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A Associação Brasileira de Ciências Mecânicas pode, com orgulho, falar 
em tradição e continuidade da REVISTA BRASILEIRA DE CIÊNCIAS 
MECÂNICAS. Ao longo de 14 anos, esta publicação vem espelhando a 
produção científica de nossa comunidade de pesquisadores. Chamada à· vida 
sem setembro de 1979 pelo seu primeiro editor, o Prof. Luiz Bevilacqua, 
permaneceu em suas mãos até dezembro de 1983; sua continuidade foi garantida 
pelo Prof. Rubem Sampaio até julho de 1988, quando o atua.l corpo de 
editores a assumiu. Passamos por um período de imensas dificuldades 
econôm.icas. Embora irregular, os órgãos governamentais tem mantido o apoio 
à publicação desta Revista. Assim, entregamo-la em dia ao nosso sucessor 
Prof. Leonardo Goldstein incorporando uma série de pequenas modificações 
que profissionalizaram o trabalho: maior homogeneidade temática, maior 
uniformidade editorial, lombada e várias outras. Embora nunca tenha sido 
mencionada a palavra mandato, os três períodos acima são de 4,5 anos, 
caracterizando pelo menos uma curiosa coincidência. Ao encerrar esta fase, 
apresentamos algumas estatísticas que permitirão uma avaliação crítica da 
evolução da Revista. 

Nos seus primeiros 09 anos de existência, a Revista publicou 140 artigos, em 
29 números ( 4,8 artigos/número) de 152 autores diferentes, pertencentes a 33 
Instituições Nacionais e 22 Estrangeiras. Destes, 28,5% foram escritos em inglês 
e 3,5% em espanhol. Eles, em média, apresentam 13,3 páginas. As Institwções 
mais presentes foram a PUC-Rio, cujo nome consta como afiliação de pelo 
menos um dos autores em 31,5% dos arti$os, a UFRJ e o LNCC/CNPq com 
11,5% cada, CTA/ITA (9,3%) , UFSC (8%), UN1CAMP (4,3%), INPE (3,5%), 
UFU (3%) e outras. 

A atualização destes números para o período atual (4,5 anos) permite 
contabilizar 84 artigos ( 4,9 artigos/número), de 138 autores pertencentes a 
25 Instituições Nacionais e 24 Estrangeiras. Destes autores apenas 30 fazem 
parte do rol dos autores antigos. A análise destes números mostra uma 
diversificação maior de seu público autor. A porcentagem da presença do nome 
das Instituições pelos artigos mostra a PUC-Rio com 19%, a UFRJ (10,7%), 
UFSC (9,5%), CTA/ITA (8,3%), LNCC/CNPq (7,1%), UFU (7,1%) , UFMG 
(4,8%), UNICAMP {4,8%). Houve também no período um aumento de número 
de artigos em inglês (49,4%), mantendo-se os em espanhol (3,4%) . 

São submetidos em média 25 artigos por ano e publicados 20, com uma média 
de 19 páginas por artigo. O número reduzido de artigos submetidos caracteriza 
um problema congênito à comunidade científica brasileira: tendo em vista as 
particularidades das publicações em anais de congressos, rápidas e de revisão 
mais simples, quando um autor prepara um artigo para uma revista, prefere 
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fazê-lo em uma revista editada no exterior. Por isso encaramos como um sucesso 
a Revista atualmente ter a metade dos textos em inglês. 

Outra análise realizada procura levantar a distribuição por áreas dos artigos 
publicados, visando avaliar a criação nesta gestão, das editorias associadas. O 
resultado obtido entre 1988 e 1991 indica 54% dos artigos em Ciências Térmicas, 
24% em Mecânica dos Sólidos, 12% em Dinâmica, 7,5% em Fabricação e 
Materiais e 2,5% em Métodos Numéricos . Se isto representa a demanda. real 
da comunidade, o nível. de atuaçã.o do respectivo editor ou uma mistura de 
ambos fatores , que deixamos como interrogação na cabeça do leitor. Todavia, 
seu reflexo já se dará na composição do novo corpo de editores. 

Cabe mencionar ainda que os editores associados atuaram com uma autonomia 
a altura de suas idiossincrasias, mantend<rse o controle de recebimento e 
de publicação com o editor chefe. A descentralização funcionou bem, mas 
de acordo com o que cada um definiu de objetivos para si. A publicação 
final viabilizou-se em grande parte pela atuação do Presidente da ABCM na 
obtenção dos recursos tendo os trabalhos de digitação, de correção e de gráfica 
permanecido no Rio de Janeiro. 

É sempre bom saber que chegamos !J. um porto com a consciência da missão 
cumprida. Agradecemos aos autores e leitores e, em especial, aos revisores que 
nos ajudaram a manter o padrão da Revista. 

Os Editores 

The main effort in editing a scientific journal in Brazil is to guarantee its 
continuity. After three periods of 4.5 years, each under the responsibility of 
a dift'erent editor but always oriented by the goals of the Brazilian Society 
of Mecbanica.l Sciences, our journal is still a mirror of the brazilian related 
scientific production. Tbe main achievements in this last period are certa.inly 
the more homogeneous numbers concerning the research areas, the increase 
to about 50% on the number of englisb published papers and the spread of 
authors over a large number of institutions, representing a more diversitied 
group of authors. ln spite of a non-regular scheduling of publication we did 
not lose continuity as we kept publishing 4 numbers every year: and for that 
we thank very much to authors and readers of the englisb language. 

We still would like to have many more papers submitted - and we need it to 
justify the existence of the journal to our financing agencies. AJJ the difficulties 
to get this proposal are discussed over and over by ABCM members but we have 
teached to a point when some concret ~c~ions are needed, so that the authors are 
aware of the adva.ntages of publisbing in our country. Continuity and tradition 
are certainly ones; the scientific leve] and the international distribution are 
other requisites. There are still 86"Veral others tha,t t.he next. editor of RBCM, 
Prof. Leonardo Goldstein, may try. We wisb him a good luck in this endeavor. 

The Editors 
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ANALYSIS OF COMPOSITE LAMINATES USING 
VARlABLE KINEMATIC FINITE ELEMENTS 

ANÁLISE DE LAMINADOS COMPOSTOS UTILIZANDO , , 
ELEMENTOS FINITOS COM CINEMATICA VARIAVEL 
J.N. Reddy 
D.H. Robblns, Jr. 
Departroent of Mechanical Engineerins 
Texas Atr. M Univeraity 
College StAtion, Texas 7784.3-3123 
USA 

ABSTRACT 

Troditiona/IJI, compo1íte laminate~ are treated tu equivolent-•ingle laver• (ESL) 
by integmting through the laminate thiclme~l . However, lhe11 are inodequote in 
correctly modeling lhe re1pon1e charocteriltic1 of thick compo•ite• and localized 
phenomena 1uch Cl.f fru-edge effect., delamination~, and lhree-dimen•ionol effecu. 
Layerwiu theorie• are propo1ed to account for thue effecu. Varioeu equiiJGlent 
.tingle..laver thoerie• and laverwl:te. theorie• ore reviewed, and an efficient and 
robwt computational procedure ba1ed"'On ooriable kinemotic finite e/ement• and me•h 
.tuperposition technique i• propo1ed. The computational prtXX:dure developed bu the 
author1 permit a convenient, accurate and economic determiontion of plulevel 1tre11e1 
within locolized region.t of ínterelt in practicol laminated 1tructure1. 

Keywords: Composite L&minates • Free-Edge Effectt • Delamination • Three­
Diroension&l Effect.s • Varia.ble Kinematic Finite Elemenu • Mesh Superposition 
Te<:h11ique 

RESUMO 

Tradicionalmente laminado• de materiai• compo1lo1 1ao tratado• como 1endo equi~ 
lente& a uma única camada, integrando atmvé• da e1pe.1ura do laminado. Entretanto, 
1ão inadequado• paro modelar corretamente a1 corocteriltica~ de moteriau compolto• 
e•pe••o•, 011 a1pecto1 dinâmico• de materiair com podo• fino• e e1pe11o1 e em localizar 
fenómeno~ toi1 como o efeito da borda lii!N!, delomínoção e ef~to• tridimen~ionau. 
Teoria• lâmina a lâmina •ão proposta" para uplicar 01 último1. Nute trabOlho, tonto 
teoriru de uma única camada equioolente, como teoria• lâmina a lâmina 1Õ.o revilad01, 
e uma unificação de.ftas teoria1 e um procedimento computacional eficiente e robwto, 
bo~eado em elementos finito& com cinemática ooriátHJI e no técnica de 1uperpo1ição 
de molhas são propo1to1. O modelo teórica e o procedimento computacional de~en­
volvído.t pelo~ autore1 permite uma determinação conveniente, preci1a e econômica 
da.s ten1Õe1 a m'vel de cada Uimino dentro de regiõe.f localizado• de intere11e em u­
trutura.s lammada.s de intere11e prático. 

Palavras-chave: Laminados Compostos • Efeito de Borda Livre • Delamina.çio • 
Efeit·OS Tridimensionais • Elementos Finitos com Cillemá.tica. Va.riá.vel • Técnica. da 
Superposiçã.o de ma.lha.s 

lnvited Lecture Presented at 7th SIBRAT, Floríanópolis, Brazil 
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INTRODUCTION 

Compoeite materiais consist of t.wo or more different materiais that are 
combined togetber to achieve desirable structural properties (e.g., stiffness, 
strength, low density, impact strengtb, so on) tbat tbe constituent materiais, 
ading alone, do not exhibit. Compoeites are used in space and underwater 
structures, medical proethetic equipment, sports equipment, automobiles, and 
electronic circuitry. Because of tbe increased use of compoeite materiais, 
polymer chemists, material scientists and mechanics com.munity are working 
to develop better mat.erial systems, structural modela, and analysis methods to 
assess the strengtb and reliability. 

Compoeite materials are made in different forms. Often tbey are made in tbe 
form of layers, known as la.minae. A typical layer may consist o{ fibers, long 
or sbort, reinforced in a matrix material. The layers are then used to form a 
compoeite laminate of c!esired sbape and th.ickn~. Because oí tbe dift'erent 
material properties of dift'erente layers, the resulting laminate is in general 
anisotropic, and its . global deformation is characterized by complex coupling 
between extension, bending a.nd sbeaiing modes. ln addition, compoeite 
laminates exhibit ma.ny unique localized pbenomena sucb as free edge efl'ects, 
delamination, matrix cracking, fiber breakage, and complex load redistribution 
as tbe laminate undergoes continuous damage (i.e., microscopic failures). 

Current laminate tbeories can be divided into two broad classes based on the 
assumed variation of the displacement field th'rougb the laminate thickness (see 
(1-3]): the "equivalent single-layer" theories, and the layerwise theories. The 
equivalent single-layer theories (or ESL theories) are characterized by displace­
ment componente that are assumed to be C1-rontinuous (i.e ., displacements 
as well as strains are continuous) tbrough the laminate th.ickness. Tbe as­

sumed variation of the displacement componente through the laminate thick­
ness ai.Jows t.he virtual worlr. statement to be pre-integrated with respect to 
the th.ickness coordinate, thus reducing tbe 3-D elasticity problem to a 2- D 
problem (i.e., the primary variables. Me functions of tbe in-plane coordinates 
only) . For laminated compoeite plates a.nd shells, tbis amounts to replacing 
the heterogeneous laminate with a statically equivalent (in the integral sense), 
single, homogeneous layer. For many applica.tions, the ESL modeJs provide a 
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sufficiently accurate description of the global laminate response (e .g., trans­
verse defte<:tion, fundamental vibration frequency, criticai buckling load, force 
and moment resultants) ; however , the ESL models are often inadequate for 
determining the 3-D stress field at the ply levei. The main advantages of the 
ESL models are their inherent simplicity and their low computational cost due 
to the relatively small number of dependent variables that must be aolved for. 
The major deficiency of the ESL models in modeling composite laminates is 
that the transverse strain componente are continuous across interfaces between 
dissimilar materiais; thus, tbe transverse stress components are discontinuous 
at the layer interfaces. This deficiency is most evident in relatively tbick lami­
nates, in localized regions o( complex loading or near a geometric discontinuity. 

Moet engineering structures where composites are used are complex. They 
contain geometric as well as material singularities and regions of 3-D stress 
states. ln tbe analysis of composite laminates with imbedded delaminations, 
úee edges, or regions of 3-D stress fields, one must use a theory based on 3-D 
kinematics and develop a computational model that is more efficient than the 
conventional 3-D finite element modeJ. These requirements motivated several 
researcbers to develop layerwise laminated plate theories. Unlike the ESL 
theories, the layerwise theories assume separate displacement field expansio11s 
within each materiallayer, thus providing a much more kinematically correct 
representation of the strain field in discrete layer laminates, and allowing 
accurate ply level stresses to be determined. 

ln layerwise theories, tbe displacement field is expanded independently within 
eac,h layer. Mau (4] used the first-order shear deformation kinematics through 
each layer. Be used the interlayer shear stresses as Lagrange multipliers to 
satisfty the displacement continuity a.t the layer intefaces, and the goveming 
equations were derived by minimizing a modified total potential energy 
functional (in the spirit of hybrid formulations of Pian and bis associates). 
Rehfield and Murthy [5] and R.ehfield and Valisetty [6] assumed la.yerwise 
distribution of the six stress components, and the layer stress-strain and strain~ 
displacement relations are used to compute the displacernents by integration. 
The constants of integration are determined sucb that tbe displacements are 
continuous at layer interfac~s. Murakami [7] and Toledano and Murakami 
[8] used independent expansions of the displacements and stresses througb 
each layer, and Reissner's mix.ed variational principie was used to obtain 
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the governing equations. Hinrichsen and Palazotto (9] used cubic splines to 
'express the displacements through eacb layer. Cubic splines, by definition, give 
eontinuity of the displacements and their derjvatives at the layer interfaces. 
The continwty ol the transverse stra.ins at layer interfaces is exactly what 
one wants to avoid whlle achieving the continuity of the stresses. These 
and other la.yerwise modele (see Srinivas (10], Epstein and Glockner (11], 
Epstein and Huttelmaier [12] and Di Sciuva (13,14]) are developed for various 
reasons otber tban to model three-dimensional eft'ects such as delaminations 
{)f free-edge stress fields. Furtber, these models are algebra.ically complex and 
computationally very expensive, comparable to that of 3-D models, while not 
having any advantages ove r tbe 3- D modela. 

ln some layerwise tbeories, displacement continuity across layer interfaces is 
enforced by constraint equations that allow some of the dependent variables 
to be eliminated during the model developrnent. Alternately, some layerwise 
models are developed by organizing stacks of 3-D finite elements. However, 
in tbe layerwise theory of Reddy · [15,16] tbe transverse variation of the 
displacement field is defined in tenns of a 1-D, Lagrangian, finite element 
representation, that.automatically enfor.ces CO continuity of the displacement 
componente, thus resulting in trasverse strains that are piecewise continuous 
througb the laminate thickness. The transverse variation of tbe displacements 
can be represented to any desired levei of accuracy by simply increasing tbe 
number of 1-D finite element~ (i.e., numericallayers) or increasing the order of 
the transverse interpolation polynornials. Thus the layerwise theory of -Reddy 
provides a generalization of the layerwise displacement field concept. The basic 
idea and accuracy of tbe layerwise theory of Reddy [15,16] will be discussed in 
Section 3. Tbe extension of tbe layerwise larninated plate theories to laminated 
sbelJs was carried out by the senior author [17] , Tbe most significant aspect 
of the layerwise theory of Reddy is that it has a data structure that saves 
computational time when compared to tbe conventional3-D displacement finite 
element model, while giving exactly the sarne results for comparable meshes. 

While layerwise finite elements allows accurate determination of 3- D stress 
fields, they are computationally expe~U~ive to use due to the large number of 
degrees of freedom per element, comparable to stacks of 3-D finite elements. 
Thus it is often impractical to. discretize an entire laminate with layerwise finite 
elements. Further, for many larninate appli(\ations, the indiscriminant use of 
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layerwise elements is a waste of oomputational resources since significant 3-D 
stress states are usua.lly present only in loca.lized regions of complex loading 
or geometríc discontinuities. A logical idea is to subdivide the laminate into 
regions that can be adequately described by ESL modela and other regions 
that require some type of layerwise model (i .e., a simultaneous global/local 

strategy) . ln this way, the most appropriate model is choeen for each 
region, thereby increasiiig solution economy without compromizing solution 
accuracy. Such global/local schemes can be developed using established 
finite element technology (see [18] for a review); bowever, currently available 
methods make implementation extremely cumbersome. The primary source of 
difficulty is the enforcement of displacement continuity across boundaries that 
separate incompatible subdomains. Currently established methods of acheiving 
displacement continuity between incompatib'le regions include: (1) multi-point 
constraint equations via Lagrange multipliers, (2) penalty function metbods, 
and (3) special transition elements. Each of these methods are too cumbersome 
for extensive use under a wide veriety of operating conditions. Tbus, there is 
a need for tbe development of a global/local analysis procedure that provides 
greater robustness, simpler computer implementation , and wider applicability 
to practical composite structures. 

For a global/local model to be successful and see extensive use, it must be 
robust,'simple to develop, convenient to use, and appl1cable to a wide range of 
practical problems. To this end, the overall objective of this study is to develop 
a methodology that will allow these qualities to be realized in a finite element 
code. By developing methods that significantly increase the adaptability and 
convenience of tbe glohaljlocal finite element code, tbe operating envelope is 
extended, since more types of problems beoome tractable in terms of model 
development, much in tbe sarne way that automatic mesh generators aUow the 
creation of modela that would be intractable to create manually. 

ln the present paper an overview of the equivalent single-layer theories is 
presented, the layerwise theory of Reddy is reviewed, and a discussion of 
a hierarchical , displacement- based, global-local computational procedure is 
presented . To permit the accurate, efficient, and convenient analysis of localized 
3- D effects in laminated composite plates and shells, a bierarchical (and, 
perhaps an iterative), global/local finite model is proposed using a multiple 
888umed displacement field . Tbe multiple assumed displacement field concept 
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is used on tw.o different levels. First, a nierarchical, va.riable kinematic (and 
constitutive), ma.ster finite element is developed by superimposing severa! 
assumed displacement fields of differing leveis of kinematic complexity in the 
sarne finite element domain. Second, the resulting va.riable kinema.tic elements 
are used in a mesh superposition technique that allows a local mesh of va.riable 
kinematic elements to be superimposed on an existing global mesh of ESL 
elements. The resulting model allows the coupling of subdomains that are 
incomplatible with respect to both the in-plane and transverse discretizations. 
ln addition, the method a.Uows di:fferent sections of the computationa.l domain 
to be described by different mathematical models. Thus localized, three­
dimensionalsubregions can be discretized with a high order, layerwise mesh to 
extract accurate 3- D stress fields, while the surrounding regions are discretized 
with an ESL mesh. 

