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Editorial

A Associagao Brasileira de Ciéncias Mecanicas pode, com orgulho, falar
em tradicdo e continuidade da REVISTA BRASILEIRA DE CIENCIAS
MECANICAS. Ao longo de 14 anos, esta publicagao vem espelhando a
produgédo cientifica de nossa comunidade de pesquisadores. Chamada a vida
sem setembro de 1979 pelo seu primeiro editor, o Prof. Luiz Bevilacqua,
permaneceu em suas maos até dezembro de 1983; sua continuidade foi garantida
pelo Prof. Rubem Sampaio até julho de 1988, quando o atual corpo de
editores a assumiu. Passamos por um periodo de imensas dificuldades
econémicas. Embora irregular, os drgaos governamentais tem mantido o apoio
a publicagdo desta Revista. Assim, entregamo-la em dia ao nosso sucessor
Prof. Leonardo Goldstein incorporando uma série de pequenas modifica¢oes
que profissionalizaram o trabalho: malor homogeneidade temdtica, maior
uniformidade editorial, lombada e véirias outras. Embora nunca tenha sido
mencionada a palavra mandato, os trés periodos acima sao de 4,5 anos,
caracterizando pelo menos uma curiosa coincidéncia. Ao encerrar esta fase,
apresentamos algumas estatisticas que permitirdo uma avaliacao critica da
evolugdao da Revista.

Nos seus primeiros 09 anos de existéncia, a Revista publicou 140 artigos, em
29 niimeros (4,8 artigos/nimero) de 152 autores diferentes, pertencentes a 33
Instituigdes Nacionais e 22 Estrangeiras. Destes, 28,5% foram escritos em inglés
e 3,6% em espanhol. Eles, em média, apresentam 13,3 paginas. As Institui¢oes
mais presentes foram a PUC-Rio, cujo nome consta como afiliagio de pelo
menos um dos autores em 31,5% dos artigos, a UFRJ e o LNCC/CNPq com
11,5% cada, CTA/ITA (9,3%), UFSC {8%), UNICAMP (4,3%), INPE (3,5%),
UFU (3%) e outras.

A atualizagdo destes niumeros para o periodo atual (4,5 anos) permite
contabilizar 84 artigos (4,9 artigos/numero), de 138 autores pertencentes a
25 Institui¢bes Nacionais e 24 Estrangeiras. Destes autores apenas 30 fazem
parte do rol dos autores antigos. A analise destes numeros mostra uma
diversificagdo maior de seu piiblico autor. A porcentagem da presenca do nome
das Instituigoes pelos artigos mostra a PUC-Rio com 19%, a UFRJ (10,7%),
UFSC (9,5%), CTA/ITA (8,3%), LNCC/CNPq (7,1%), UFU (7,1%), UFMG
(4,8%), UNICAMP (4,8%). Houve também no periodo um aumento de mimero
de artigos em inglés (49,4%), mantendo-se os em espanhol (3,4%).

Sao submetidos em média 25 artigos por ano e publicados 20, com uma média
de 19 paginas por artigo. O niumero reduzido de artigos submetidos caracteriza
um problema congénito a comunidade cientifica brasileira: tendo em vista as
particularidades das publicagdes em anails de congressos, rapidas e de revisao
mais simples, quando um autor prepara um artigo para uma revista, prefere



Editorial

faze-lo em uma revista editada no exterior. Por isso encaramos como um sucesso
a Revista atualmente ter a metade dos textos em inglés.

QOutra andlise realizada procura levantar a distribuigdo por areas dos artigos
publicados, visando avaliar a criagdo nesta gestao, das editorias associadas. O
resultado obtido entre 1988 e 1991 indica 54% dos artigos em Ciéncias Térmicas,
24% em Mecanica dos Sélidos, 12% em Dindmica, 7,5% em Fabricagio e
Materiais e 2,5% em Métodos Numeéricos, Se isto representa a demanda real
da comunidade, o nivel de atuagdo do respectivo editor ou uma mistura de
ambos fatores, que deixamos como interrogagao na cabega do leitor. Todavia,
seu reflexo ja se dara na composi¢ao do novo corpo de editores.

Cabe mencionar ainda que os editores associados atuaram com uma autonomia
a altura de suas idiossincrasias, mantendo-se o controle de recebimento e
de publicagao com o editor chefe. A descentralizagdo funcionou bem, mas
de acordo com o que cada um definiu de objetivos para si. A publicacdo
final viabilizou-se em grande parte pela atuagdo do Presidente da ABCM na
obtencdo dos recursos tendo os trabalhos de digitagdo, de corregao e de grafica
permanecido no Rio de Janeiro.

