperatures vs x (varying fluid constituent mean
velocity)

Using these new equations, in which the factor a may be regarded as a
"geometric scaling factor”, a variation on the channel length would include
effects of variation of the fluid constituent velocity on both constituents
temperatures, shown in Figures 8 to 10.

ADDITIONAL COMMENTS

Figure 11 shows centerline temperatures vs position x for two different cases:
the default problem. represented by cquations (7) to (10), and an alternative
problem, where equations (7) and (8) are subjected to another set of boundary
conditions: zero heat flux, instead of temperature, is prescribed for the fluid
constituent on both impermeable surfaces, so that instead of equation (10), the
boundary conditions hecome;

Tr0,y)=0
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T, oy = 8T
a0y

Ts(z,0) = Ts(z, H) = 1

(z,H) =0 (21)

The same previously described procedure was used to solve this problem, and
convergence was obtained in three global iterations, as occurred to equations
(7) to (10), if both fluid and sclid constituents partial derivatives on z-direction
initial estimates were zero. Examining Figure 11 it is observed that the curves
describing the two mentioned cases are almost coincident. This means that
an alteration on the fluid constituent boundary condition on y-direction from
prescribed temperature to zero heat flux causes almost no alteration en both
constituents centerline temperatures. Significative variation is noticed only if
fluid constituent cross sections temperatures are compared for both cases, as
shown in Figure 12, where a central section (z = 60) is considered.
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Figure 11. Centerline Temperatures vs z (varying boundary conditions on
y-direction)



358 M.L. Martins Costa, R. Sampaio and R.M.S. da Gama

1.0

b~

O

)]
IIIlJ.lll.I_L_lIIII.IIiIi

0-0 lll'l‘T|rl'[Illlll'["[l['l'[llll'rl[llI'I'lTll['[llllll!TlT
0.5 0.6 0.7 0.8 0.9 1.0
TEMPERATURES

Figure 12. Temperature vs y - Section = = 60 (varying boundary conditions
on y-direction)

FINAL REMARKS

When a problem like the one stated in equations (7) and (8) is simulated,
usually a total of eight boundary conditions is required. However, the practical
situation considered in the present work becomes unrealistic if all the usual
boundary conditions are prescribed.,

This work presents an algorithm which allows the local simulation of the energy
transfer process in a saturated flow through a rigid porous medium, using a
Mixtures Theory viewpoint, in which a system of two elliptic equations on
both z- and y-variables are solved with only one boundary condition on z-
direction: the fluid constituent inlet temperature. Additional data like the fluid
constituent temperature or heat transfer and the solid constituent inlet and
outlet temperature and/or heat transfer, which are not available in practical
problems, need not to be known.
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Some previous works (e. g. Valai and Sozen [7] and Lage and Bejan [8])
have already used a two-temperatures model to describe the momentum and
heat transfer process in saturated porous media. These models, obtained from
a Continuum Mechanics approach, present a term, analogous to the energy
generation function, which takes into account solid and fluid temperature
differences. Both temperatures, however, are calculated as intrinsic volume
averages, each one in a volume associated to the respective phase. (As the
Mixtures Theory basic hypothesis states that each constituent occupies the
whole volume of the mixture, the intrinsic volume can be the same for both
phases, in this case.)
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ABSTRACT

Inlegral representations of the function of the non-elementary part of the Kernel of
the integral equation relating the pressure to the normalwash distribution occurring
in unsteady subsomic potential flows are presented. Several integral transforms are
deduced from these integral representations. The resulls oblained can be exiended to
other fields of application and, therefore, are not limited Lo the solution of unsteady
potential flow problems.