EQUIVALENT SINGLE-LAYER LAMINATE THEORIES 

ln the cla.ssical laminated plate theory, it is assumed that (the Kirchhoff 
h ypoth esis), 

1. straight lines normal to midsurface do not undergo deformation along their 
lengths (i.e., inextensible), 

' 
2. straight lines perpendicular to the midsurfa.ce before deforma.tion remain 

straight after deformation, and 

3. the straight !ines rotate sucb tbat they remain perpendicular to the 
midsurface after deformation. 

The fust two assumptions imply tbat the tra.nsverse displaceii\ent is wdepen­
dent of tbe thickness coordinate a.nd the transverse normal strain is zero. The 
third assumption results in zero trans~erse shear strains. Tbus, in the classical 
laminae theory ali transverse stresses are neglected. 

Shear deforma.tion theoúes are those tJt which the transverse shea.r stresses are 
accounted for . These theories are based eitber on a.ssumed displacement field or 
assumed stress field. ln the displa.cement-based theories the three components 
of the displacement vector are represented as polynomia.ls in the thickness 
coordinate. The coeflicients of the polynomial are functions of the in-plane 
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coordinates. The governing equatione are then derived ueing the principie of 
virtual displacements. An equiva.lent single-layer theory is ca.lled tbe n-th order 
plate theory if the in-plane displacements are expanded up to a.nd including tbe 
o-th power in the thlckness coordioate. 

The first-order shear deformation theory is based on the following displacement 
field: 

ut(z,y,z)=u+z<f>lt u2=(z,y,z)=v+z<P2. u3(z,y,z)=w (1) 

Here u = u(z,y), v = v(x,y), a.nd w = w(z,y), denote the displacement 
components in the z , y, and z directions and <Pt = <Pt (z, y) a.nd </12 = <f>2(z, y) 
are tbe rotations of a transverse normal about the y- a.nd z - a.xes, respectively. 
Note that the transverse inextensibility is assumed by assuming that the 
tra.nsverse defiection is constant through tbe thickness, which can be removed 
if one wishes . ln the first-order theory we account for layer-wise constant states 
of tra.nsverse shear stresses (i.e. a.ssumption (üi) of the classicaJ plate theory is 
removed]. However, tbe actual distribution of the transverse shear stresaes is 
qua.dratic or bigber. The discrepancy is corrected in computing the shear force 
resultant.s by tbe introduction of shear correction coefficient8. Tbe first-order 
shear deformation theory for isotropic pla.tes is often referred in tbe literature 
as the Mindlin or Reissner-Mindlin pla.te theory. Since the kinema.tics of the 
first-order theory was due to severa! otbers before R.eissner and Mindlin (see 
[19-22]), it is m06t appropriate not to na.me tbe tbeory after these a.uthors. 

Second- and third-order theories bave a.lso beer propoeed in the literature 
(see [23- 29]). ln tbe third-order t.heory we account 'or layer-wise qua.drati<: 
approximation of t ransverse sbear stresses [l.e. assumpt.ions (ü) and (üi) are 
removed]. The third-order tbeory does not require sh"ar correction factors 
because it account.s for qua.dratic distribution of transverse shear stresses. 
There are a number of thlrd-order tbeories proposed in the literature [24-29]. 
Ma.ny of these theories ca.n be obta.ined aa speciaJ cases of the general third­
order t.heory presented by R.eddy [29]. The generalized third-order tbeory of 
Reddy is based on the displacement field: 

Ôw 2 3 
u1(:z: , y, z) = u + az Ôx + Pz<Pt + Àz tPt + -yz 81 

ôw 2 3 
t12(z, y, z) = u + az Ôy + Pz</12 + Àz tP2 + -yz 82 

u3(x, y, z) = w + JJZtPJ + qz283 (2) 
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Here (u, v, w), denote the displacement component.s in the z , y , and z 

directions, r/J1 and r/J2 are tbe rotat.ions of a transverse normal about the y­
and z-axes, respectively, a.nd tPi and 8i are undetermined functions. AD of the 
generalized displacements are funetions of z a.nd y . The displacements fields of 
various theories can be obtained from Eq.(5) by giveing proper values to the 
constante, called tracers: a, {J, ~. 'Y , JJ, and f'J. For example, we have, 

Classical theory: a= -1, /3 =À= 7 = JJ = f'J =O; 

First-order theory: a= O, /3 = 1, ~ = 'Y = JJ = 1J = O; 

Second-order theory : a= O, /3 = 1, À= 1, r= O; 

Third-order theory of Reddy [27,28] : a= O, /3 = 1, ~=O, 7 = 1, p = 1J =O; 

81 = - 3!2 ( r/Jt + ~:) 
92 = -3:2 ( ~ + ~;) 
9a =O. (3) 

The displa.cement fields of ma.ny other single-la.yer third-order theories can be 
deduced from the present theory. Ta.ble 1 ofReference 29 sbows the rela.tionship 
between the displa.cements used in va.rious third-order theories. 

ln most plate problems transverse normais do not experience significant 
extensions in their lengths, a.nd therefo~e one can assume, without loas of 
accuracy, that ua is independent of the thick.ness coordinate (i.e., p = 'I = 
0). However, sucb an assumtion is not necessary in developing higher-order 
theories. ln order to ha.ve the sarne order terms in thickness coordinate from 
ea.ch of the displa.cement componente to the stra.ins of a third-order theory, 
Reddy [29] used the displacement field (2) a.nd developed a strain-consistent 
tbird-order theory. 

THE LAYERWISE LAMINATE PLATE THEORY OF REDDY 

Displacement Field 

Recall that ali equivalent single-layer )amina.te theories are based on one dis­
placement expansion throughout the thickness of the laminate. Consequently, 
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the transverse strains are continuous through the laminate thickness. Such 
theories ca.nnot a.ccurately modellaminates made of dissimilar materiallayers. 
Noting this restriction of the traditional plate theories, Reddy [15] proposed a 
layerwise displacement plate theory. The main ideas underlying the theory are 
presented here for a laminated circular cylindrical shell. 

The layerwise theory of Reddy is based on the following displacement expansion 
through tbe laminated shell thickness. The i-th displacement component is 
expressed as, 

N 

u;(x, y, z) = Lu/ (x, y) c)J (z) = U/ (x, y) c)J (z) (4) 
J=l 

where i = 1, 2, 3, N is the number of subdivisions ( e.g., finite-element 
discretization) through the thickness of the laminate, and c)J are known 
fünctions of the thickness coordinate, z. Summation on repeated Índices is 
irnplied in Eq.(4). While the sarne interpolation functions are used in Eq.(4) 
for all three displa.cements for simplicity, independent interpolation of the 
displacements (especially u3) can be used. Tbe functions c)J are piecewise 
continuous functions, defined only on two adja.cent layers, and can be viewed as 
the global Lagrange interpolation functions associated with the J-th interface of 
the layers through the lamina te thickness, and ( U J, VJ, W J) denote the nodal 
values of ( u, v, w) at the . nodes through tbe thickness. Because of this local 
nature of c)J the displacements are continuous through the thickness but their 
derivatives with respect to z are not required to be continuous. This implies 
that the transverse strains can be discontinuous at discrete layer interfaces, 
leaving the possibility tha.t the interlaminar transverse stresses computed 
from the layer constitutive equations can be continuous. The inplane strains 
(ex,e 11 ,e:x11 ) will be continuous but the inplane stresses (crx,cry,cr:~~y) will be 
discontinuous at layer interfaces because of the difference in material properties 
of adjacent layers. The resulting theory will have 3N variables and as many 
differential equations in two dimensiona. An advantage of the layerwise theory 
is tbat it requires only 2-0 finite elements . 

The value of N in Eq.( 4) can be appropriately selected. When N is chosen such 
that at least one element per layer is used, the interlaminar stress distributions 
can be determined accurately. The subla.minate concept can be used to model 
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severa! indenticallayers as one equivalent la.yer, in which case N is less than the 
nnmber of layers in the lamina.te. The layerwise theory also yields single-layer 
theories as special cases, as shown by Reddy [15]. 

Strains in the Shell 

Here we consider a la.minated composite circular cylindrical shell with radius 
R, lenght L, and total thickness h. We use the strain-displacement relations of 
Donnell's theory, but a.lso include the transversa strains a.nd the von Kármá.n 
nonlinear strains. We have (see Reddy [18]) 

!t = Ôu +! (lJw) 2 
= ÔUI ~I+! (ÔWI ~I) . (ÔWJ ~J) ' 

{}z 2 {}z 8% 2 {}~ a~ 

. 2 
8v 1 (8w) w 8vi ~I 1 (ôwr ~~) (ÔWJ ~J) wr ~I 

! 2 = {}y + 2 {}y + R + 8y + 2 Ôy . ôy + R ' 
8w d~1 

!3=-=WJ-
{}z dz ' 

!
4 

= lJv + lJw _ _! =VI d~l + 8w1 ~1 _ VI ~I 
1 8z 8y R dz Ôy R 

8u 8w d~1 8w1 1 
!S = {}z + lJz =UI dz + Ô~ ~ ' 

! 6 = 8u + 8v + 8w 8w = (8u1 + 8v1) ~~ + (ôw1 ~~). (ÔWJ ~J) . (5) 
8y ôz 8z ôy 8y 8z a~ ôy 

Governing Equations 

The governing equa.tio:· 'i for the nodal varia.bles ( U J, VJ 1 W J) can be derived 
using the principie of virtual displaceme.nts. Tbe equations of.equilibl'ium of 
the layer-wise tbeor_; are: 

ôM{ + 8J.t( _ Qf =O, 
ôz Ôy . 

ôMJ 8M{ QI Kf _ O 
--+~- 2+--8z 8y R 1 
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for l = 1, 2, ... , N, wbere tbe resultante are defined by 

j h/2 
MI - q·4>1(z) dz .. - t J 

-h/2 
j h/2 

s{J = <Tj4>1(z) 4>J(z) dz, (i= 1,2,6) 
-h/2 

j h/2 d4>1 
Q{ = <Ts-d dz, 

-h/2 z 

I jh/2 d4>1 
Q3 = <T~-d . dz, 

-h/2 z 

(7) 

Thee are 3N differential equations in 3N variables (Ur, Vr, Wr)• 

Numerical Resulta 

N umerical results are presented here to íllustrate the accuracy of the)ayerwi.se 
theory. The numerical results were obtained using a displacemeot fioite element 
model of the layerwise theory described above. The reader is referred to the 
report by Robbins and Reddy [30] for a description of the finite element model 
and additional oumerica.l resulta. 

Considera cross-ply lamina.te (0/90/0) subjected to sinusoidal tra.nsverse loa.d 
at the top surfa.ce of the pla.te. This problem ha.s the 3-D ela.sticity (see 
Paga.no [31]) solution. The plies are of equal thickness (h/3), and the material 
properties of ea.ch ply are: 

Et = 25 msi, E2 = 1 msi, E3 = E2, G12 = 0.5 msi , 

Gt3 = G23 = 0.2 msi, VJ.2 = VJ.3 = J/23 = 0.25 . (8) 

The inteosity of the sinusoida.lly distributed loa.d is denoted qo. Two different 
finite element meshes are used. The two meshes differ form each otber only 
in the mesh refinements through the thickness. A 2 by 2 mesh of eight-node 
qua.dra.tic elements is used in a quadrant of the laminate. The mesh used 
through the tbickness are as follows: 

M esh 1: Three qua.dratic elements through the lamina.te thickness ( 441 degrees 
of freedom). 
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Mesh 2: Six quadratic el~ments througbt tbe la.minate thickness (969 degrees 
of freedom). 

Figures 1-4 conta.in plots of nondimensionalstresses (u1, 0"3, 0"4, us) through the 
thickness of the square laminate ( b /h = 4). The stresses are nondimensionalized 
as follows: 

iT1 = UJ(ac,ac,z) h2/(b2qo), Ü3 = UJ(ac,ac,z)fqo, 

Ü4 = U4(ac,bc,z) hf(bqo), üs = <Ts(bc,ac,z) h/(bqo). (9) 

where ac = 0.105662(b/2), bc = 0.894338(b/2) are the (reduced order) gauss 
points closest to the points of ma.ximum stresses. The coordinate system is 
taken in the midplane of tbe laminate, with the origin of the coordinate system, 
being at the center of the laminate. ln Figures 1-4, the solid tine represents the 
exact 3-D elasticity solution of Pagano [31], the solid circles represent the finite 
element stresses a.t the gauss points for Mesh 1, the open circles represent the 
finite element solution at the gauss points for Mesh 2 (re.fined), and bronken 
lines correspond to the classica.l a.nd first-order theories. Excellent agreement is 
found between tbe 3-D elasticity resulta a.nd the finite element resulta based on 
the layerwise laminate theory. The deflection w(x,y) coincides with the exact 
3-D elasticity solution and is not shown here. 

All stresses in the layerwise theory were computed in the post-computation 
using the displacement field, linear strain-displacement relations, and linear 
constitutive relations. Tbe inplane normal stress (ui) in tbe classical (CLT) 
and the first-order (FSDT) theories were post-computed at the gauss points 
using the constitutive equations. The transverse shear stresses ( u 4, us) in tbe 
CLT was post-computed from tbe first two equilibrium equations of .t.he 3- D 
elasticity, whereas they are post-computed in the FSDT both from constitutive 
and 3-D elasticity equations. 

From the plot of the inpla.ne normal stress u1 , it is seen that botb CLT a.nd 
FSDT predíct wrong Sll,ll of the stress·at tbe layer interfaces. This is due to 
the fact that the stress is a.pproximated in the classical and first-order tbeories 
by a linear expansion. ln trying to best approximate tbe nonlinear stress 
distribution by a linear variation, both CLT a.nd FSDT yield wrong interface 
stress values. This can lead to inaccurate prediction of failure load and failure 
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Figure 1. Distribution of in-plane normal stress ( a1) through the thickness 
of a simply supported, square (0/90/0) laminate under sinusoidal transverse 
Ioadinp;, LI H = 4. 
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Figure 2. Distribution of transverse normal stress (õ-3) through the thidmess 
of a simply supported, square (0/90/0) laminate under sinusoidal transverse 
loading, L/ H = 4. 
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Figure 3. Distribution of transverse shear stress (i14 ) through the thickness 
of a simply supported, square (0/90/0) laminate under sinusoidal transverse 
loadin~t~ L/H= 4. 
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Figure 4. Distríbution of transverse sbear stress (i1s) through tbe thíckness 
of a simply supported 1 square (0/90/0) laminate under sinusoidal transverse 
loading, L/ H = 4. 
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mode. The equilibrium-based stresses (0'4,0's) from tbe single-la.yer theories 
are in considerable error compared to the 3- D elast.icity solutions; in fact, tbey 
predict maximum value of 0'5 in the middle layer wbile the 3- D elasticity gives 
in the outer layers. Note that the error introduced in tbe computation of the 
inplane stresses ( 0'1, <7'2 1 <is) through constitutive equations will influence tbe 
accuracy of the transverse stresses computed using the equilibrium equations. 
The transverse sbear stress computed in the FSDT by constitutive equa.tions 
is in qualitative agreement with the 3-D elasticity resulta. For ali stresses, the 
layerwise theory yields accurate resulta. 

Discussion 

The numerical resulta discussed for a simply-supported square laminate 
(0/90/0) under sinusoidally distributed transverse load indicate that the single­
layer theories do not yield accurate interlaminar stresses, while the Jayerwise 
t.heory of Reddy yields values that are in ex.cellent agreement whith the 3-
D elascticity solutions. The inaccuracy of the single-layer theories in t.he 

predictíon of interlaminar and free-edge (not discussed here but can be found in 
Robbins and Reddy (30,32)) stress dist.ributions will be amplified in laminates 
with hlgher degree of anisotropy and geometric and material discontinuities. 
A lthough different refined single-layer theories h ave been developed to improve 
stress distributions, it remains that none of tbe single-layer theories can give 
accurate interlaminar stresses because they are not based on 3-0 kinematics. 
The layerwise theory of Reddy is a 3-0 kinematic tbeory wit.h a 2- 0 type data 
structure that saves computational time compared to tbe 3-0 displacernent 
finit.e element model. 

While the finite element model based on tbe layerwise tbeory of Reddy allows 
an a.ccurate determination of 3- 0 stress fields, it is computationally expensíve 
compared to t.he síngle-layer tbeories. Therefore, the use of the layer-wise 
elements in the modeling of a practical laminated structure is precluded, even 
wítb tbe present day supercomput.ers. On the otber band, it is not necessary to 
model entire slructure witb sucb refined element.s. Use of the 3- 0 or layerwise 
elements can be rcstricted to local regions of a structure where 3-D stress 
fields exist, and the single-layer element.s can be used iu the remaining part of 
the structure. Such an approach is called a global/local approach (see Reddy 
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(18]). A hierarquical global/local computational procedure based on variable 
kinematic finite elements is discussed in the next section. 