E sempre bom saber que chegamos a um porto com a consciéncia da missao
cumprida. Agradecemos aos autores e leitores e, em especial, aos revisores que
nos ajudaram a manter o padrao da Revista.

Os Editores

The main effort in editing a scientific journal in Brazil is to guarantee its
continuity. After three periods of 4.5 years, each under the responsibility of
a different editor but always oriented by the goals of the Brazilian Society
of Mechanical Sciences, our journal is still a mirror of the brazilian related
scientific production. The main achievements in this last period are certainly
the more homogeneous numbers concerning the research areas, the increase
to about 50% on the number of english published papers and the spread of
authors over a large number of institutions, representing a more diversified
group of authors. In spite of a non-regular scheduling of publication we did
not lose continuity as we kept publishing 4 numbers every year: and for that
we thank very much to aunthors and readers of the english language.

We still would like to have many more papers submitted - and we need it to
justify the existence of the journal to our financing agencies. All the difficulties
to get this proposal are discussed over and over by ABCM members but we have
reached to a point when some concret actions are needed, so that the authors are
aware of the advantages of publishing in our country. Contmmt.y and tradition
are certainly ones; the scientific level and the international distribution are
other requisites. There are still several others that the next editor of RBCM,
Prof. Leonardo Goldstein, may try. We wish him a good luck in this endeavor.

The Editors
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ANALYSIS OF COMPOSITE LAMINATES USING
VARIABLE KINEMATIC FINITE ELEMENTS

ANALISE DE LAMINADOS COMPOSTOS UTILIZANDO
ELEMENTOS FINITOS COM CINEMATICA VARIAVEL

J.N. Reddy

D.H. Robbins, Jr.

Department of Mechanical Engineering
Texas A& M University

College Station, Texas 77843-3123
USA

ABSTRACT

Traditionally, composite laminates are treated as equivalent-single layers (ESL)
by integrating through the laminate thickness. However, they are inadeguate in
correctly modeling the response characteristics of thick composites and localized
phenomena such as free-edge effects, delaminations, and three-dimensional effects.
Layerwise theories are proposed to account for these effects. Various equivalent
single-layer thoeries and layerwise theories are reviewed, and an efficient and
robust computational procedure based-on variable kinematic finite elements and mesh
superposition technique is proposed. The computational procedure developed by the
authors permit a convenient, accurate and economic determiantion of ply level stresses
within localized regions of interest in practical laminated structures.

Keywords: Composite Laminates s Free-Edge Effects « Delamination = Three-
Dimensional Effects = Variable Kinematic Finite Elements s Mesh Superposition
Technique

RESUMO

Tradicionalmente laminados de materiais compostos sdo tratados como sendo equiva-
lentes a uma tnica camada, inlegrando através da espessura do laminado. Entretanto,
sdo inadequadas para modelar corretamente as caracteristicas de materiais compostos
espessos, os aspectos dindmicos de materiais compostos finos e espessos e em localizar
fenémenos tais como o efeito da borda livre, delaminagdo e efeitos tridimensionass.
Teorias lamina a lamina sdo propostas para explicar os ultimos. Neste trabalho, tanto
teorias de uma tinica camada equivalente, como teorias ldmina a ldmina sdo revisadas,
e uma unificagdo deslas teorias e um procedimento computacional eficiente e robusto,
baseado em elementos finilos com cinemdtica varidvel e na técnica de superposigdo
de malhas sdo propostos, O modelo tedrico e o procedimento computacional desen-
volvidos pelos autores permite uma determinagdo conveniente, precisa e econdémica
das tensées a nivel de cada ldmina dentro de regides localizadas de interesse em es-
truluras laminadas de interesse prdlico.

Palavras-chave: Laminados Compostos s Efeito de Borda Livre » Delaminagio =
Efeitos Tridimensionais = Elementos Finitos com Cinematica Variavel = Técnica da
Superposigao de malhas

Invited Lecture Presented at Tth SIBRAT, Floriandpolis, Brazil
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INTRODUCTION

Composite materials consist of two or more different materials that are
combined together to achieve desirable structural properties (e.g., stiffness,
strength, low density, impact strength, so on) that the constituent materials,
acting alone, do not exhibit. Composites are used in space and underwater
structures, medical prosthetic equipment, sports equipment, automobiles, and
electronic circuitry. Because of the increased use of composite materials,
polymer chemists, material scientists and mechanics community are working
to develop better material systems, structural models, and analysis methods to
assess the strength and reliability.