Keywords: Unsteady Subsonic Flows » Iutegral Representations

RESUMO

Sao apresentadas representugoes inlegrais da parte nao elementar da fungao do
nicleo da equagdo inlegral, em escoamento subsdnico potencial ndo estaciondrio, que
relacionam a diference de pressdo 4 distribuigao da velocidade normal. Sao deduzidas
transformagdes integrats a partir destas representacées integrars. Os resultados podem
ser estendidos @ outros campos de aplicagdo e, portanto, ndo estdo limitados a solugdo
do problemu do escoumento potencial nio estaciondrio.
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NOMENCLATURE

Ci(z) Cosine integral function

Ey(z) Exponential integral function = [ %l- dt

E;(z) Complementary exponential function = £%_ et—t di

Ful(z) Function defined in equation (7)

f(z) First auxiliary function of the trigonometric integral function
= Ci(z) sin(z) — si{z) cos(z)

g(z) Second auxiliary function of the trigonometric integral function
= — Cli() cos(z) — si(z) sin(z)

Hy(z) Struve function of order p

hyu(z) Hu(z) =Yy

i V=1

Iu(z) Modified Bessel function of first kind and order g

Ju(z) Bessel function of first kind and order u

k reduced frequency, considered as a canstant real non-negative
pararmeter = f‘i—:—

K Kernel function relating normalwash at point (z,y, z) to unit pressure
difference at point (£, n,¢)

K,(z) Modified Bessel function of second kind and order u

Lu(z) Modified Struve function of order it

Lu(z) =il le)—Lgls)

Mo free stream Mach number

No(z) Function defined m equation (6)

Joo Free stream dynamic pressure = %pmb'go

R " .-"xg + 321.2

r Viy-n?%+(z-)?

Si(z) Sine integral function

si(z) = Si(z) - %

Usx Free stream velocity in z direction

u Real argument = M%g?“

w(z,y,z) Normal velocity at point (z,y,2)

(z,y,2) Coordinates of the normalwash point

(%0, Y01 2o) (2 —&y—nz-()

Yiu(z) Bessel function of second kind and order u

ay = 2H rr[rv!
8 \/1—.Mr§b
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I(x) Gamma [unction

* Local dihedral angle

Ap Pressure difference

P Free stream air density

() I'irst auxiliary function of the exponential integral functions
=t El(.l,‘) + e~ T E,‘(.’C)

(z) Second auxiliary function of the exponential integral functions
=e* Fi{x)—e T Ex)

(£.1n,¢) Coordinates of the doublet point

w Frequency of oscillation

() Receiving point

{. & Sending polnt

{ )y 4 S5 .

), Laad uwd

()

INTRODUCTION

Since the Kissner! derivation of the integral equation relating the pressure
to the normalwash distribution in subsonic unsteady potential flows, many
2=3 contributed to the reduction of this equation to forms suitable for
numerical computations. Many numerical approximations were proposed for
the evaluation of the non-elementary part of the Kernel function?3%7, These

authors

approximate solutions have an accuracy of two to three digits and are time
consuming in terms ol computational efforts. Exact solutions of the involved
integrals of the Kernel function were presented in reference [8]. The solutions
presented have been obtained in terms of new functions and efficient numerical
evaluation of these functions have been proposed®. In reference [9] the unsteady
supersonic flow case has been treated and it is shown that the solution of the
non-elementary part of the supersonic Kernel is related to the same functional
solutions of the subsonic Kernel. Further, reference [9] gives simple and direct
expressions for the evaluation of the supersonic Kernel.

The present paper presents several integeal representations of these functional
solutions. Further, some new imtegral transforms deduced from these integral
represeutations ave given. Phese new integral representations and integral
transforms are connected to the Bessel and Struve functions, These functions
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are of great importance in applied nathematics and mechanics, and their
integral transforms and integral representations appear in many fields of
engineering sciences, e.g., elastic vibrations, potential flows, heat and mass
transfer, electromagnetic field problems, etc. It 1s believed that the results
obtained in the present paper will be useful in such engineering applications.

STATEMENT OF THE PROBLEM

The integral equation relating the pressure and the normalwash can be written
1
as’,

wend) - & [ [aneno HEnER ISR 4egy
Uss 8r Joot?

The Kernel function K reads,
K = ezl (K1 Ty + Ko ) (2)
where 71 and T, are geometric relations and read®?