VARIABLE KINEMATIC FINITE ELEMENTS 

The variable kinematic, finite element is developed by superimposing severa! 
types of assumed displacement fields within tbe finite element domain. ln 
general, tbe multiple assumed displacement field can be expressed as, 

where u1 and u2 are the local in-plane displacement components, and u3 

is the local transverse displacement component. The coordinates < and 1J 
represent the local curvilinear in-plane coordinates and ( is the local transverse 
coordinate . The underlying foundation of the displacement field is provided by 
ug5L(< .I'/.() which represent.s the assumed displacement field for any desired 
"equivalent single-layer" t.heory (e.g., the first order shear deformation theory). 
The second term u~w ({,TJ, () represents the assumed displacement field for any 
desired layerwise theory (e.g., the layerwise tbeory of Reddy) . The layerwi5e 
displacement field is included as an incremental enhancernent to the basic ESL 
displacement fi eld, so that the elemenl can have full 3- D modeling capability 
when needed. Depending on the desired levei of accuracy, the element can use 
ali, part, or none of the layerwise ficld to create a series of different elements 
having a wide range of kinematic complexity. For example, discrete layer 
t ransverse shear effects can be added to the element by including ufW ({, 17, () 
and ufW({,'],(), resulting in a type I layerwise element (or LWl element). 
Further, discrete layer transverse normal effect.s can be added to the element 
by also in c.luding ufW({,TJ,(}, resulting in a type II layerwise element (or LW2 
element). Finally, u~({. 1], () rep resents a simple displacement field that is 
piecewise constant with respect to the thickness coordinate and is used to model 
the kinematics of multiple delaminations (32,33]. Displacement c.ontinuity 
is maintained between these different types of elements by simply enforcing 
certain homogeneous essential boundary conditions, thus eliminating the need 
for multi-point constraints, penalty function methods, or special transition 
elements. Such variable kinematic plate elements have been developed by 
Robbins and Reddy (34.] and show much potential for a wide variety of 
global/local composite plate problems; however. the concept needs to be 
extended to general compooite shells. 
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To demoostrate tbe accuracy and efficiency of the variable kinematic finite 
clements, a global/local a.nalysis is performed to determine the nature of the 
free edge stress field of the free edge effect in a thlck, symmetric angle-ply 

larninate under imposed axial extension. Consider a thick, symmetric, angle­
ply laminate (45/- 45)$ subjected to axial displacements on Lhe ends. The 
laminate has a )engtb of 2L, widtb 2W, and thickness 4h, with L= 10 W and 
W = 8h (see Figures 5 and 6). Each of the four material layers is of equal 
thickness h, and is idealized as a homogencous, ortbotropic material with the 
following properties expressed in the material coordinate system: 

GLT = GLz = 0.85 X l06psi, PLT = J.I.LZ = J.I.TZ = 0.21 

where subscript L denotes thc directioo parallel to t.he fibers, subscript T 
d~>note.s the in-plane direction perpendicular to the fibers, and subscript z 
denott>.s the out-of-plane direction. The origin of thc global coordinate system 
coincides with the centeroid of tbe 3-D composite lamin ate. The x-coordinate 
is takeu along the length of the laminate; the y-coordinate is t aken along Lhe 

width of laminate; and the z-coordiante is t.aken through the thlckness of the 
laminate. Since the Jaminate is symmetric about the xy-plane, only Lhe upper 
half of tbe larninate is modcled. Thus the computational doma]n is defined 

by (-L ~ x $ L, -W $ y $ W, O $ z ~ 2h) . The displacement boundary 
r.onditions for t.his problem are: 

Ut (L' y' z) = tiO' ti.} (-L' y' z) = o , 

u2(- L,O,O) =O, u2(L ,O,O) =O, 

u3(x, y, O) =O 

The variable kinematic finite e lements are used in a global/local analysis to 
determine interlaminar frcc cdge stresses near the middle of one of tbe two free 
edges (see Figures 5 and 6). The global region is modeled using first ordcr shear 
deformable elements; tbe local region is rnodeled with L W2 elements in order 

to capture the 3- D stress state near the free edge. Five different finite element 
meshes are used. Tbe in-pla.ne discretization for aLI five mesht>.s is exa.ctly the 
sarne, consist.ing of a 5 x 11 mesh of eight.-node quadratic 2-D finite elements. 
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AI! elements have lhe same length (2L/5). However, the width of tl1e eJements 
decreases as thc free edge at (x, W,z) is approached. Tbc widths of the eleven 
rows of clements, as one moves awa.y from the refined free edge are: h/ 16, 
h/16 , h/8, h/4, h/2, 11, h, 2h. 3h, 3h, 5h, where h is the ply thickness. The five 

meshes differ only in the size of the local region that is discretized with LW2 
clements. The LW2 elements used in thc local region employ eight quadratic 
layers througb the larninate thick ness {four per material layer). The thickness 
of the numerical layers decrcascs as the ( +4'5/ - 45) interface is approached . 
From botlom to Lop , tbe layer thicknesses are 0.533h , 0.267h , 0.133h, 0.083h, 

0.08311, O.l33h, 0.267h, 0.533h (sce Figure 6). 

The 11ve mcsbes used in this problem are sumrnarized be low. 

M esh !: 3 x 4 local mesh of LW2 elements, centered about tbe point (0, W, 0). 
The LW2 elements extend a distance of h/2 away from tbe free edge (2354 
active global degrees of freedom). 

M esh e: 3 X 5 local mesh of LW2 element.s, c.entered about the point (0, W,O). 
Thc LW2 elements extend a distance of h away from the free edge (2740 active 

global degrees of freedom) . 

M esh 3: 3 x 6 local mesh of /, W2 elements, centered about the point (O, W , O). 
The LW2 elements extenda dista.nce of 2h a.way from the free edge (3226 active 

global degrees of freedom) . 

Mesh 4: 3 x 7 local mesh of LW2 elemenls. centered about the point (0, W, 0). 
The LW2 elements extend a distance of 3h away from tbe free edge (3512 active 

global degrees of freedom). 

Mesh S: 5 x 11 mesh of LW2 elements in the entire domain. This mesh is used 
a.ti a. control mesh for comparison. (9116 active global degrees of freedom). 

Figures 7 and 8 show the distribution of tbe interlaminar stress Uxz and Uzz , 

respectively, through the laminate thickness. Ali stresses are nondimension­
alized by multiplying them by the factor (20t:o/ EL, where to is the nominal 
applied axial strain of uof2L). The stresses are computed at the reduced 
Gauss poiuts nearest the middle of the refined free edge, i.e., along the line 

( -0.115L, 0.998W, z). ln Figure 7, a li four global/local mcshes compare very 
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Figure 5. ln-plane discretization of a (45/ -45), laminate under axial extenaion 
(LW2 = Layerwise elements; FSD = single-layer, first-order shear deformable 
elements). 
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Figure 7. Interlaminar shear stress distribution near the free edge of a 
( +45/- 45)., laminate under axial extension. 
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well with the control mesh . ln Figure 8, meshes 1 and 2 show some error; bow­
ever, the distributions are qualitatively similar to the control mesh. Meshes 3 
and 4 are practically indistinguishable from the control mesh. 

Figures 9 and 10 show the distribution of the interlaminar stresses Uz:z and 
Uzz, respectively, across the width of tbe laminate near tbe (+45/- 45) 
interface. The stresses are computed at tbe reduced Gauss points closest to 
the line (O,y,h), i.e. , along the tine (-0.115L,y,l.Ol4h). ln both Figures 
9 and 10, the interlaminar stresses computed with meshes 3 and 4 are very 
close to the stresses obtained with the control mesh. Once again, the stresses 
computed with mesbes 1 and 2 show a slight error; however, the distributJOns 
are qualitatively similar to the other meshes. 

CONCLUSIONS 

The results of the above example problem suggest that highly accurate free 
edge stress fields can be economically obtained using the variable kinematic 
elements. As long as the local region completely encompasses the boundary 
layer region where the interlaminar stresses are significant (i.e., meshes 3 and 4) , 
the global/local solution is indistinguishable from the control solution. Even 
if the region does not extend the entire width of the boundary layer region 
(i.e., meshes 1 and 2), the global/local solution was qualitatively similar to the 
control solution, aod the quantitative error was relatively small. 

White the use of variable kinematic elements allow regions with differeot 
transverse discret.izations to be joined together, they stiU require ~hat the in­
plane discretizations be ·compatible. Thus the Jocalized regions of layerwise 
elements require the two-dimensional global mesh t.o contain transitiQn zones 
to connect the coarse global mesh to the highly refined local mesh. Tbese 
t.ransition zones are troublesome for severa! reasons: 

1. The mesh of transition zones is more difficult to generat.e than the 
more regularly disck~iz~>O regions, thus complicating the mesh generation 
process. 

2. 'l'ransition zones often result ín highly distorted elements, possibly causing 
oumerical difficuJtíes. 
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3. Transition regions often result in excessive discretizatíon for noncrítical 

regions, thus wasting computa.tional resources. 

4. Transition regions greatly reduce the a.daptability of the model since the 

entire finite element mesh has to be reformed each time the localized region 
of interest is changed. 

To circumvent the difficulties a.ssociated with transition zones, the recently 
developed mesh superposition method (see [35]) wiU be used to a.llow two­

dimensional subregions with different in-plane discretizations to be joined 
together . This method allows an independent, refined local mesh to be 

superimposed on an existing global mesh .. The displacement field within the 
region of superposition is the sum of the displacement fields from both meshes. 

The displacements in the local mesh serve as incremental enhancements to 
the underlying global displacement field. ln recently reported applications 
of the mesb superposition method [36,37], both the global mesh and the 

superimposed local mesh use finite elements based on the sarne ma.thematical 

models. ln contrast, the present proposed application of the mesh superposition 
method involves overlaying a global mesh of ESL elements with a.n independent, 

local mesh of variable kinematic elements. The resulting finite element 
model would allow abrupt changes in mesh discretization and abrupt changes 

in mathematical model type. The local overla.y mesh can include ESL 
elements and/or layerwise elements . The transition regions are no longer 

necessary. Dísplacement continuíty between the global a.nd local regions is 
maintained by simply enforcing homogeneous essential boundary conditions on 

the globalflocal boundary. That is, the added incremental displacements are 
zeroed on the global/local boundary. This process can easily be automa.ted 

and removed from further concern. Thus the inconvenience of using multi­
point constraints, penalty function methods, or specíal transition elements is 
circumvented. 

One of the primary adva.ntages of the mesh superposition method is that local 
meshes ca.n easily be created and superimposed a.nywhere within the original 
global mesh. Thus, severa) different potential "hot spots" ca.n be investiga.ted 

(simultaneously or sequentialJy) without having to reformula.te the global mesh. 
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Within the context of the proposed computa.tional procedure, severa) topics 
requiie special investigation (see [34,38]): 

1. lnvestigate the effect of maintaining transverse displacement continuity 
across boundaries separatíng regions that explicitly model transverse 
normal strain and other regions tbat implicity model transverse normal 
strain. 

2. lnvestigate the size and mesh density of layerwise mesh overlays necessary 

for accurate local stress field determination. 

3. lnvestigate efficient solution techniques that capitalize on the hierarchical 
nature of the model, e.g., an índependent global solution migbt serve 
as a starting vector for an iterative solution technique. This would be 

particularly advantageous for geometrically nonlinear problema in which 
local refinement is unlikely to drastically change the global behavior. 

4. Develop enor estimators to determine when local stresses can be extracted 
using post-processing instead of íncorporatíng additional degrees of free­

dom in the structural model. 

5. Develop strategies for modelíng mechanisms of progressive failure. 

6. Develop appropiate preconditioners to assure good convergence of iterative 

solvers, particularly for bighly nonlinear problems. 
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RESUMO 
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INTRODUCTION 

Within tbe field of thin shell theory hundreds of specialized ve.rsions of shell 
equations were proposed in the literature, eacb of t.hem having a limited 
range of applications. The specialized versions are usually derived assuming 
dlfferent constraints on deformation or stress stat.e in the shell space, restricting 
the magnitudes of strains, displacements or rotations, discussing only special 
material bebaviour, shell geometry or externa! loads, using particular sets 
of independent field variables in the resulting boundary value problem etc., 
[14-:-16]. 

The rapid development of computer hardware a.nd software based on the 
finite element method makes it possible to solve more and more complex shell 
problema with suffi.cient accuracy. Bowever, the shell finite elements available 
in the literature are usually based on some particular simplified versions of shell 
theory, and their applicability is restricted to the limited range of applicability 
of the shell theory itself. Any cbange in underlying version of shell theory 
results in the need of developing a new shell finite element, what makes the 
shell analysis so complex and time consuming. 

The aim of this paper is to present a unified formulation of a wide class 
of non-linear theories of thin shells. ln our development we apply only one 
apparent assumption: the deformation of the shell as a three-dlmensional body 
is determined entirely by deformation of its reference surface. No restrictions 
are imposed here on magnitudes of the displacements, rotations, strains and/or 
changes of curvature of the reference surface. For dift'erent material behavi<.-ilr 
the reduction from three-dimensional solid mechanics to the two-dimensional 
shell theory may have different analytic representa.tion, which is trea.ted here 
as pa.rt of constitutive relations of the shell. 

Let us note that members of that class of shell theories are various versions of 
the classical linear and geometrically non-linear theory of thin isotropic elastic 
shells based on the Kirchhoff-Love type constraints [16) . Another example 
of member of that class is the bending theory of rubber-like sbells developed 
in [22], where the three-dimensional shell deforma.tion was expressed through 
deformation ofits reference surface applying a relaxed norma.lity hypothesis and 
incompressibility condition. Still a.nother members of tha.t class are some sírnple 
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verl>ious of inclastic shell theory expressed entirely in terms of the reference 
surface deformation as well, as discussed in [20), for example . 

A common feature of that class of shell thcories is that their equilibrium condi­
tions have th e sarne form following from the principie of virtual displa.cements 
wrillen for the reference surface . The geomel ry of undeformed rcference surface 
is usually the only one which is known in advance, and an arbitrary deforrna­
tion of the surface can always be described by components of the displacement 
vector u relative to tbe undeformcd surface geornetry. Therefore, the resulting 
boundary value problern of the shell can always be expressed in the Lagrangian 
description in terms of displacenwnl.s as the only independent field variables. 

The unified fortuulation of Lagrangian non-linear shell equations presenled here 
is based on generalization of ou r r~s ult.!:! given in (19,15) for Lhe geometrically 
noo-linear theory of P.lastic shells, whi ch were extended in [22] into the large­
strain bending theory of rubber-like shells. Ou r Lagrangian shell equations (8), 
(9) are two-dimensioually exact for the shell refcrence surface. They are valid 
for arbitrary configuration-dependent externa! surfa<:e and boundary forces and 
moments, as well as for arhitr11ry work-conjugate set of static and geometric 
boundary conditions. ln order to allow correct numerical implementatíon, 
lhe Lagrangian shell equatious 11re presented in Section 4 in the consistent 
in<"rernenlal form applying tht' general 1\ewton-Kantorovich rnethod [6) to the 
funct ion<~l (6) of principie of virtual displacements. ln particular , we takc 
into account that. in general, tht> successi \'e approximations to the unknown 
equilibrium state may not belong to the equ ilibrium palh. This resulls in sorne 
unballanced forces ( 14) appearing explicitly at each iteration step. Wc managed 
to calculate explicit.ly Galeaux deri\'aLÍ\'es of ali corresponding fields, and lo 
derive lhe ex plicit forrn of the general Lagrangian incremental :;hell equations 
(24)-:-(27) . As a particular case of the incremental shell equalions follows the 
expli c.i t form of the most general buckling equations (28) for thin shells. 

GEOMETRIC RELATIONS 

ln this report we apply tbe syste111 of notation used by Pietraszkirwicz (14-:-16]. 

Let t he re ferenc•~ smface ,\1 of undeformcd shell be defined by the position 
vector r{8° ), where 801

, a = I. '2 , are su rface curvi linear coordinates. On Af we 
have the natural base vectors a 0 = 8r/ô8" = r ,a-, the (covariant components 
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of the surface) metric tensor a 01fJ = ao · a13 with determinant a = laafJI, the 
unit normal vector n = a-1/ 2a1 X a2, the curvature tensor b0113 = -a01 ·D,fJ and 
the permutation tensor t 0113 =(ao x a13) ·n. The contravariant base vectors a01 

are defined through aa · &fJ = 63, and a01f3 = af3 · a11 are used to raise indices 
on M . 

The boundary contour C of M consists of the finite set of piecewise smooth 
curves r(s) = r [OO(s)L where s is the are length along C. With each regular 
point ME C we associate tbe unit tangent vector t = drjds =r'= t 01a 01 and 
the outward unit normal vector v = r,11 = t x n = vaaa, va = c"'PtfJ, where 
( ),11 denotes the outward normal deriva.tive a.t C. 

Let M and C be deformed configurations of M a.nd C defined by the position 
vectors r(Oa) = r (Oa) + u(Oa) and r(O(s)] = r(s) + u(s), respectively, where 
u = uaa01 + wn is the displacement vector wbile oa a.nd s are convected 
coordinates. Witb M an<i (; we can associa.te a.nalogously defined quantities, 
orlly now marked by an overbar: ãa, ã 01p , ã, ii, b01p, l 01p, ã{J, ã011J, t, ii etc. 
All the quantities can be expressed througb tbe geometry of M or C and 
the displacement field u by relations presented in more detail in (15,16]. ln 
particular, on M we h ave 

ã 0 = i .a= &a + u ,01 , 

(1) 

where 'Ya{J and K.01p are the Lagrangian symmetric surface strain measures. 

Along tbe deformed shefl boundary conl.our (; we bave (16,8) 

~ t I - -t - ·-1- -1 r = + u = ac , n = 1 r 111 xr 

r,11 =li+ U 1v = ã;-1(j ii+ 2-yvet) , 
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ât = lf'l , 2(vt = f,v ·r' , (2) 

i 2 = ~ = lr.v l2 1í"l2 - (f.v ·r')2 
, 

a 

ã''3 = r 1(âtii(J- 2'Yvtãj1 t,a)v + ãj 1t.at . 

Ali the vectors in (!) a.nd (2) are understood to be expressed lhrough 
components wíth respect to the known bases a 00 , n or 11 , t , n of lvf or C, 
respectívcly. 

DISPLACEMENT SHELL EQUATIONS 

Within the class of non-linear theoríes of thin shells discussed here lhe 
deformation of the shell as a llm:'e-dimensional body is a.ssumed lo be 
delermined entírcly by deformation of its reference surface. Therefore, lhe 
equilíbrium condítions of tbe shell should follow from lhe Lagrangian principie 
of virtual displacemeots for t.he reference surface [15,8,17] 

G[u; bu] = f j(Nrxf36~ro;J + M 0 gb".-. J )d.4- •.. J:,, 
-;, ;(p · 6u +h · h1)d..l- { (T · bu + H · 6ii.)ds =O , (3) 

~~ lc, 
which is valid for ali kinematically admissible virt.ual displacements 6u. ln 
(3) .V0

h
1 and ,\1"'3 are the int c:>rn<'~ l 2nd Piola-.Kirchhoff lype stress and couple 

t·esu llants. p( u ) and h( u } are the externa! surface force and moment vectors , 
per unit area of M. T(u) and H(u) are the externa! boundary force and moment 
vectors. per unit length of C . while 5 is the symbol of variation. 

\Vithin M variations of la/3• Kr.r;3 and ú Me expressed through u and óu by 

1 
Ó";a.J = 2(c5u.o- ·ã,a + ãc> · ÓU.J ) , 

1 
61i 0 ;3 = 2(il,a ·bU.f3 +ü.J ·bu,0 +â() · bii.a +ã;3 · óii,a) , (4) 

5ii = -ã:3(n · tu.g ) . 

At the boundary contour ê tbe vector n = ú( s) should satisfy the constraints 

r' · ü = O and ii · ii = 1. Therefore, õ on C should be expressible 
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througb the geometry of C, three translations u(s) and one scalar function 
rp(s) = rp[u,11 (s), u'(s)) describing the rotat'ional deformation of the shell 
lateral boundary surface. 

The generalstructure of the function rp, and corresponding four work-conjugate 
static and geometric boundary conditions compatible with the principie of 
virtual displa.cement (3), were discussed by Makowski and Pietraszkiewicz [8) . 
ln particular, three physically reasonable spedal cases of rp were noted in [8): 1) 
n 11 = ii·JI = ;-1 (u1 xv-n) ·U,v introduced in [19). 2) v11 = ã;-2 (ii-n) ·(r' x ii) 
introduced in [13), and 3) Wt , the angle of total rotation of the boundary, defined 
in [14] tbrough displacements by 2coswt =ii·ll+t·t+ií·n-1. ln what follows ali 
transformations leading to displacement shell equations are performed applying 
nv as the fourth parameter of boundary deformation . Corresponding results 
for 1111 and Wt Laken as the fourth para.meters of boundary deformation are given 
in [8,18], respectively. 

Thus, in terms of u and n 11 the variation of ii of C takes the form [15) 

6õ = a~1 [~ x õ)ii · éu' +(r' x ií)6n11) , av = (r' x ii) ·JI 1 (5) 

wbere énv = 6nv[u.v 1 u'; éu,v 1 6u1 is non-linear in u,v . u' but is linear in 
6u,", éu'. 

lntroducing ( 4) and (5) into (3), applying the Stokes' theorem to the surface 
integrais, then applying integration by parts to the line integrais we can 
transform (3) into [15] 

G[u;6u] =- JM j {TtJip + p +[(h · ãtJ)ií]lp} · 6udA+ 

where 

+ 1 {[T.Ovp + P'- T- F•' +(h · ã.Ovp)ü] · 6u + (M- M•)6nv}ds+ 
c, 

+ L)F n - F~) · 6un = O , (6) 
n 

T .O = N°.0âo + M 0 .0ii,() +{[M"Pã")IP · ã.B} ii , 

F = -a~ 1 [(ü x ãa) ·vjM"Pvpn -. F• = -a~ 1 [(ii x H) ·ll}ii, (i) 

M = a~ 1 (ii x ãQ) ·r' M0 {3vp 1 M• = a~1 (ii x H) · r' , 
Fn=F(sn+O)-F(sn-0) , Un=u(sn)· 
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Since (6) should be satisfied identically for ali kinematically admissible 6u, 
from (6) foUow the Lagrangian equilibrium equations and static boundary and 
corner conditions 

T 0 lp + p +((h· ãP)ii]lp = O in M , 

T Pvp + F' = T + F*'- (h· a.Pvp)õ., M = M* on CJ 1 (8) 

at each corner M E c, . 
Corresponding work-conjugate geometric boundary conditions are 

nv(s) = n;(s) on Cu. (9) 

AU tbe vectors appearing in (8), (9) are understood to be expressed through 
components with respect to known bases a 0 , n orV1 t, n of undeformed M or 
C 1 respectively. 

ln the case of an elastic material the constitutive equations for N°P, M 0 P 
compatible with (3) are 

(10) 

where E = E('YaP• ICatJ) is a two-dimensional strain energy function defined 
over M. ln tbe particular case of i.sotropic elastic material undergoing 
small strains (but unrestricted rotations) tbe strain energy E is, to the first 
a.pproxima.tion, a. quadratic function of the surface strain measures, (5 114116]. 
ln the particular case of large-strain bending theory of shells made of isotropic 
elastic incompressible rubber-like materiais the structure of E, to the fust 
approxi.mation, is given in (22]. Therefore, for each particular elastic material 
the constitutive equations can explicitly be expressed in the form Na/3 = 
N°P['Yap(u) , Ka,a(u)J, Maf3 = Maf3['Ya{3(u),~e0p(u)] for any u. As a result1 
tbe boundary value problem (8), (9) of the Lagrangian non-linear theory of 
thin elastic shells is expressed entirely in terms of displacements u as the only 
independent field variables. 

It should be pointed out that the underlying principie of virtual dlsplacements 
(3) is a.n incremental principie, which itself does not reguire No./3 a.nd Ma.a 
to be derivable from the stra.in energy function. Therefore, our resulting 
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shell relations (8), (9) are valid a.lso for i.nelastic shells. However, in the 
case of inelastic material behaviour No:{) and Mo/3 at successive equilibrium 

configurations u should be calculated in an incremental-iterative way applying 
appropriat.e two-d imensional incremental form of constitutive equations for 
l.,ro:/3 and M 0 {3 . 

INCREMENTAL SHELL EQUATIONS 

The highly non-linear boundary value problem (8), {9) can effectively be solved 
only by incremental-iterative procedures applying computerized numerical 

methods, for which the sbell equations (8), (9) should be presented in a 

consist.ent incremental form . 

In general, the externa! loads p , h , T and H may be specified arbitrarily, or 

through severa! iudependent dimensionle.ss parameters (Àt. À2 , . .. , Àp) E A C 
RP . ln thc latLer case any information concerning the principal features of the 
solution manifold can be obtained analysing the set of solut.ion submanifolds 

corresponding to a smootbly varying single para meter. Therefore, in the 
following considerations we restrict ourselves to the case when the externa] 

loads are specified by a single parameter À E A C R. 

For smoothly varying À the regular solutions of (8), (9) form an equilibrium 

path u (À) for which G(u (À) ; 6u] = O for ali kinematically admissible virtual 
displacements 6u . For tracing u(À) it is convenient to apply the Newton­

Kantorovich method [6) . 

Let u m = u(>. m) be an equilibrium state associated with some À= Àm, and let 

u~) be a known i-th approximation to Um, which in general may not belong to 

the equilibrium path u (>.). ln order to calculate Lhe correction ~u~+ l) such 

that u!~+l) = u~,l + ~u~+l) is the next approximation to Um we linearize 

G[u; éu] at u~) in the direction ~u~+l), what leads to the funct.ional equation 

(6] 
( 11) 

where ~G is the Gatf.'aux derivative of (3) t&ken at u~) in the kinematically 

admissible direction ~u~+l ). Wheu u~) does not belong to the equilibrium 

path the first term of ( 11) allows to calcu late tbe unballanced force vector . The 
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second terrn of (11) is linear in tbe unknown .L\u~+I) and allows to calculate 

the tangent stiffness matrix at u~ of the problem. 

ln order to simplify notation, in the following part of this Section we set 

u~ :: u~), ~u~+t) :: ~u, while the values at u of corresponding extemal 
Joadings we denote shortly by p , h, T and H. 

Let us consider a curve u( 7]) through the i-th approximation u to Um, which 
in the neighbourhood of u takes the forro u(7J) = u + 7]~U. The directional 
Gateaux derivative of the functional G, taken at the í-th approximation u to 
Um in the direction ~u. is given by 

d 
~G[u; óu, .L\u) = -d G[u( 7J)i 6u)h-O , 

7] -
(12) 

where G[u(7J)i óu) is defined analogously as the functionai G[u; 6u), only now 
u(7J) appears in place of u. 

Along the curve u(7J) the externa! loads are denoted by p(f7), h(17), T(7J) and 
H(7J), while the internal stress and couple resultants by N°{J(17) and M 0 fJ(1J), 
respectively. The corresponding Gateaux derivatives of those fields are defined 
according to 

(13) 

N a{J - d No{J( ) t - -d '1 11'1-o ' e c. 'I] -

Let us apply the linearization (11) to the already transformed functional (6). 

Since our u :: ~) may not belong to tbe equilibrium path, let us introduce 
the unballanced residual sútiace and boundary forces and couples 

PR= T{JitJ + P +[(h· ã/J)n)lp , 

PR= T{JvfJ + F'- T- F•' +(h· ã/JvfJ)fi , 

MR = M- M•, F nR = F n- F~ . 

(14) 
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The quantities ( 14) allow to evaluate the first. term in ( 11) in the form 

ln order to calculate the second Lerm of( 11 ), let us remind that along the curve 
u(17) the shell geometry is defined by ã~(7J), ã0(7J) and n(ry). Therefore, taking 
Gateaux derivatives of the identities ãB(IJ) · ãa(fJ) = óz, ãa(1J) · ü(17) =O we 
have in M 

(16) 

.ó.( ón) = a .a · óu,,a , 

(17) 

a.a = ((ã.a . .ó.u,,.) ã"- ã.a"(ii . .ó.u,,. )ii] e ii+ (ii . .ó.u,,.) ã.a e ã" . 

Similarly, let us introduce ii(fJ) and óii(fJ) on ê, defined by respective formulae 
(2)t and (5), where now u('J) stands for u. This allows to calculate Gateaux 
derivatives of n and 6n on (; Íh the form 

(18) 

.ó.( 6ii) = A · 6u 1 + B 6nv +a~ 1 (r' x n) .ó.( Ónv) , 

A= -a;; 2 [v · (.ó.u' X Íl +r' X .ó.n)j~ X n) ® Íl + a~l [v X (.ó.ft ® Íl + Íl 0 .ó.ii] , 

(19) 

8 = -a;2[v · (.ó.u 1 
X ft + r1 

X .ó.ii)J(f' X ft) + a;1 (r' X .Ó.ft + .Ó.U1 
X n ) . 
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With the help of (16)-:-(19) 1 (12), (13) 1 (6) 1 (7) and some tra.nsformations, the 
second term of (11) can be presented in the form 

~G[u; éu, ó.u] =- JM J {((ó.T.B + s.B)1p + Áp + ((ó.h · ã.B) ii-

-h· B.B]jp} · 6udA+ (20) 

+ r ( { (ó.T.B + s.B) Vp + (ó.F +C)'- ÁT- (ÁF* +C*)'+ [(ó.h. ã.B) ii­
lc, 

-h· B.B]vp } · 6u + (ÁM + K- ÁM*- K*) énv + MRÁ(énv) )ds+ 

+ Í:)ó.Fn + Cn- ÁF~- C~)· 6un, 
n 

wbere 

{21) 

s.B = N°.B ÁU,a +M"'.B Áiila +[(MKP ÁU,;; )jp . ã.BJ ii- (MKPãK)jp. B.B I 

ÁF = -a;7 1[(ii X ãcr) ·JI]ÁMa.Bvpii, 

C= -a;7 1 [~ x ii)· ÁU1a ]M"'.Bvpii- Ma.Bãav{J ·A , 

(22) 

ó.M = a;71(n x ãa) ·t1ÁM0 .Bvp , 

K = a;7 1[(t' X ü) · Áu,0 ] M"'.Bvp + M 0 .Bãaii{J · B, 

ÁF* = -a; 1 [(ii X ó.H) ·ll]ii 1 C*=-H·A, 

(23) 

I<*=H·B, 
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The fields .:l TfJ , ~F , ~M 1 ~F n are linear in ~u and represent the material 
part of changes of U 1 while the fields sP, C, K1 Cn are also linear in ~u but 
represent the geometric part of changes of u at the incremental step. 

Since ( 11) with ( 15) and {20) should vanish for any kinematically admissi ble 
cSu, from {11) we obtain the following incremental equilibrium equations as well 
as the incremental static boundary and corner conditions for the Lagrangian 
non-linear theory of thin sbells 

(~TfJ + sfJ)IfJ + ~p +((~h· ãfJ)ii- h· BfJ]IfJ + PR= O in M , (24) 

{~T.O + s.O) 11,0 + (~F +C)'= ~T + (~F* +C*)'-

- [{~h· ã.O) ii - h · B.0]11,0- PR } on C! I (25) 

~M + K = ~M· + K* I MR =o 
~F n + Cn = ~F~ + C~ - F nR at each corner M.,. E CJ . 

Tbe corresponding work-conjugate geometric boundary conditions to be sa.tis­
fied at eacb incremental step are 

~u=O, ~nv =O on Cu (26) 

AU the vectors in (24)7(26) are given through components in the respective 
undeformed bases a 0 , n , andv, t , n . 

Tbe incremental shell equations (24)7(26) constitute tbe linearized boundary 

value problem for the increment ~u = ~u(i+l) wh.ich allows from known u~) 
to calculate tbe next approximation u~+l) to the equilibrium state u m. 

ln the case of an elastic material ~No{J and ~MofJ follow directly from the 
constitutive equations (10) 

ANO{J roCtfJ),jJ. A co{j),~ A 
U. = VJ U."f),p + 2 U.lt),jJ. I 

(27) 
AMO{J roCt{J>.,. Ar + co{J).p A"" 

L.). = (...,3 L.). ).jJ. 4 U.n.).jJ. I 

where C~{3>.,.., k = 1, ... ,4 are the tangent elasticities at u, defined as second 
pa.rtial derivatives of E with respect to 'Yo:fJ• "ofJ (see (85) of (22]) 1 wbile 
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ll;0 p, ilK0 [J are Gateaux derivatives at u of the surface strain rneasures (see 
(82) of [22]). Therefore, for each particular form of E, [5,16,22), the tangent 
elasticities can be explicitly calculated as known functíons of u. ln the case 
of inelastic material behaviour the ta.ngent elasticities at each u should be 
calculated by some independent incremental-iterative procedure. 

The set of incremental shell equations (24)-;...(27) with (14), (16), (17), {19) 
and (21)-;...(23) derived here generalizes considerably the previous incremental 
formulat.ions [7,15,1] which were valid for small strains, linear elastic behaviour 
and restricted class of externalloads or boundary conditions. 

LAGRANGIAN BUCKLING SHELL EQUATIONS 

Buckling shell equations are usually derivcd through linearization of the 
boundary value problem about an equilibrium sta.te of the shell (23]. 

Lct u be an equilibrium stat.e whose stability properties are anaJysed. Since 
at u we have G(u; Su] = O, according to (3), linearization of G at u in a 
kinematically admissible direction 1lu (note that now !lu has different meaning 

from !lu = Clu~+l) used in the previous Section) leads according to (11) 
to tbe functional equation ClG[u; 6u, 1lu] = O. Here 1lG can be explicitly 
calculated from (6). and the calculation procedure is exactly the sarne as tbe 
one performed in the previous Section, where tlG has been calculated at an 

approxirna.tion u!~) to an equilibrium um in a kinematically admissible direction 

!lu~+ 1). Therefore, it is apparent that now ÃG at u in the direction !lu takes 
formally exactly the form (20) with M R = O. Ftom vanishing of 1lG for any 
6u we immediately arrive at the following explicii forro of Lagrangian buckling 
equations for thin shells 

in M, (llTtJ + sP)ItJ + Clp + ((Clh · ã/3)n- h · BIJ]j,~ =O 

(tl Ta+ s /3) v a+ (6.F + c)'= tl T + (6.F* +c*)'-

- [(Ãh · ãi:J) õ- h· Bi3]vp } on Cj , (28) 

ó.M + K = ó.M* + [{. 

at each corner M,.. E CJ, 

Âll = o ' llnv =O on Cu, 
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wbere all the quantities are defined through u and óu by exactly the sarne 
formulae as analogously denoted respective quantities of the previous Section 

have been defined tbrongh u~ :: u and D.u~+l) :: Dou. Ali tbe vectors in 
(28) are understood again to be expressed through components with respect to 
known bases ao . n andv, t , n of M and C , respectively. 

The explicit Lagrangian buckling shell equations (28) extend to the large-strain 
range of deformation and arbitra.ry loading tbe stability equations derived 
within small-strain theory of elastic sbells by Stumpf [23] in operator form 
and by Noite [9] in explicit form. 

REMARKS ON COMPUTER IMPLEMENTATION 

Tbe unified formulation of the non-linea.r displacement 3-field theory of sbells 
presented tiere is necessarily quite complex because of its generaJity and 
versatility. Note tbat K.a!J appearing in the underlying principie of virtual 
displacement.s (3) is expressible according to (1)3 in terms of u ,0 and U 1a/J· 
As a result, in any con.sistent finite element approximation of the resulting 
displacement boundary value problem C1 interelement continuity is required. 
Additionally, in order to a.llow numericaJ analysis for various material laws, tbe 
element geometry and kinematics should be decoupled from the constitutive 
equations. 

These requirement.s were fulfilled by Barte [4] in the case of thin sbells made of 
linearly-elastic material undergoing small strains and moderate rotations and 
extended by Schieck (21] to the case of shells ma.de of rubber-like incompressible 
elastic material undergoing large strains and unrestricted rotations. ln those 
papers a triangular high-precision doubly-curved shell finite element with 54 
degrees offreedom proposed alrea.dy by Cowper (3] is selected. ln the element 
of [21] biquintic polynomials are applied as sbape functions for ali three 
displacement components. As 18 degrees of freedom at eacb node the quantities 
u 0 , w; ua,/J • w,13 ; Uc.,/J-r• w•/J-r are used, and the Gauss integration is performed 
in 21 point.s. The geometry of the element is calculated ex:adly from the given 
shell geometry. Tbe shape functions are then condensed in such a way tbat C1 

interelement continuity of ali displacement compo~ents is assured. The element 
is capable to represent only appraximately the constant strain modes and the 
strain-free rigid-body modes. Test sbow, however, tbat the approx:imation error 
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quickly approaches zero with tbe mesh refinement. The strain-displacement 
relations and materiallaws are disconnected from the finite element kinematics. 

Tberefore, they can easily be changed, if necessary. 

The C1 shell element described above was used with the MESY 3 compu ter code 
of structural analysis, and severa! test examples were run on CDC Cyber 205 
vector computer applying special a.lgorithms and programming techniques. ln 

particular, the number of DO F of the element was combined with the number of 
integra.tion points, wbat led to the vector length 54 x 21 = 1134 and allowed to 
increa.se the computation speed by the factor 23 over non-vectorized algorithms. 
The concise description of lhe vectorized algorithms developed is given by Noite 
and Schieck [10,11] while the modified vectorized subroutine for calculation of 
the element tangeot stiffness matrix and the residual force vector is described 
in Sclüeck (21]. 