Ty = cos(vr —7s) (3a)

1 : .
T2 = 5 (2008 7r — yosin7r) (20 08 Ys = Yo5in 74) (3b)

and Ky and K9 are given by

K Moore™ ke

=Rl tHanl) (4a)

ikM2 r2e=iku
Ko=— e -3 N
2 W 5{2(“]

Moore~tku [(1 + u?) B%r? + 2R? + Moo Rru

R3 (14 u2)>/? .
where
0o -Hw g )
,\'3/2[“) f “_4.2_)3{2' Nﬂe;”g(u) +i A’Im”;(u) (5a)
v
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; o 8-&&'1; .
.’\*’:5/2{1{] = / m dv = 'NPRE-"“ {H] +1 N]msn(u) (5&)
1 v

Consider now the integral,

o —tkv
N, (u) = /., (1:_&? dv = Npe, (1) + 1 M, (1) (6)

where k is cansidered as a constant non-negative parameter, v = r},g,%,%. e
and defining the function F,(u) as®

Fulu) = Nie, (u) sin(ku) + Ny, (u) cos(ku) (7)

and using equation (5), it can be shown that the function F,(u) satisfies the
differential equation,

" 2 = k. R 8
fu{“:’*'k fb‘(u) (l+u2)v ( )

with the following boundary conditions,
a, Fo (0) = (~1)A+1 ; k* £ (k) (9a)
a, FL(0) = 4+ K, (k) (98)

and recurrence relations®,
k

Av(l +v)Fogolu) = ﬂngy(ﬂ) +2v(2v+ 1) Fupr(u) + m (10)

The solution for F,(u) was given in reference [8] and efficient evaluation of
these functions were treated. Further, an integral representation for F,(u) was
given and reads®,

o0 —ul

€
U'u}'p(ll) = — k./D t'uJ“(f] m dt (11)

Once the function F,{u) has been obtained, the integrals given in equation (6)
can be evaluated [rom,

NRe,(u) = Fou)sin(ku) + —:T}'L(u]cos{ku) (12a)
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. 1 :

Nim, (u) = Fo(u) cos(ku) — Eff,(u)mn(ku) (12b)

INTEGRAL REPRESENTATIONS OF F,(v) IN TERMS OF THE

STRUVE FUNCTION

Consider the integral representation of the Bessel function of the first kind'®11,

n T
s e / sin? § [cos(t cosB)] df (13)
O‘FT 1]
and the Fourier cosine transform!2,
2u % cos(tz)
SN ;
f Trd? dr foru>0 (14)

Substituting equations (13) and (14) into the integral representation of F,(u)
given in equation (11), and changing the order of integration, we obtain,

=24 u
Fiplw) = ~fkw cot) - 3 [T HPED 0 (15a)
¢ Hy(t) ¢(ut) di

Fapalu) = =k f(ku) Lq(k) - ;]{; Y foru>0  (15b)

Higher order relations can be obtained using equations (15), the recurrence
relations of the Bessel and Struve functions, and the recurrence relation of
Fu(u). The limitation of u > 0 is because of equation (14).

Now, using the differential equation (8) and equations (13), the following H,
transforms of the auxiliary exponential integral functions are obtained:

¥ . T
Hol(l t)dt =~
et = - ey
ool m
Ho(t) ¥(ut) dt = — — e

/""Md::w[m'“]
0

{



On Some Integral Representations of the Kernel Function 367

o0 i
[ Hlumut)m:,[ ! _l] for u > 0 (16)
o t l+u U

and the following relations are verified!?:

2 [t Ho(t) 2k = Jult)
Ty Sl 5% o S i - dl
Lo(k) :rr/u 12 4 k? @ T Jo 12 4 k2 J

R 68 912 roo
ZL/ Hi (1) _i Ji(t) dt (1?)

Stkls s o Z+k2T T 1 Jo t(2+k?)

To the author's knowledge, the relations given in equations (15) and (16) are
new.