With the help of the C1 triangular shell finíte element described above, severa) 
numerical results for highly non-linear one- and two-dimensional problema of 
elastic sbells were presented in (21,22]. The application of the element to 
problems of elasto-plastic shells undergoing large strains is under development. 
The use of other materiallaws, and application of other C1 shell finite elements, 
within the proposed unified displacement formulation of the non-linear theory 
of thin shells will hopefully be the subject of research in the future. 

The C 1 continuíty rcquircment, and associated complexity of the finite 
elements, is considered to be a disadvantage of the displacement formulation 
of thin shell theory as compared with a more complex 6-field theory of shear­
deformable shells (14]. ln the latter one both displacements and rotations are 
t.he independent field variables, and the finite element approximation expressed 
in terms of those variables requires only C0 ínterelement continuity (2]. 
However, while the 3-field shell theory h as been presented here in supposedly 
ultimate formulalion, the 6-field shell theory is still under development and 
several imporlant. questions of the theory itself and its FE approximation are 
slill under discussion. C0 shell finite elements bring themselves some problema 
( locking effects, spurious zero-energy modes etc.) which are still waiting for 
commonly accepted satisfactory solutions. The complexity of 3-field C1 finite 
elements may become less important already in the near future when powerful 
parallel processors of the next generatíon are installed into computers of PC 
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class, and then much better approximation quality of C1 finite elements may 
become a decicive advantage. One can also expect that 6-field shell modcls will 
be absorbed in the future by unified compu ter codes of 3D analysis of structures, 
while the special structure of boundary conditions required by the 3-neld shell 
theory does not allow it to be degenerated from the structure of 3D theory. 
Therefore, one might anticipate that this theory would remain as the only 
"shell" theory also in the future structural analysis. These are some argumenls 

why the derivation of 2D constitutive laws for various material behaviour, and 
deve\opment of computer codes based on C1 shell finite elements, seems to be 
of some importance also for future analysis of shell structures. 

CONCLUSIONS 

ln this reporta unified formulation of a wide class of non-linear tbeories of thin 
shells has been presented. The analysis has been based on only one assumption: 
the deformation of the shell as a three-dimensional body is determined entirely 
by deformation of its reference surface. Basic shell equations, in the global (8), 
(9) and consistent incremental (24)+(26) forms , have been explicitly derived in 
the Lagrangian description Ln terms of displacements of the reference surface 
as the only independent field variables. The most general explicit form of 
Lagrangian buckling shell equations (28) have also been derived. Particular 
attention has been paid to consistency of work-conjugate boundary conditions, 
and to precise evaluation of unballanced forces when successive approximations 
to an equilibrium state do not foUow thc equilibrium path. 

Our formulation of shell equations is valid for a.n arbitrary geometry of the 
.... ah.eU-·reference surface, for unrestricted dl5placemeots, rotations, strains and/or 

changes of curvatures of the reference surface, for arbitrary configuration­
dependent externa} surface and boundary loadings, and for arbitrar)' set of 
four work-conjugate static and geometric boundary conditions. Therefore, ou r 
formulation contains many specialized versions of non-linear shell equations 

available in the literature. 

We have explicitly applied iu!:-e ti)e wnstitutive equations of elast ic shells ( 10), 
(27), since for such material bahaviour effective computer FEM programs were 

developed, and severa! one- and two-dimensional non-linear problems of shells 
within small-strain [4,9,12) and large-strain [21 ,22) range of deformation were 
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analysed. However, our formulation of the non-linear shell theory is applica.ble 
to some problems of inelastic shells as well, provided corresponding incremental 

constitutive equations for tbe surface stress measures are available. 
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ABSTRACT 

Thi1 poper p re1ent6 o 1urvey of the orbitrory Logrongion-Euluion (ALE) Finite 
Element Formulation with variou1 me1h updoting techmque1. Moreover, an effic ient 
elem ent for 1olving problem1 involving shell1 Íl olso mentioncd. Some opplication1 
of the ALE formulation ond thc shell element ore given wítla o final ernphosis on the 
/Jhe/1-fluid interoction . 

K eyword.e : Finite Element • Arbitrary Lagra.ngian-Eulerian Formulations • Mesh 
Updaüng • Shell-Fiuid lnteraction 

RESUMO 

E1te artigo apresento um levantamento dos For-mulações de Elementos Finitos 
Lagrongiana1 - Eulen ancu Arbitráriaa, com vária., técnicas de atuolazaçõo de malha. 
Adicionalmente, um elernenlo eficaenle na r·esoluçõo de problemas de cascai é também 
m encionado. Algumas aplícoçõcs da fo r·mulação Lagrangic~r~a-Euleriana Arbitrária e 
do elemento de casca são apresentados com uma ênja~e final na interaçõo /luido-craro. 

Palavras-chave: Elementos Finitos • Formulações Lagrangia.nas-Eulerianas Ar­
bitrárias a Atualização de M a.lhas • lntcraçà.o Fluido-Casca 

lnvited Lecture Presented aL 7th SIBRAT. Plorianópolis, Brazil 
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INTRODUCTION 

Athough the finite element method (FEM) is one of the moet powerl'ul and 
sophisticated numerical techniques ava.ilable, most of its early developments 
were applied to structural analysis and it was not until the late 1960's that 
finite element techniques were applied to potential fl.ow problems. Recently, 
considerable finite element researcb is being devoted to viscous ftows, transport 
processes, ftuid-structure interaction, compressible inviscid fl.ows, and free 
surface ftows, a.mong otbers. Tbis paper is devoted to the development of 
arbirary Lagrangian-Eulerian (ALE) techniques for viscous ftows with free 
surface. 

The kinematic description (i.e. the relationship between tbe moving ftuid 
and the finite element grid) is extremely important in multidimensional 
fluid dynamics problems. Two classical descriptions are used in continuum 
mechanics. The fust is Lagrangian, in which the mesh point.s coincide with the 
material particles. ln this description, no convective effects appear and this 
simplifies considerably the numerical calculations; moreover, a precise definition 
of moving boundaries and interfaces is obtained. However, the Lagrangian 
description does not handle sa.tisfactorily tbe material distortions tbat lead to 
element entanglement. 

On the other band, the second description is the Eulerian viewpoint, which 
allows strong distortions without problems because the mesh is fixed with 
respect to the laboratory fráme and tbe fluid moves through it. However, this 
latter approach presenta two important drawbacks: (i) convective effects, which 
introduce numerical difliculties, arise due to the relative movement between the 
grid and tbe particles; and (ü) sophisticated matbematical mappings between 
the stationary and moving boundaries are required. 

Because of the shortcomings of purely Lagrangian and Eulerian descriptions, 
arbitrary Lagrangian-Eulerian (ALE) techniques were developed, first in finite 
ditrerences by Nob [19] 'and -H~ et ~(6], among others, and tben in finite 
elements by Donea et al.[5), l:Jelytschk<H:lt aJ.[l), Hughes et al.[IO), and Donea 
[3). Tbis new approach is based on the arbitrary movement o{ the reference 
frame, whicb is continuously rezoned in order to allow a precise description of 
the moving interfaces and to maintain tbe element shape. Convective terms 
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are still present in the ALE equations, but the ability to prescribe the mesch 
movement may allow them to be reduced. 

The organization of this paper is as follows: The fundamentais of the 

arbitrary Lagrangin-Eulerian (ALE) formulation are presented, mesh updating 
techniques are indicated and tbe Finite Element Method in ALE is intro~uced 
[7]. Two applications of ALE on large-amplitude sloshing are presented from 
[7 ,8). An efficient and reliable shell element 'formulation is adopted from Ref[13]. 
An example problem studied in [14) is restated to show the effectiveness of this 

element in shell buckling analysis. Following the study of the influence of the 
tank wall flexibility by Ma et al.[l7], conclusions are stated. 

KINEMATICS lN THE ALE DESCRIPTION 

Review of the ALE Description 

Two classic viewpoints are considered to describe the motion of a continuous 
medium. Tbe fust is Langrangían, in which the material regíon and the 
coordiantes of any point are denoted by ~ and X, respectively. ln the 
second, known as Eulerian, the spatial region is symholized by ~. and tbe 
spatial coordinates by x. ln the ALE description, the computational frame is 
a reference independent of the particle movement and which may be moving 
with an arbirary velocity in the laboratory system; the continuum view from 
this reference is denoted as Rx_, and the coo:rdinates of any point are denoted 
as x (Figure 1). 

Consider a physical property, f(x , t), expressed in a spatial representation 

/ (x,t) = f"'(:x,t) = f"'*(X,t), (1) 

where * and ** denote "with respect to x and X", respectively, 

lf the physical property is the spatial coordinate x , then 

(2) 
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Figure 1. Diagram of domains for the a.rbitrary Lagrangían-Eulerian descríp­
tion. 

and 
ax~· ôx~ ôx~ 
T{X, t) lx = ôt' (x, t)lx + wi ôx: (x. t) . (3) 

The material velocity v, the mesb velocity v, and the convective velocity c are 

defined as 

and 

ôx~· v, = T (X , t)lx 

ôx~ 
Vi= ôt' (x.t)lx • 

ôx~ 
Ci = w· --' 1 ÔXj 

(4) 

(5) 

(6) 

The relationship between the material time derivative and the referential time 
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derivative can be expressed as 

ar· ar &J a:;:- (X, t)ix = &t (x, t)ix +c, &x, (x, t) . (7) 

Lagrangian Versus Referential Updates 

ln the Lagrangian description, the updating of any physical property is simple 
and is clone through a Taylor series expansion in time 

ar· 
/**(X, t + dt) =/**(X , t) + dt Bt(X, t)lx + · · · (8) 

A similar approa.ch can be used in a referetial description 

rtxlt + dt) = r(x,t) + dt 
8ft* (x,t)ix + ... (9) 

However 1 in a referential description , a simple updating technique, sucb as 
Eq.(9) 1 cannot be used for material point-related variables , sucb as state 
variables in pa.th-dependent materiais . For homogeneous materiais with no 
memory, such as generalized Newtonian fluids, Eq.(9) cab be implemented 
with no further complications. Exa.mples of ALE techniques applied to path­
dependent materiais may be found in [12 113). 

INITIAL/BOUNDARY VALUE PROBLEM 

Field Equations in the ALE Method 

Conservation of Mass (Equation of Continuity) 

The principie of mass conservation is derived in referential form. Consider an 
arbitra.ry volume Vx fixed in the referential domain, Rx, and surface ôVx; the 
medium has a density .P(x,t). The total mass in Vx is 

(lO) 

wbere 

.P(x,t) = }p(x,t) I (11) 
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p0(X,t0 ) = Jp(z,t), (12) 

- [ 8zi] J = det l)xj , (13) 

[ 
{Jzi ] 

J = det axJ . ( 14) 

Tbe principie of mass conservation states that the local rate of incresse of the 
total mass in tbe volume must be equal, if no mass is created or destroyed 

inside Vx, to tbe rate of infiow of mass tbrough the bounding surface 8Vx. 

Conaervation of Momentum (Equilibrium Equation) 

Ueing the sarne definitions as in the copservation of mass, the principie of 
coiUJervation of momentum states that the total rate of cbange of the total 

momentum of the meruum occupying at time t the referential volume Vx, 

~~ I p(x,t)v(x,t)dOx, 
u& X Jvx (15) 

is equ&l to the net force exerted on it. 

The final forro of tbe field equations to be used in the finite element method in 
conjunction with ALE a.re given as 

in Rx, (16) 

_ 8vi I . 8vi 8T;i . 
p- +pw · - = --+pgi 

8t x 1 axi 8xj 
in R.x. , (17) 
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p is tbe fluid density, g is the acceleration of gravity, and u and T are the 
Cauchy and fust Piola-Kirchhoff stress tensors, respectively. 

AUTOMATIC REZONING 

ln the ALE description the moving boundaries can be tracked with the acc~racy 
characteristic of the Lagrangian methods and the mesh can conserve its 
regularity to avoid element entanglement [4111,16,20]. The rezoning techniques 
are based on heuristic developments. 

The reference frame is fixed, but its movement with respect to the laboratory 
or the continuum is arbitrary. The particle velocity viewed from the reference, 
w, and the mesh velocity, ú) are interrelated by 

(18) 

Depending on which velocity (v, w, or mixed) is prescribed, three different 
cases may be studied. 

Mesh Motion Prescribed a Priori 

The case wbere v is given corresponda to an analysis where tbe domain 
boundaries are known at every instant. The rigid-body viscous fluid problem 
studled in [8] falls into this type of ALE problem. 

Lagrange-Euler Matrix Method 

Let w be 

(19) 

where Óij is the Kroneker delta and [a-ij] is the Lagrange-Euler parameter 
matrix such that Ctij = O if i i: j and Ctij is real ( underlined indexes meaning 
no sum on them). The Lagrange-Euler matrix needs to be given once and for 
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ali at each grid point. It is very difficult. t.o maintain regular shaped element.s 
ioside the fiuid domain by jusL prescribiog tbe a's. 

ALE techoique based on the Lagrange-Euler parameters is very useful in 
problems such as tbe propagation of long waves ('tsunamis') and, in general, 
in very free surface Bow wbere tbe free surface may be written as x3_,(xu x2, t) 
with an Eulerian description used in tbe x1- a.nd :z:2-directions. 

Mixed Formulation 

One of the goals of the ALE method is the accurate mapping of the moving 
boundaries which are usually material surfaces. The other goal of the ALE 
technique is to avoid element entanglement. 

FINITE ELEMENT FORMULATION 

The Petrov-Galerkin formulation is ~d for the equilibrium and mesh updating 
equations, while the Galerkin method is applied to tbe continuity equation. 
Furtbermore, a pressure-velocity (P - v) formulation is implemented for 
numerical efficiency and accuracy. Constant pressure elements are used ; thus, 
both weight and trial pressure functions are constant inside the element and 
discontinuous acr068 interelement boundaries. Tbe pressure weighting function 
is denotei! as 6P, and tbe integral equation associated with tbe continuity 
equation is 

~ r 6P _!_ {)PI dRz + ~ r 6P avi dRx =o. (20) 
L 1 R" 8 ât x L 1 R" ôx i e • e % 

where the spatial domain, ~. is discretized into element subdomains, R~, and 
Le symbolizes the sum over ali element.s. 

For tbe equilibrium equation the streamline-upwind/Petrov-Galerkin formula­
tion requires discontinuous weighting functions of tbe form 

6v = 6w +ôp (21) 

where 6w is continuous in Rz and ép is the discontinuous streamline upwind 
perturbation; 6p is assumed smooth in the element interior. The variational 
equation can be written as 
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The mesh updating formulas are obtained using again the streamline­
upwind/Petrov-Galerkin Method, where the weighting funetions, cSx, are con­

sidered to be composed of both the continuous interpolation functions and the 
perturbation functions. 

(24) 

MATRIX EQUATIONS AND PREDICTOR-MULTICORRECTOR 
ALGORITHM 

The spatial discretization of the integral Eqs. (21) , (22), (23) and (24) leacls 
to the following system of partical differential equations: 

MPP + rt(P) + Gtv =O , 

Ma + '7(v) + K~v- GP= rext. I 

M v + ~( z) - M v = o , 

(25) 

(26) 

(27) 
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N umerical Results 

Figure 4 shows the discretization of the fiuid domain used for the computations. 
It consista of 2758 constant pressure-bilinear velocity elements (25 layers) which 
imply 3052 nodes. Notice the concentration of elements around the blocks 
needed to caputre recircula.tion. Two areas are defined in the domain, see 
Figure 4; an Eulerian description is implemented in the bottom one {i.e., the 
mesh is fixed), while tbe mixed ALE formulation [7] is used in the upper zone. 
The latter formulation allows a continuous remeshing such that element shapes 
are maintained. 

MOVIHG 
MESH 

Figure 4. Mesh discretization. 

The time step chosen is such that 200 time steps are needed in every cycle; 
that is, ~tis obtained dividing 2?1' by 200 x w. However, for R.e = 500000, 300 
time steps must be used in the tenth cycle due to large convection. 

Concerning the boundary conditions, zero velocities are prescribed around the 
blocks, while perfect sliding boundaries are assumed for the bottom and sides 
of the tank. The material surface cônditions described in the previous section 
are imposed on tbe free surface. 

The case corresponding to pure w~t.er, 1.e., Re = 500000, is studied 
first. Ínstantaneous configurations of the domain with velocity vectors a.nd 
strea.mlines are plotted in Figure 5 for the tenth cycle. At wt = mr (n integer), 
i.e.,a.t ma.ximum amplitude and minimum velocity,the recirculation around the 
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nc: • 72..3&$. 

Figure 5. Inslantaneous configurations of the domain velocities, and stream­
lines for tenth cycle. 

blocks is obvious. At minimum amplitude and maximum velocity, most of 

lhe flmv is concenlrated in the upper half of the tank; nevertheless, the fiow 

perturbation due to the presence of blocks is clear. The non-linea.r evalutation 

of the free surface is reflected by its vertical motion at the center of the tank, 

in spite of the vertical material velocity at that point being equal to zero. The 

presence of blocks induces a reduction in the wave height and a magnification 

of the horizontal particle oscillation at the central portion of the tank. 

The influew.e of viscous effects is observed in Figure 6 for three Reynolds 

numbers. The free vibration p.art after the tenth cycle shows a 6% damping. 

RESULTANT STRESS DEGENERATED SHELL ELEMENT 

The general nonlinear shell formuJation of Hughes and Liu [9] is expanded 

to develop degenerated shell elcmenl.s with stabilization through a.n improved 

representation of a fiber coordinate system. 
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Figure 6. Time history of the wave height at the left wall with submerged 
blocks. 

This variational approach developed by Liu et al[l5] is applied to the bucliling 
analysis of shells in Ref.[l4). 

Prior to the nonlinear calculation, linear buckling analyses of the cylindrical 
shell with two different boundary conditions are performed: one with clamped 
ends and tbe other free; however, ali rotations are fixed. ln both cases, the 
buckling loads for different modes are very cl06e to each other. A comparison 
shows no significa.nt effect of tbe edge constraints. ln otlier words, the initial 
stress field is not inftuenoed by the end conditions. 

ln the nonlinear analysis, the prebuckling deformation is a.ccouhted for by an 
incremental displacement formulation. 

As shown in the loa.d-displa.cement curve (Figure 7), a postbuckling branch 
(BD) for tbe buckling mo<tt {eo&l48) is traced out by a succession of equilibrium 
stat.es of the cylindrical shell. Along tbt>_postbuckling curve, the deformation is 
characteriz·ed by a special trend : the radial displacements increase dra.stically 
while the end displacementa decrease. On the postbuckling curve (BD), eacb 
point representa an equilibrium siate of the cylindrical sbeU whose internal 
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Figure 7. Normalized load-displacement curve. 

strain energy can be considered as the sum of two components, membrane 
compression and bending. At point B the internal energy is dominated by 
mcmbrane compression , while at point D the internal energy is dominated by 
bending. The patb from B to D represents a simultaneous process transforming 
the membrane compression energy to bending energy. Since the deflection 
associated with bending deformation is substantially larger tban tbe deflection 
associated with membrane compression, the reduction of end displacements 
of the cylindrical shell is accompanied by a large accumulation of radial 
displacements. Figure 8 depicts a sumrnary of diamond modes. 

SEISMIC RESPONSE OF 3-D FLEXIBLE TANK 

ln order to demonstrate tbe importante of the tank wall flexibility in the seismic 
design the hydrodynam.ic response of a 3 - D flexible tank is studied. 

The finite element model and the dimensions of the tank are shown in 
Figure 9. This model consist of 180 fluid , 56 shell and 63 contact elements. A 
10 s duration acceleration history with a max:imum of 0.5 g is applied at tbe 
base. Two cases for the sloshing wave height and the fluid dynamic pressure at 
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Figure 8. Summary of diamood buckles. 
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F INITE ElEMENT MOOEl OF 
lMFBR PR I MARY TANK 

180 FlUI O ELEMENTS 

S6 SHEll ElEMENTS 

63 CONTACT ElEMENTS 

Figure 9. Finite element model of a 3-D fluid-tank system. 

the tank top are presented here. One assumes rigid walls, the other one with 

a tank fundamental frequency of 2.5 Hz. The results are depicted in Figures 

10 and 11 for the pressure and the wave height, respectively. The observations 

can be summarized as follows: 

( 1) The 6uid dynamic pressures in a 6exible tank are substantially greater 

than those induced in a similarly excited rigid tank. For the flexible 

tank, the fluid dynamic pressures becorne very sensitive to the frequency 

variation, as the frequency of tbe tank system approaches to the ma.xi­

mum ampliflcation region of response spectrum of the base acceleration. 

Hence, it is very irnportant to properly include the fluíd inertia. in a&­

sessing the dynamic characteristic of the fluid-tank systems. 
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(2) The coupling effect between the ta.nk flexibility and sloshing response may be 
importa.nt, even if the frequency between the t.ank system and sloshing motion 
is well separated. 

(3) Higher modes of sloshing motion are important to the post-earthqua.ke sloshing 
analysis. The pbenomena are not fully understood yet , more studies are 
required. 
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CONCLUSIONS 

The development and some applications of the arbitrary Lagrangian-Eulerian 

techniques to solve free surface viscous flow problerns are presented. Various 
mesh updating methods are indicated induding the streamline-upwind Petrov­

Galerkin formulation. The applications presented here sbow that ALE 

approach allows an efficient and accurat.e description of large free surface 

motions . The formulation of a reliable resultant stress degenerated shell 

element together with stabilization procedures facilitates a large increase in 

computational efficiency. This is tested on the diamond buckling of shells. 

The coupled fluid-structure-free surface formulation is used to study the 

seismically induced sloshing pbenomenon. The numerical analysis of a three­

dimensional .flexible fluid-tank system provides a better understanding of 

sloshing response. 
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ABSTRACT 

Significont dí6placementl and rotatíon6 bfl 1mall 1trair11 are made po.uible in thín­
walled 1tructures by a 1peciol design, one ouuring a ~treued 1tote of the kind ínherent 
for fleribilitv. The relevant 1pecíalization of the general theory 1Ímplíjie1 ít to the 
jlerible 6hell theory. Thi1 theart~ help1 to goín an in1ight into the de1ígn propertie1 of 
flerible shell.t and to treot them numericolly. Applied to curved tubel ond bellow6 ít 
covers the ínjluence1 of the ímperfect geometry, edge •tiffening (flanges etc.}, 01 well 
a1 nonlinearity. 

Keywords: Thin Wa.lled Structures • Flexibility • Fexible Shell Theory • Curved 
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INTRODUCTION 

The main types of flexible shells employed by industry are presented in Fig. I. 

By ali the obvious diversity, these shells are sinúlar in two essential respects: 

the kind of loading and the kind of the stress state. The load is applied to the 
movable edge of the shell and/or consists of a normal pressure. The stress state 

has the semi-momentless character. 

The kind of stress stat.e immanent for flexibility becomes clear in tbe simplest 

case shown in Fig.2. lt is a cantilever plate bent by edge moments M . By 
thickness h and the ex tensional strain t2 , the plate has elastic curvature 1/ R 
detemúned by the relation hf(2R) = t2 . Tbe edge of the plate has thereby an 
angle of rotation o = L/ R= 2Le2/ h and its displacement is w = R- R coso. 
For a steel plate with t2 = 0.002 and h/ L = 0.002 this me3ll8 o = 2.0 radian 

and w = 0.108L. The plate is indeed flexible. This is rendered by tbe bending 

of the thin wall , not its membrane extension, being donúnant. Th.is case is 
extreme - the membrane strain occurs merely inside a narrow edge zone. 

ln general, the deformation of a fiexible shell cannot be restricted to wall 

bending and twisting. A voiding the membrane strain as far as possible remains 
an optinúzation aim. 

A few words on the position of the theory of flexible shells (short FS) in the 
entire theory of shells. Since the fhst publications on shells (Aron, 1874 and 

Love , 1888), shells designed to be stifJ, to work with as sma/1 displacements 

as possible (in buildings, sbips etc.), have been the predominant concern in tbe 
literature . An ideal stif f shell must have as little wall bending as possible: 

the " inextensional bending" is "... nearly always excluded in well-designed 

shell structures" (W.T.K oiter [2], p.38). ln a stiff shell the wall bending may 

occur merely in narrow zones near the edges or as a buckling deformation. 
The two kinds of deformation are ideally served by lhe two classical branches 

of tbe shell theory (presented , e.g. , in [1]): the membrane theory and the 
Donnell - M u.shtary theory ( extended to large displacements by K oiter, 

(2]). The two specialised branches, together with the Reissner theory [3] of 

axisymmetrical sbells, have served virtually ali of"the applications concerning 

the stiff shells. 
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I 

II 

Figure 1. Types of flexible sheUs encountered in industry. 
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Figure 2. Flat plate in bendin~ . 

One-dimensional, problems of FS, ha.ve been covered by the Reissner a.x:isym­

metrical theory. This includes the Karman (1911) famous solution for curved 

tubes. Two-dimensional FS problema were no exception. They were treated 

with tbe aid of a specialized branch of the shell theory - the FS theory. H bas 

been proposed, first for the anaJysis of the nonlinear bending of finite tubes, by 

Axelrad [4]. A review of development of the FS theory and further references 

ca.n be found in [1], [5] and [6]. 

Tbe significance and role of the general shell theory, including it.s recent 

nonlinear developements, has been, actually, to provide the basis for the 

specialized bra.ncbes of the theory, responsible for applications. 

The following is written by engineer for engineers. l t g.ives ao outline of the 

bypotheses, equations, edge condition~r ef the FS theory (Sect.2) a.nd the uses 

of this theory for tubes aud bellows (Sect.3,4). A fuller presentation of the FS 

theory and its applications, specificaUy, in the treatment of tubes and bellows, 

can be found according to the text references. 
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BASIC FEATURES OF STRAIN AND STRESS lN FS 

The inherent features of the FS deformation, that is of large disp/acements 
by sma/l strain, constitute the basic hypotheses of the FS theory. Taken 
into account in the general shell theory the hypotheses simplify it without 
any additional inaccuracy. The bypotheses can be stated (7) either as a set of 
physical assumptions or as a single mathematical restriction on the variation 
of strain and local sbape along the shell rniddle suríace. 

Consider tbese two mutually complementary versions of tbe hypotheses. 

Physical hypotheses 

The schemes of Fig.l illustrate, in fact, suggest, the following two features 
immanent for the flexibility. Their formulation produces a full set of FS 
hypotheses. Concerning the strain and, respectively, tbe equilibrium but not 
the matherial properties of shells, the hypotheses are relevant also for large and 
even nonelastic strain. 

i) The relative extension t:z along one of the surface coordinates (x2 = 8 in 
Fig.l) can be neglected in the analysis of strain. 

ii) The wall-bending moment M1 (Fig.3) per unit length of the cross section 
running along the x2 - !ines can be neglected in ali relalions of equilibriúm. 

Consistent with these hypotheses the H ookean shell- theory e/asticity relations 
must, as has been shown in [8]. be specifically simplified. Namely, for isotropic 
bomogeneous shells these relations become: 

The stress tesultants N1 , N2, S1 = S + H2/ R2 and the normal-sectíon 
c.urvature 1/ R2 are shown in Fig .3. The strain parameters t: 1 , "Y, /Ct and 1e2 

are defined, e.g., in (1), Ch.l. 
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I 

l-R l m 

t R 
Figure 3. Stress resultants in curved pipe under bending loading. 

iii) Additional simplifications, possible for isotropic FS are: a) disregarding 
the shear strain resultant i ( angle of shear between the coordinate I ines) 
in the analysis of strain, and b) neglecting the torsional moment H in the 
relations of equilibrium. 

Disregarding i and H terms is not justified, in particular, for materiais with 
relatively small shear stiffeness ( G /E < 1) and for problems with large 
intensively variable N 1 forces, as for the tube with the "stift" Ranges, discussed 
in Sect.3. 

Matbematical FS bypotbesis 

lt has been shown in [1] and more generally in [6], [7), that the above 
physical hypotbeses are equivalent to a single mathematical statement. The 
simplifications (i), and (ii) are, namely, consistently due for any stress sta.te, 
which varies with respecl to_ tbe surface coordinate x1 much less intensively, 
than wit.h respect. to x•. S~cifically: tbis means for ali the stress and strain 
resultants (denoted summarily by F ) the condition (a and b determine the 
lengths adx1 and bdx2 of the elements of the respective coordinate Lines 
e= zl,O = z2): 
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(2) 

AU other equations of the FS theory, as well as its boundary conditions, follow 

with the bypotheses (i), (ü) or (2) plus the elasticity relations ( 1) from the 

classical sheU theory. The assumptions (i) and (ii) introduce an error of the 

order of vê, the error of (iii) is of lhe order of (E/G)é . Has c, defined in (2), 

the order of magnitude of the error of the general thin-shell theory (h/ R2 ) or 

less, so has the FS theory the sarne accuracy as the general one. 

Actually, t he FS t heory can be based on ai! three hypotheses (i), (ii) and (iü). 

With the assumptions (i) and (ii), but not (iii), the shell theory reduces to the 

"extended" semi-momentless theory, somewhat more general than the theory 

of FS (cf.(l]). 

Discu ssion 

The FS theory contrasts on one principie to thc general shell theory and to 

its otber specialized branches. The membtane theory and the Donnell-type 

theories describe strain states which vary slowly or , respectively, strongly with 

both coordinat.es. The FS theory describes stra.in states which vary slowly with 

one of the surface coordinates, { in (2). and vary strongly with the other , (} 

in (2). lt does not regard the stress and deformation in the directions of tbe 

two coordinates in an equal way. The coordinate { = x 1 is intended for a 

direction specific for the entire class of FS , the O = x2 - for the other specific 

direction. This is conspicious enough in ali the bypotheses (i)-(iii) and (2) and 

in the examples of Fig .1. The difference of the FS stress and strain along 

the coordinate x1 to tbat along x2 does, of course, determine the difference of 

conditions on the respective shell edges. The conditions on an edge x 2 = const 

are ali those (four) imposed in the general shell tbeory. On an edge x 1 = const 

t he FS t.heory imposes, in accordance with (i)-(ii), only t.wo conditions, tbose 

of the membrane stress and st.rain . 

Conditions on a shell edge x 1 = const are of two kinds. 
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a) Those concerning Lhe extension e2 of the z2 line and the waU-bending 
moment M1 determine the edge effect deformation which dies out inside 
a short distance from the edge.(This distance has for a tube (Fig.3) the 
assessment of 3.5-/hb , well-known for cylinder shells). 

b) Conditions determining the main defonnation which varies with x1 slowly . 
The main deformation concerns the entire shell outside the edge-effect zone 
and determines the strength and deformability of a FS almost entirely. 1t 
fulfills the condition (2) and is adequa.tely described by the FS theory. The 
relevant two edge constraints or forces are of the "membrane", tangential 
to the middle surface, sort. 

For a FS there is usually no need to consider the edge effect at the edge 
:r1 = const. Moreover, the relevant edge constraints and moments, are seldom 
known reliably. lf need be, the edge effect can be determined comparatively 
simply and superimposed on the main deformation. It will not be discussed 
further in what follows. 

Numerical solutions are made essentia.lly easier by the FS theory. For one, 
by substantial simplifica.tion of both the field equations and the boundary 
conditions. Still more crucial is the facilitation of the numerics, which results 
from the exclusion of the edge-effect part of the solution. - The FS stress 
state varies with respect to x1 as much as Rz/ h times less intensively than the 
edge effect (1/ Rz is the normal-section curvature), of which the general-theory 
description of a problem has to be freed numerically. 

Thus , the clearly delirnited class of problems, those in the analysis of large 
deforma.tions by small strain, has a. consequently speciaüzed simple theory. 
Whether a problem can be adequately treated witb the aid of the FS theory is 
usually perceíva.ble without calculations. A solution already obtaineà can be 
checked by applying the criterium (2). 

A more complete trea.tment of the FS theory can be found in [1] and [6], its 
discussion from certain gt!netal viewpoints in [7) . Consider the possibilities of 
tbe FS theory on hand of two a.pplic.ations. 
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TUBES 

The problem 

A tbin-wa.Ued tube is flexible in the cases shown in Fig .I- J. The flexibility is 
a consequence of wall bending. As can be perceived in Fig.3 , t.he longitudinal, 
tangentia.l to the z 1-line, stresses bave in a curved tube resulta.nt forces acting 
to or from the curvature center of that line. These forces deform the cross 
sections. This, transverse, deformation, in turn, influences the longitudinal 
stresses. - The z 1-lines are displa.ced in their curvature planes so, tbat their 
elongation is diminished. The described effect (the Karman effect) becomes 
substantial when: a)the curvature of the tube (initial or caused by elastical 
deformation) is not too small, b) the tube wall is sufficiently thin and c) the 
tube between the end constraints or ribs is long enough to allow a substantial 

wall bending. 

Consider now, summarily, the FS-tbeory description of the fl exure of curved 
tubes. Tbe following is restricted to linear analysis. Large deformations and 
buckling are discussed in (1) and (7). (The history of the tube analysis can 
be found in [6), (9). lt is ra.ther instructive with sidesteps and downright 

retrogressions.) 

Let the tube have initial curvature 1/ Rm (Fig.3), in the limit case 1/ Rm = O 
( cylinder shell). The cross section is initially circular. The load is applied on 
the edges wbich are constrained by fla.nges. Tbe chosen surface coordinates 
bave the lengths determined by 

R 
acJe = - bcJe, 

Rm 
bd8, R= Rm + b cosO (3) 

At the tube ends { = const two (limiting) cases of Ranges and the case of 
transition to an a.djoining tube ha.ve beeen considered. 

(a) Thin flange, while preventing deformation of the tube edge in its plane, 
does not restrict its warping. Any externa! longitudinal forces are thus 
directly transmitted to the edge . Witb the edge forces distributed as b cos 9 
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and statically equivalent to a moment M shown in Fig.3 the described 
conditions on the tube edge are 

IC'J = 0, 
M 

N1 = - 2-cosO 
1fb h 

(4) 

(b) Stiff ftange prevents both the de{orma.tion of the tube edge in its plane 
a.nd it.s warping out of this plane. Tbe relevant boundary conditions of the 
semi-momentless tbeory ba.sed on (i) and (ü) (but retaining H and "Y- not 
using the hypothesis (iü)) are according to [1]. (3.108), (3.105), (1.86): 

() - &()-~ 
' 2 - 8x2 - ôO (5) 

(c) On a line e = const dividing a tube from the other part of a pipeline 
(e.g., of different curvature 1/Rm) must be satisfi.ed four conditions of 
continuity: 1e2, r, Nt and S must be equal on the two sides of the dividing 
line. (The remaining four continuity conditions are excluded in the FS 
theory, they determine the mentioned "edge effect".) 

Solution 

The FS equilábrium equations of an element of a curved tube follow from tbe 
general theory ( e.g. ,(1], ( 1.59) ) with the ~sumption (ii) in the forro ( notation of 
Fig.3, c= cosa and s = sin adeterminetheshapeofthecross- section, ( ),I= 
ô()fô(x1) ): 

(6) 

S,t + (RN2),2 + _1_ 8 1 
+ !_N

1 
+ Q2 + q2 =O 

a Rb ~a ' R R2 

Where N2, Ql and Q2 are expressed in terms of H and M2: 



Flexlble-Shell Theory and AlUllysis of Tubes and Bellows 379 

(7) 

The corresponding compatibility equations are obtained from those of the 
general theory (e.g.,(l.36) of [1)) with the hypotbesis (i). Tbere is no need 
to write them out here. Tbey follow frorn (6) and (7) by replacing the stress 
resultants with tbe strains a.ccording to the static-geometric duality: 

(8) 

Two equations (6) with the expressions (7) logether with the analogous two 
equations of compatibility and the equations (1) comprize a system o{ four 
partia! differential equations: 

X ,t = AX +B, (9) 

This system determines the column matrix X of four resultants which fully 
represent the stress in the cross-section ~ = const and its deformation 
(including warping) . ln the case of zero distributed load B =O 

The deformation of the tube, symmetric with respect to the plane 8 = O, can 
be represented by the series: 

[S r]= I:[p; r;)sinj8. (lO) 

The 90 and Pl represent Lhe resultant forces in a cross section. ln tbe 
case uoder discussion (Pig.3)they are equal to zero and 91 = Mf(·trb2h) for 
h = const. Conditions of closedness of t.he cross-sections, i.e., of the 8-lines, 
give /o, h, r1 = O. Inserting (lO) into (9) gives a system of 4N - 4 differential 
equations for tbe remaining 9j (0, /i(f.), Pj(Ç), rj({) . Tbe system can be 
iotegrated numerically, this is drastically facilitated by the exclusion of the 
edge effect. The Euler-form general solution Ci exp d,{ requires calculation of 
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the eígenvalues d;, possible with tbe aid of standard procedures ( cf.reference ín 
[1), p.222). The FS-theory eigeovalues are near to those of the general theory, 
whích represent the main deformation. (It must be clear, that dropping at a 
tube end those terms C; exp d;Ç with Re( d;) > O, as done in the literature, can 

lead to substantial error. - Some of the main-deformation terms C; exp d; do 
not "decay with the distance from the end" intensively enough.) 