INTEGRAL REPRESENTATIONS OF F,(u) IN TERMS OF THE
MODIFIED BESSEL FUNCTIONS OF THE SECOND KIND

Consider the integral representation of the Struve function!?,
21 oo =172
Rty =t / et (14 22) I (18)
Tou Jo
and the Hankel-Nicholson transform??12,
4! o Kale)
hy(ty = | (=1)* —— e 19
) = [ 2| [T o as (19)

Applying Laplace transforin operations on equation (8) and using the integral
relations (18) and (19) and the recurrence relation of F,(u), equation (10), we
obtain

ay Fulu) = [(_1)““ 3—:"—] L_ (k) cos(ku) + k* K, (k) sin{ku)

9 OO S TR
& 2k oK (1) cos(ku) — cos(tu)

¢ 20
m 0 k? — (_‘2 d ( )

Using now equation (20) and the dilferential equation (8), the following K,
transform is verified:

T,

_ 21
201 4 u-)" (=1

o
/ K1) cos(tu) dl =
V]
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Consider now the Fourier cosine transform!?,
28 @
e‘“':-/ -“;S(—“J;}dr foru >0 (22)
™ Jo i + 2

Substituting equation (22) into the integral representation of F,(u), equation
(11), changing the order of integration, and using equation (27) of reference
[8], we obtain

2k

o Fu(u) = — s [k“!\ (k)—t#fu(z)]

S(m) dt foru>0 (23)

Using now equations (23) and (20), the following K, transform is obtained:

fmﬁz”‘—“{ﬁdz—(—l) — k1L (k) (24)
ok

and, therefore, from equation (24) and equation (20) or equation (23), we obtain

cos(tu)

= b 2k [
a,y Fu(u) =k Ku(K) sm(ku)—-?‘/ﬂ " Ku(t) —— ;e dt  foru>0 (25)

The relationships given in equations (20), (23), and (25) connect the new
function F,(u) to integral transforms of the modified Bessel functions of the
second kind. Therefore, these integral transforms can be evaluated in terms of

Fu(u).

INTEGRAL REPRESENTATIONS OF F,.(u) IN TERMS OF THE
MODIFIED BESSEL AND STRUVE FUNCTIONS

Consider the integral representation of the auxiliary exponential function?,
* sin(uax)
=21 — dz 26
$(ut) /0 PR (26)

Substituting equation (26) into equation (15), and changing the order of
integration, we obtain

50{1) Lp(t) di

— (27a)

Fapplw) = fiku) Lo(k) — & jo " sinut)
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Fapalu) = —k [V1+u? = u + & f(ku) £1(k)

+ k2 fa b sin(ut)“c’t((ktl’_’;f)‘ ®) 4 (27h)

Higher order relations can be obtained using equations (27), the recurrence
relation of F,(u), equation (11), and the recurrence relations of the modified
Bessel and Struve functions.

Now, using the Fourier sine transform!?,

sm(ut)
o K-02

in equation (27), we obtain

dt = — f(ku) ~ cos(ﬁ:u) (28)

Frjalu) = —-;- cos(ku) Lo(k) - k-[:o siu(ut)kfoftt)z dt (29a)

_7-'3',2(11) = —k [\/ |+ u?—u|l+ %k Cos(k“)‘cl(k)

+ k3 f:o sin[ut)% dt (290)

Applying the differential equalion (8) on equations (29), we obtain the following
transforms:
/w' ) Colt) dt l foE S (30a)
sin(ut) Lo = — or u
0 V1 + u?

[t‘;s.m(m!)L =V1+u?—u foru>0 (308)
0

Now, consider the Fourier sine transform!2,

L 2 @ 'sm(u.r.)
e
u f et dz  foru>0 (31)

Substituting equation (31) into the integral representation of F,(u), equation
(11), and using equation (26) of reference [8], we obtain,
x- Loy () = KT LK)

(=1 oy Ffu) = L‘/l; t sin{ut) T2
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foru>20 (32)

and 7r
(=1)¥a,Fulu) = -3 k# L_, (k) cos(ku)

- L] “sin(ut) 7 ““) dt (33)

The relationships given in equations (27), (29), (32), and (35) connect the new
function Fy, to integral transforms of the modified Bessel and Struve functions.
Therefore, these integral transforms can be evaluated in terins of F,. To the
author’s knowledge, the integral representation given in equations (30) are new.

CONCLUSIONS

Integral representations of the function of the non-elementary part of the Kernel
of the integral equation relating the pressure to the normalwash distribution
oceurring i unsteady subsonic potential flows lave been presented. It is
believed that these integral representations will be useful for evaluating the
integrations given in terms ol the function F,(u). The results obtained can be
extended to other fields of application and, therefore, are not limited to Lhe
solution of unsteady potential flow problems.
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