Much simpler than both mentioned is tbe double Fourier-series solution (1). Jt 
combines (10) with the Ç-series of the form 

[fn Yn} = E [fnj 9nj} COS jÇ (11) 

This reduces (9) to a system of algebraic equations for the fni, .... 

Results 

The design requires the basic relations of a problem to be stated explicitly and 
be hand-calculable. Such simplest solution has been obtained (cf. [1] ) for a 
wide class of pipe bends. lt encompasses most tubes intended for bigh pressure 
- all tubes with the thickness and curvature satisfying the condition: 

b 8 ho = JEDh::_'b2 I' = R,n h 0 < ' ,. (12) 

Where Dm and h.m are the values of D and h ( h may vary with O) on the line 

R= Rm. For tubes witb D defined in (1): h0 = 0.303hm/b. 

When the condition (12) is fulfilled, it is sufficient to retaín in the series (10) . . 
merely tbe terms witb n < 3. The system (9) then can be reduced to one 

differential equation. lts Euler solution contaius only four constants C; which 
are determined by the conditions on the tube ends explicitely. Tbis gives for 
the flexure angle, caused by the moments M (Fig .3) and the normal pressure 
q (externa! pressure - negativP) the formulas: 

* FM IPRm cp - cp = --3-· 
E1rb h 

F = Fo - Fok + k, (13) 
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144 + 10p2 + 48qb3 
F. - D 
o- 48 b3 

144+p
2

+ + 
a) For "thin fianges" 

k = sinh I + sin I , 
l cosh l + I cos l ( 

2) 1/4 
I = 36 + ~ VhO ip~m. 

b) For "stiff fianges" 

k = 2 cosh 1- cosI . 
I sinh i + I sin I 
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(14) 

(15) 

(16) 

The stress state and flexibility of the tubes are exemplified in Figs.4 and S. 

The solid-line graphs represent the solution of eqs. (9), broken Jines- formulas 

( 13)-( 16). The pertinent discussion of the specific role of the hypotheses (i)­

( iii) and of applicability range of the simplest solution (13)-(16) can be found 

in [1], pp.234-241 (cf.also (12]), together with the (substantial) simplification 

of equations (9) by setting R = R.n . 

A cautionary remark is called for, concerning the warping of the tube edges. 

- A section of the releva.nt publications is still anaware of the effect of the edge 

warping. lt is this effect, what causes the striking difference, seen in Figs.4 and 

5, between the cases (a)- free warping of the edges- and (b)- zero warping. 

Ln the case (a) for the example of FigA t.be maximum stress is 12.5/1.76 = 7.1 

times bigber tban in tbe case (b). The angle of flexure is 16.6/2.89 = 5.7 times 

more. The experimenta show (Fig.5) tbe Hexibility of real tubes to lie between 

tbose of the limit cases (a) and (b). But the experimenta are obviously nearer 

to the case (a) . (Moreover, a flange stiff enough to eliminate the warping, to 

model the case (b ), is difficult to realize, even in experiments.) Tbe oversight 

of the edge warping leads t.o errors of up to 200 % and more. 
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Figure 4. Flexibility factor and stresses io the midlength cross-sectioo of tubes 
with h/b = 0.02, bf Rm = 1/3, J.l = 55.07, :p = 90° . (a) Thin flanges . (b) Stiff 
flaoges. Notation: c:r1 = Nif(hc:rs), c:r2 = M26/(h2c:ra), us = Mj(1rb2h). 

20.--.~~-..---------.-----r---r-~--~~~~ 

Results of experiments 
fromfig.Sof (llJ forq:l=90°,Rm/b= 

F 

33 16.5 6.6 
1~-L~~~~--------~----~--~--~~~~~ 

5 
0.05 0.1 0.2 0.5 1.0 

Rm h/b2 

Figure 5. Flexi):>ility factors of pipe bends under different warpping boundary 
conditíons at the edges. 
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BELLOWS 

The problem 

Bellows is tbe most flexible of shells of revolution (Fig .I). The nominal shape 
of a bellows, is set forth by detail drawings as composed of straight tines and 
circle ares (Fig.6), with h = const. The r.eal shape and thickness depend on 
the manufacturing technology (cf.profiles and a ground edge presented in [1], 
Figs.63- 65). The hydraulic shaping of a cylinder tube with R= Ro, h= ho 
into a bellows with R = R( O) produces h = h( O) = ho j Rol R. This relation 
has been derived analytically (13] and confirmed by meaaurementa. 

Figure 6. Bellows convolutions in both undeformed and after large elaatic 
deformation configurations. 

The axisymmetric nonlinear solution for bellows with arbitrary profile and 
h = h(O) has been obtained in 1966 [13]. (This problem setting haa been 
rediscovered iu 1984- Proc. lnt. Conf. Pressure Vessel Tec:hnoL, San Francisco, 
v.l, New York). 
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A substa.nt ial simplifica.tion of the a.nalysis lea.ns on tbe possibility to disrega.rd 
tbe edge effect on tbe ends of bellows. - This deforma.tion extenda not further 
from an edge than one convolution a.nd its influence decreases tbe stress 
(1] . Wit.hout the edge effect. the axial extension a.nd pure Oexure deform ali 
convolutions of a bellows identically. Tbese problema become periodical witb 
rcspecL to x 2 = B (Fig .!- III). 

For the bending by lateral forces at the ends of a bellows tbe periodicity bas 
a more general form. - The cross-sectiona.l bending moment (L in Fig .!- III 
) varies along thc bellows L = L(O). lt is, bowever, as a rule, possible [1] to 
apply to this case the description obtained for L= const. Tbe a.ccuracy is not 
thereby impaired when the beUows consista of three or more convolutions. ln 
a.ny case, the deformation can be rega.rded as periodical in O with the period 
encom passing the entire bellows. Is the coordinate O cbosen so, that it varies 
from eo to Oo + 21r. inside one period of deformation, so can the stress state be 
represented by the Fourier series (10), (11). 

Solution 

The basic problems of large displacements and rotations of bellows, both the 
axisymmetricaJ deformation and the fiexure, can be effectively treated with the 
aid of the following FS equations ([1], p.llO}: 

ln the axisymmetric case, when F and W depend only on O, tbese equations 
reduce to Reissner equa.Üons simplified by tbe FS assumption (2}. 

The variables F and W represent ali stress and strain resultants substantia.l in 
the FS theory; in parti cu lar 

(18) 

H is denoted in ( 17): r = R/ Rm, t = h/ hm. Tbe angle a, tbe middle radius 
Rm and middle wall-tbickness hm are denoted in Fig.6. Tbe term Q representa 
in ( 17) tbe loading, both applied on the edges and distributed over the surface. 
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The equations (17) are obtained from the integrais of the FS equilibrium and 
compatibility equations. They are additionally simplified by dropping terms 
whicb are for bellóws of the order of b/(nRm) =.fi, with e deflned in (2) and 
21rb - the extended length of one wa.ve of corrugation. Further, n denotes here 
the number of the most substantial Fourier-series term in (10). Practica.lly n 
can be assessed by v'Ji. 

The coefficients fni • 9ni of the solution (10), (11) are determined by 
incremental iterative procedure. The incrementa of the Fourier coefficients 
are calculated by solving a system of linear algebraic equations, separate for 
each j =O, 1, 2, .... This system is obtained from {17) with {10), {11) using the 
matrix operations with Fourier series ([1), p.l30-) and the numerical spectral 
method, due to V.Axelrad [14] . Tbe iterative procedure assures simplicity of 
the algorithmus and a cbosen accuracy o(satisfying the equations ( 17). lt is 
realizable in a short time with a portable computer. 

Resulta 

Two of convolutions of a bellows are shown in Fig.6 in both the undeformed 
sta.te and after large elastic deformation of pure ftexure . lt is the meridiana! 
section in the plane of fl.exure, on the compressed side of the bellows. The 
dimensiona are (mm): Rm = 25, R(O) = 30, h = hm = 0.4, the length of the 
bellows consisting of 20 corruga.tioo waves is 20 · 8.8 = 176, the extended length 
of ooe convolution 21fb determines b . The deforma.tion has been computed 
in the manner iodicated in Sect.4.2. By small, ela.stic , extensional strain, 
here !2 = K2h/2 = 0.0058, the angular a.nd linear displa.cements are really 
considerable: the a.ngle of ftexure of ea.ch convolution - 3.6 degr., the entire 
a.ngle of rotation of an end of the bellows with respect to the otber end amounts 
to 72 degr .. 

The applica.tions of bellows often encompa.ss their use with strains a.bove the 
elasticity limit . The FS theory can, as mentioned in Sect.2, be extended to the 
elastic- plastic range. Specifically, euch a generaliza.tion is possible for the 
solution summa.rized in Sect.4.2. The ba.sis would be provided by equa.tions 
analogous to lea.ding to ( 17). 
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ABSTRACT 
ln thís report we reví•it the analJ16Í6 of {1} ond {!} on the behovior of 1ojtening bor1 
in ten&ion. We 6how thot when the length of the •oftening portion o/ a bar i• 1maller 
than &o me criticai value the "incomplete" lood-d11plocement equifibrium trajecto., 
found in {1] can actually be 1moothly continued until failure ot ~ero applied lood. The 
point where the lood-di•placement trajectory wo1 left incomplde in {1] i1 a point with 
a vertical tangent and the continuation o/ thot trajectory corre1pon<U to o 1n~ 
back: both the lood and lhe dilplacement áecrea•e thére~Jter becoUie the rate at tDhíCh 
the •oftening portion of the bõr elongatu i1 1maller than the rate of 1hortening of 
the eladically unloading ,P<?rtion oj the bar. We ol1o 1how that in a continuou• bar 
with a finite region of mmimal 1trength and with ~FTwoth 1treu-•train looding curve• 
(da/ de = O at the point o/ mazimum 1treu) the corre1poding lood-di1placement 
equilibrium trajectories have a tangent bijurcotion at the point where the opplied 
lood attain1 itl mazimum value: at tliat point ali po1t-bijurcation trajectorie1 have the 
1ame {horizontal) tangent a& the pre-bifurcotion trajeclo'lf. Each of !he infinite polt­
bifurcation trojectorie1 corre•pond.f to a 1pecific combination of the portiom ín the 
regíon of mmimal .ftrengh where llrain-&oftening or ela1tic unloo<Jing occur thereafter. 
Keywords: Dama.ge • Softening Bars in Tension • Sna.p-Ba.ck • Ta.ngent Bifurca.tion 

RESUMO 
Ne1te trabalho utudamoa o comportamento de barra~ tensionada1 capoze1 de apre•en­
tar amolecimento. U.fondo idéias de1envolvida1 em {1!} retormamo1 o problema apre-
6entado em {1] reformulando-o e completando-o. O e1tudo inicial é jeito considerando 
du04 borra& homog_ênecu em .térie e depoi1 generali~omo1 a an6li1e con1iderando o CIJIO 
de uma barra onde a1 propriedade• variam ao longo do comprimento. No ca&o da1 
duas barra8 aporece um ponto de retorno que corre11ponde a uma retraçõo da estru­
tura. Apó1 e1te ponto tanto o carregamento aplicado quanto a deformação decre1cem 
até o rompimento da utrutura. Para a borra continua apre1entando uma N~gião de 
re6i.ftência mínima de medida não nula e uma curva de ten1ão-deformação 1uave 
tncontramo1 uma situação intereuanteJ aparentemente inédita na fiteratura de en­
genharia. No ponto onde a ternão é marima toda~ a11 trajetória' pós-bifurcação têm 
a mesma tangente horizontal, ao que denominamo& de biJurcação tangente. 
Palavras-chave: Da.no • Amolecimento de Ba.rras Tensiona.da.s • Retra.ção • 
Bifurca.çã.o Ta.ngente 
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A SYSTEM WITH TWO BARS lN SERIES 

Governing Equations 

Following [1) we consider a one dimensionaJ system of two bars in series witb 
undeformed lengths L,, as showl) in Fig. 1. We assume that the materiais of 
both bars satisfy the following constitutive equations (see Fig. 2) 

(1) 

D; = K;(i;), i= 1, 2 (2) 

Here O'j, !i and D; E [0, 1) are the stress, the strain and tbe damage at bar i , 

respectively. E; is tbe elasticity modulus of bar i at zero da.mage, the consta.nts 
/(; in the damage evolution laws (2) are p08itive and (:c) = ma.x{O, :c}. Ali the 
above quantíties are constant within each of the bars, but O' i, !i a.nd D; , i = 1, 2, 
depend on a strictly increasing time-like parameter t . The equilibrium equation 

IS 

(3) 

and the kinematic compatibility condition is 

(4) 

where h is the imposed total elongation of the bar at each time t . We further 
assume that at the initial time the two bars are virgin and undeformed , i.e., 

Dt = D2 = ! t = !2 = O at t = O . 

2 

6 
) 

Figure 1. Two bars in series subjected to tension . 

(5) 
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Figure 2. Loading and unloading-reloading u - t: paths for the constitutive 
equations (1,2). 

Solving the problem 

Continuing to follow [1] we combine (1) and (3) to get 

(6) 

Integrating (2) and taking into account the initial conditions (5) we obtain 

(7) 

which is valid only while ii > O, i = 1, 2. lnserting (7) in (6) we obtain 
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which can be rearranged in Lhe form 

(9) 

Witbout 1068 of generality, only the cases (a) E2/ K2 > Et/ K1 and (b) 
E7./K2 = Et/Kt need to be considered. 

ln this case (9) represente an hyperbola, as shown in Fig. 3. Only the lower 
branch of this hyperbola contains the initial state Ct = c2 = O and leads to 
quasistatic solutions to the problem, while it > O and i2 > O. From Fig. 3 
we conclude tbat i2 > O holds only in the interval O ~ c1 < ci = l/2Kt 
which corresponda to O ~ c2c2 = 1/2K 1, !2 attains a maximum, so tbat, 
differentiating (9) and imposing i7. = O, we get 

and tben 

l- E1K2 
E2K1 

• K • 1 [ E1K2 D2 = 2 t2 = - 1 - 1 - --
2 E2K1 

Ei = (1 -Di) E2 = ~:i ( 1 + 
r-----,. 

(10) 

{11) 

For t1 > ci = 1/2 Kt we have i2 < O, so that bar 2 must u~load eiastically 
while bar 1 softens (õ- = Õ"t = õ-2 < O and i1 > 0). For bar 1 equation {7) 
continues to apply, while for bar 2 we have now Íh = O and 

(12) 

with Ei and Di constant and given by (11). From (6), (7) and (12) we bave 
now 

(13) 
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Figure 3. The hyperbola (9) and lhe parabola ( 13) for a case (a) 
(Et K2/ E2I<1 = 0.9) . The straight !ines (14) for a case (al) (Lt!L2 I<1 = 2, 
with ó = 0.5Ltfi<J) and for a case (a.2) (Ltf<2/L2I<1 = 0.5 with ó = 0.5LifKt 
and ó = Óc = 1.275Lt/ Kt) . 

which replaces (8,9). This is the equation of a parabola and, compa.ring it with 

(9), we may check that for each v alue 1/2 K 1 < é t < 1/ K 1 the va.lue of !2 

given by ( 13) is larger than the corresponding value given by (9): the pa.rabola 

is above the hyperbola (see F'ig. 2). 

ln the presenl case (a) the problem ( 1-5) is thus reduced to the determination 

of the intersections between the curve made of the hyperbola (9) (for O~ !1 ~ 

1/2 Kt) and the parabola (13) (for 1/2/\1 < e1 ~ 1/Kt) with the straight 
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lines (4) 
Lt 6 

!2 = -- !} +- , (14) 
L2 L2 

for continuously varying values of the total elongation 6. Depending on Lhe 
angular coefficient -Ltf L2 of these straight !ines, two situations may occur: 

(a1) For each 6 there e.xists a unique intersection if the slope of the curve (9, 
13) is everywhere (algebraically) la.rger than the slope ( -Ld L2) of the straight 
!ines (14) (see Fig. 3). From (13) we bave that the minimum slope of the curve 
(9, 13) is 

dt21 Et 
dtt ~~=~ =-E2 I 

so that the solution to (9, 13, 14) is unique if 

Lt Et 
L-;?: E• . 

2 . 2 
(15) 

(a2) On the other hand, if 
Lt E, 
L2 < Ei , (16) 

then for small values of 6(0 ~ 6 < 6o) the intersection is unique, for 6o ~ 6 < 6c 
there ex:ist two points of intersection and, finally, for 6 = éc tbe straight line 
(14) is tangent to the parabola (13) (see Fig. 3). Jt is easy to check tba.t -

and tha.t 

ln order to interpret tbe above resulta we shall now study tbe loa.d-displacement 
equilibrium tra.jectories (o- versus é) . 

Differentiating (4) and (8) for O~ !t ~ti= 1/2 Kt andO~ t2 ~ti< 1/2 K2 
we get 

1 
1 (17) 
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and then dCT I dh decreases monotonically from ( L2l E2 + Lt I Et )-1 at ét = t:2 = 
O to zero at e:1 = e:i,e:2 = e:2. On the other ha.nd for 1/2/{1 = e:i ~ e:1 ~ 1/I<t, 

we get 

dCT 

dó 
(18) 

and then, for ét = t:i :::: 1/2 I< 1 , dCT /dó is zero. This means that at the point 

where bar 2 starts to unload elastically and bar 1 initia.tes softening there 

exists no discontinuity on the slope of the plot of CT versus é. Continuing our 

st.udy, we consider first the case (a.l): we ha.ve Ltf Et > L2l E?_ and [rom {18) 

it follows that dt1jdfl decreases monotonically from zero at e: 1 = 1/2 K 1 to 

-(Lif E1 - L2l Ei)- 1 < O at ê J = 11 I< I ·· Considering now the case (a2), we 

have L1/ Et < L2/ Ei and : (I) when ét increases from 1/2 J< 1 to e:~ then the 

slope dCT I dó decreases from zero to -oo; (II) when é1 increases from c~ to li J< 1 

then the slope dCT I dó decreases from +oo to -(Ltf E1 - L2/ Ei)- 1, which is 

now a positive quantity. 

In Fig. 4 we show the equilibrium trajectories (C! versus 6) for both cases (al) 

and (a2). These trajectories were evaluated by computing for each e:1 in the 

interval [0, 11 K J] Lhe corresponding pai r ( ó, O'): O' is given by (8) as a function 

of e:1, and é is given by ( 4) as a function of e: 1 and e:2, the latter being evaluated 

from the hyperbola (9) or the parabola (13). Tt is clear that in case (a2) the 

region II (t:~ < Ct ~ liKt) corresponda to a snap-back: both the load u and 

the total elongation 6 dec rease. This happens because, when the length L1 of 

the bar in strain-softening is smaller than the criticai value L2Et!Ei (16) and 

e:~ < e:1 ~ 1/ K1, the rate at which bar 1 elongates in softening is larger than 

the rate at which bar 2 shortens elasticaUy: 



394 J .A.C. Martins and R . Sampaio 

C/) 
C/) 

IIJ 
a: 
t-
U> 

0. ~ -
UJ 

' -
~ . 
v -

0.00 0.~0 1.00 1. ~0 2.00 
(KI / LI) · ELONGAT ION 

Figure 4. Load-displacement equilibrium trajectories (O' versus 6) for two cases 
(a): E1K'J/E2K1 = 0.9, and LdL2 K1 = 2, (case (al)) or L1K2/L2K1 = 0.5 
(case (a2)). 

Note that from this a.nalysis the only possible conclusion is tliat, as soon as 

the elongation 6 attains the criticai value 6c, it becomes impossible to increase 

it further in a quasistatic manner. Tbe staterment of [1] that "there is no 

solution for values of 6 lMger tban a certain criticai value" is correct . However 

it i.s at least misleadin.g to classify t~, point wbere 6 = 6c as tbe point "where 

the damaged solution ceases to exist" because the damaged solution continues 

thereafter with decreasing O' a.nd 6 (snap-back). 
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Before concluding the study of case (a) we wish to point out that the solutions 
shown above are unique in the sense that any other possible solutions only 
invol ve trivial trajectories of elastic unloa.ding or reloa.ding of both bars 1 and 
2, which neither dissipate energy nor lead to failure . 

(b) The case E-di<2 = Etfl<t 

As found in [1] the hyperbola (9) degenerates in this case into the two stra.íght­
lines (see Fig. 5). 

(19) 

(20) 

Only the first of these contains the initial state (5) and leads to solutions to 

the problem, for i t > O and i2 > O. For (t = E:j = 1/21'0: 1 , E2 = E2 - 1 /2K 2 

the stresses in botb bars attain the ma.ximum value 

and thereafter tbe stresses must decrease. At Et = l/2K1 , E2 = l/2K2 we have 
the possibilities: 

(b1) bar 1 strain-softens and bar 2 unloads elastically, 

(b2) both bars strain-soften, 

. 
and, of course, the trivial unloading of both bars or the situation (b1) with 
bars 1 and 2 interchanging their roles. 

With the arguments used earlier, it follows immediatly that the left derivative 
dufdó at E t = l/2K1, E2 = l /2K2 is null . ln case (b l ) the equations that apply 
on the rigbt of that point are the sarne as those that apply on the left, so that 
the right derivative is also null. Case (b2) leads to a situation analogous to the 
case (a) for 1/2Kt ~ Et ~ 1/i(t a.nd equation (18) applies again. This shows 
that the right derivative du = dó at E: t = l/2Klt c2 = l/2K2 it is also null. 
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Figure 5. The straight tines (19,20) for case (b). ln the post-bifurcation range 
1/2Kt ~ E:t ~ 1/ K1, case (bl) corresponda to the parabola (13) and case (b2) 
corresponda to the straight line (19). Also on the sarne figure the parabola 
that corresponds to the trajectory of the type (bl) that bifurcates from the 
trajecto~y of the type (b2) ata point where E:t = 0.8Kt E:2 = 0.8/K2. 

We conclude that the bifurcation on the equilibrium trajectories at the point 

of maximum load is a tangent bifurcation: all the post-bifurcation trajectories 

have the sarne (horizontan slope as th.l:..,pre-bifurcation trajectory (see Fig. 6). 

Without giving the details we finally observe that every point of the post­

bifurcation trajectory (b2) is also a bifurcation point from which a trajectory 
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Figure 6. Load-displacement equilibrium trajectories ( u versus é) fDr case (b) 
(EtKz/Ezf(l = 1, Ltf<z/Lzl<t = 1). Post-bifurcation trajectories ofthe type 
(bl) and (b2). Trajectory of the type (bl) that bifurcates from the trajectory 
of the type (b2) ata point where êt = 0.8/Kttz = 0.8/Kz. 

of the type (bl) emanates. These &d.d.itional bifurcations are not tangent 
bifurcations for u* > u > O (see Figs. 5 and 6). 

A CONTINUOUS BAR IN TENSION 

Governing Equations 

We consider now a bar A = { x O ~ x < L} such that the constitutive 
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equations 
<r(x) = E(x)(1- D(x)) t:(x) 

D(x) = J<(x)(i(x)) 

(21) 

(22) 

hold at each point of the bar. Here E( x) and K ( x) are strictly positive functions 
of x E A and <r(x), t(x) and D(x) ate the unknown stress, strain a.nd da.mage, 
repsectively, at ea.ch x E A. The equilibrium equations is 

O'(x) =O' Vx E A (23) 

and the kinematic compa.tibility condition is 

(24) 

where é is the imposed total elongation of the bar. For simplicity, we ornit 
from the notations the dependence of <r(x), t:(x), D(x), O' and é on a strictly 
increasing time--like parameter t. We also assume that at the initial time the 
bar is virgin and undeformed, i.e., 

D(x) = t(x) =O Vx E A at t =O. 

Solving the Problem 

Similarly to (8) we get 

<7 = O'(x) = E(x)(l- K(x) t(x)) !(x) 

for alJ x E/\, while 

i(x) >O 

It follows that, while (27) holds, we have 

with 

Vx E A-

1 
__ 4 R_'~( x..!,-) _O' 

E(x) 

1 E(x) 
O~ t(x) < 2I<(x) and O~ O'< 4K(x) . 

(25) 

(26) 

(27) 

(28) 
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While (27) and (28) hold, tbe positive stress and elonga.tion rates are given by 

· { L dz 

6 = iT lo E( ) /1 - 4~~::~ (f 
z V E(x 

so that the positive slope of the u versus ó curve is 

(29) 

Let u• be the maximum admissible stress at the points of the bar with minimal 
strength 

We assume that the set 

u* = min E(z) 
xEA 4K(z) . 

has non-zero length and we denote 

A2=A\Ai={zEA · E(z) =>u*} 
· 4K{z) 

N ow, if t• is the time at which the increasing stress u equals u'", it is clea.r that 
the expressions (28) hold for O :S: t < t'", while for t = t• we get 

1 ,. E(z) 
€(x) = 2K(x) , u(x) = u = 4K(x) Vx E Ai 

1 * E(x) 
€(z) < 2K(x) , u(x) = u < 4J<(z) Vx E A2 . 
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The constitutive behavior in Ai then implies that ü(z) $O for ali x E Ai and 
for ali t ~ t• . lt follows tbat 

ü = ü(x) $O Vx E A 

which in turn implies that ali the points of A2 initiate elastic unloading at 
t = t• . lf "trivial" elastic unloadings of the wbole bar are excluded, then, for 

some t > t• and some subset of points x of Ai , equation (26) is stiJJ valid with 

o-(x) =o- < o-* , c(x) > 1/2I<(x) 1 ü(x) = ü <O, i(x) >O. For t ~ t * we s ball 
denot-e 

Al = {X E A 

A2 = {x E A 

"( ) J [ 1 _ 4K(x) u } A* 
c x = 2K(x) 1 + E(x) C 1 ' 

1 [ 4K(x)u 1 
2I<(x) 1 - 1 - E(x) $ c(x) < 2K(:r:) [l+ 

41\(x) u } :\ ... 
1- E(.r) :J,2 

A11 = { x E At : u(x) = -E(x) 1-
4/~((~) o- i(x)} C A1 , 

At2 = {x E A1 : u(x) = E12(x) i(.r)} C A1 , 

where iT arnd i denote right stress and strain rate..<;, respectively, and E12(x) is 
given by 

E(x) ( E12(x) = -
2

- 1- 1 _ 41\(x) u) 
E(x) 1 (30) 

for x E A1 1 o-· ~ u > O, t ~ t• . .'lote that A1 is the set of points on the 

strain-softening portions of the u(x)- c(s) constitutive relations, A12 is the set 

of points in A1 wherc clastic unloading unitiates precisely at the time t, A2 is 

the set A. \A 1 and A ll is the set A 1 \A12 . :-Jote also that for ali x E A2 the right 
stress and strain rates at time t(~ I*) are rclated by 

ü(x) = E2 i(x) I 

where (compare wit.h {11) and (30)) 
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4K(x) u• 
1 - E( x) , for some O" E]O"• ,O"• (,if x E A2 \A2 

(31) 

For t ~ t* and u'* ~ u 2: O the elongation ó is thus related to the stress O" by 

Ó= -- 1+ 1 1 [ 
At 2K(x) 

1 
_ 4K(x) O" 

E(x) 
r dx 

dx +O" JA'1 E2(x) ' 

wbile the corresponding (right) rates are related by 

6 . · [ 1 dx ] 
= u - Au E(x)Jl- 4KJt)u + f dx + r dx 

x) An E12lxJ JAz E2('X} 

The (right) s lope of the O" versus é curve at t ~ t'*, O" E]O, O"•] is tbus 

du 
dó 

1 

J dx /1 ~\x)) u J dx + r dx 
- A li 1!:'(i) v - E X) + A 12 'Ei'2(ij J A'J E2('XJ 

(32) 

H aving excluded "trivial" elastic unloadings of tbe whole bar (lengtb of A 11 > O 
for ali O" E]O, u*]), we may condude from (29) and (32) that, independently of 
tbe size and tbe distribution of An and A12 along Ai, the rigbt slope of the 
u versus ó curve at O" = O"* is always equal to the nullleft slope of that curve 
at tbe sarne point. This means tbat tbe equilibrium point at the maximal load 
( u = u '*) is a point of tangent bifurcation from which an infinite number of 
equilibrium trajectories emanates. Tbese trajectories differ from each otber 
on the size and the distribution of softening and unloading portions along the 
finite-length region of minimal strength (Ai). ln addition, all tbe points in 
these post-bifurcation trajectories are also bifurcation points at which different 
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sizes and distributions of Au and An in A1 also originate an infinit.e number 
of distinct solutions. Tbese additiona.l bifurcations are not in general tangent 
bifurcations. For a discussion on tbe stability of these bifurcated trajectories in 
related problems see [2). FinalJy we observe that expression (32) a.lso shows tbat. 
a snap-back ma,y also occur in a continuous bar: when the softening portion 
An of a bar and the stress u are sufficiently small tbe slope du/d6 may become 
p08itive. 

ACKNOWLEDGMENT 

This work was suported by JNICT (Portugal) and CNPq (Brasil). 

REFERENCES 

[1) René Billardon, Jorge G.S. Patiiío, «üne Dimensional Softening and Stabil­
ity Due to Continum Damage" , COBEM 87, IX Congresso Brasileiro de 
Engenharia Mecânica, Florianópolis, SC, Dezembro 1987, pp. 491--493. 

[2] Gianpietro dei Piero, Rubens Sampaio, "Localization in Damage and 
Plasticity Predícted by a Principie of Minimum Dissipation Rate" (in 
preparation). 



RBCM - J. of the Braz.Soc.Mech.Sc. 
Voi.XIV- n9 4 - 199! 

ISSN 01()()..7386 

Impresso no Brasil 

DINAME 93- V Symposium on 
Dynamic Problems of Mechanics 
March 01-05, 1993 - Santa Catarina - Brasil 

Sponsor: ABCM - Associação Brasileira de Ciências Mecânicas 
Organization: Comittee of Dynamics, ABCM 

DINAME is a symposium held bi-yearly since 1986. It is already a well 
established forum for significant participation of very known international 
researchers in dynamics. ln the last four meetings, the number of participants 
bas grown from about eighty to over a hundred and twenty, with about twenty 
per cent being from abtoad. The meetings are always held in a quiet and 
pleasant hotel, on a friendly regime of immersion, with intense interchange 
of knowledge and information amongst participante. Further, a.ll the tecnical 
sessions occur in just one room, so that every single work is addressed to all 
participants. ln parallel witb the symposium, a series · of short courses are 
offered by brazilian and foreign specialists to practicing engineers. 

The V DIN AME will be held in the Pla.za Caldas da Imperatriz. Thís is a first 
class hot~l witb complete infra--structure for sports, leisure and meetings. It 
is located in a mountainous region surrounded by a luxurious green unspoilled 
area. The hotel is only about fourty minutes by car or bus from Florianópolis, 
the capital of Santa Catarina state, where about fourty two white fine sand 
beaches stand. Arrangements can be made for those wishing to stay in 
Florianópolis after the symposium. 

Over seventy papers from brasilia.n researchers and other eíghteen from relevant 
foreigners have been accepted. They come from various countries, such as 
Coreia, France, England, USA, Switzerland, Germany and Czechoslovakia. 

The following short courses will be offered to participant engineers: Robot 
Vision and Autonomous Vehicles (Prof. Dr. V. Graefe/Munchen); Método de 
Elemento Finitos em Aplicações na Indústria (Prof. C.A. Almeida/PUC~Rio); 
Random Vibrations of Structures (Prof. I. Elishakof/Florida); Análise Modal 
Experimental (Profs. P.R. Kurka and C. Arruda/Campinas); Complementary 
To pies on Model Analysis (Prof. D.J. Ewins/London); Monitoramento de Mag. 
Rotativas J (B& K do Brasil); Monitoramento de Maq. Rotativas II (Prof. 
Arthur Ripper/UFRJ-Rio). To the participante, hands on session on modal 
identification will be provided by MTS Sistemas do Brasil Ltda. 

For further informa.tion please contact: 
Prof. José J. de Espindola 
Lab. de Vibrações e Acústica, Depart<? de Engenharia Mecânica 
Universidade Federal de Santa Catarina, C.P. 476 
88049 - Florianópolis, SC - Brasil 
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OBJETIVO E ESCOPO 

A Revista Brasileira de Ci~ncias Mecânicas visa a publicação de trabalhos voltados ao projeto, 
pesquisa e desenvolvimento nas grandes áreas das Ci~ncias Mec4nicas. É importante apresentar 
os resultados e as oondusOes dos trabalhos submetidos de fonna que sejam do interesse de 
engenheiros, pesquisadores e docentes. 

O escopo da Revista é amplo e abrange as áreas essenciais das Ci~ncias Mecânicas, incluindo 
interfaces oom a Engenharia Civil, Elétrica, Metalúrgica, Naval, Nuclear, Química e de Sistemas. 
AplicacOes da Física e da Matemática à Mecânica também serao consideradas. 

Em geral, os Editores incentivam trabalhos que abranjam o desenvolvimento e a pesquisa de 
métodos tradicionais bem como a introdução de novas idéias que possam potencialmente ser 
aproveitadas na pesquisa e na indústria. 

AIMS AND SCOPE 

The Joumal of the Bruilian Society of Mechanical Sciences is ooncemed primarily with the 
publication of papers dealing with design, research and development relating to the general arcas 
of Mechanical Sciences. Jt is important that tbe results and tbe oonclusions of the submitted papers 
be presented in a manner which is appreciated by practiciog engineers, researcbers, and educators. 

The scope of the Journal is broad and enoompasses essential areas of Mechanical Engineering 
Scienc.es, with interfaces with Civil, Eletrical, MetaUurglcal, Naval, Nuclear, Chemical and System 
Engineering as weU as with the areas of Physics and Applied Mathematics. 

ln genen1~ tbe Editors are loolóng for papers oovering both development and research of 
traditional methods and the introduction of nove! ideas which have potential application in science 
and in the manufacturing industry. 

Notes and Instructions To Contributors 

1. The Editors are open to receive contríbutions from ali parts of the world; manuscripts for 
publlcation shouJd be sent to lhe Edhor-in-Chief or to the appropriate Associate Editor. 

2. (i) Papers offered for publication must contain unpublished material and will be refereed and 
assessed with reference to the aims of tbe Joumal as stated above. (ii) Reviews should 
consti~ute an out~tanding criticai appraisal ef published materiais and will be published by 
suggestion of lhe Editors. (iii) Letters and communications to the Editor should not exceed 
400 words in length and may be: Criticism of articles recenUy p1,1bllshed in the Joumal; 
Preliminary announcements of original workof importance warranting immediate publication; 
Comments on current engineerlng matters of considerable actuality. 

3. Only papers not previously publlshed will be accepted. Authors must agree not to publisb 
elsewhere a paper submitted to and accepted by tbe Joumal Exception can bc made in some 
cases of papers published in annals o r proceedings of conferences. The decision on acceptance 
of a paper will be taken by the Editors considering the reviews of two outstanding scientists 
and its originality, and contribution to science and/or tecbnology. 

4. All contributions are to be in Englisb or Portuguese. Spanish Wlll also be considered. 

5. Manuscriptssbould begin with the úUe of the article, including the english title,and the autbo.r's 
na me and address. ln tbe case of co-autors, both addresses sbould be clearly indicated.lt follows 
the absttact; if tbe paper's language is different frorn english, an extended summary in this 
language should be included. Up to five words·for the paper are to be given. Next, if possible, 
sbould come lhe nomenclature list. 

6. Manuscripts sbouJd be typed with double spacing and with ampJe margins. Material to be 
published should be submitted in tripllcate. Pages should be numbered oonsecutively. 

7. Figures and line drawing should be originais and include ali relevant details; only excclent 
photocopies sbould be sent. Photographs should be sufficienUy enlarged to pennit clear 
reproduction in balf-tone. lf words or numbers are to appear on a photograph tbey should be 
sufficiently large to pennit the necessary reduction in size. Figure captions sbould be typed on 
a separate sheet and placed at the end of the manuscripi. 
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