Composite materials are made in different forms. Often they are made in the
form of layers, known as laminae. A typical layer may consist of fibers, long
or short, reinforced in a matrix material, The layers are then used to form a
composite laminate of desired shape and thickness. Because of the different
material properties of differente layers, the resulting laminate is in general
anisotropic, and its global deformation is characterized by complex coupling
between extension, bending and sheafing modes. In addition, composite
laminates exhibit many unique localized phenomena such as free edge effects,
delamination, matrix cracking, fiber breakage, and complex load redistribution
as the laminate undergoes continuous damage (i.e., microscopic failures).

Current laminate theories can be divided into two broad classes based on the
assumed variation of the displacement field through the laminate thickness (see
[1-3]): the “equivalent single-layer” theories, and the layerwise theories. The
equivalent single-layer theories (or ESL theories) are characterized by displace-
ment components that are assumed to be C'—continuous (i.e., displacements
as well as strains are continuous) through the laminate thickness. The as-
sumed variation of the displacement components through the laminate thick-
ness allows the virtual work statement to be pre-integrated with respect to
the thickness coordinate, thus reducing the 3-D elasticity problem to a 2-D
problem (i.e., the primary variables are functions of the in-plane coordinates
only). For laminated composite plates and shells, this amounts to replacing
the heterogeneous laminate with a statically equivalent (in the integral sense),
single, homogeneous layer. For many applications, the ESL models provide a
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sufficiently accurate description of the global laminate response (e.g., trans-
verse deflection, fundamental vibration frequency, critical buckling load, force
and moment resultants); however, the ESL models are often inadequate for
determining the 3-D stress field at the ply level. The main advantages of the
ESL models are their inherent simplicity and their low computational cost due
to the relatively small number of dependent variables that must be solved for.
The major deficiency of the ESL models in modeling composite laminates is
that the transverse strain components are continuous across interfaces between
dissimilar materials; thus, the transverse stress components are discontinuous
at the layer interfaces. This deficiency is most evident in relatively thick lami-
nates, in localized regions of complex loading or near a geometric discontinuity.

Most engineering structures where composites are used are complex. They
contain geometric as well as material singularities and regions of 3-D stress
states. In the analysis of composite laminates with imbedded delaminations,
free edges, or regions of 3-D stress fields, one must use a theory based on 3-D
kinematics and develop a computational model that is more efficient than the
conventional 3-D finite element model. These requirements motivated several
researchers to develop layerwise laminated plate theories. Unlike the ESL
theories, the layerwise theories assume separate displacement field expansions
within each material layer, thus providing a much more kinematically correct
representation of the strain field in discrete layer laminates, and allowing
accurate ply level stresses to be determined.

In layerwise theories, the displacement field is expanded independently within
each layer. Mau [4] used the first-order shear deformation kinematics through
each layer. He used the interlayer shear stresses as Lagrange multipliers to
satisfty the displacement continuity at the layer intefaces, and the governing
equations were derived by minimizing a modified total potential energy
functional (in the spirit of hybrid formulations of Pian and his associates).
Rehfield and Murthy [5] and Rehfield and Valisetty (6] assumed layerwise
distribution of the six stress components, and the layer stress-strain and strain-
displacement relations are used to compute the displacements by integration.
The constants of integration are determined such that the displacements are
continuous at layer interfaces. Murakami [7] and Toledano and Murakami
(8] used independent expansions of the displacements and stresses through
each layer, and Reissner’s mixed variational principle was used to obtain
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the governing equations. Hinrichsen and Palazotto [9] used cubic splines to
‘express the displacements through each layer. Cubic splines, by definition, give
continuity of the displacements and their derivatives at the layer interfaces.
The continuity of the transverse strains at layer interfaces is exactly what
one wants to avoid while achieving the continuity of the stresses. These
and other layerwise models (see Srinivas [10], Epstein and Glockner [11],
Epstein and Huttelmaier [12] and Di Sciuva [13,14]) are developed for various
reasons other than to model three-dimensional effects such as delaminations
or free-edge stress fields. Further, these models are algebraically complex and
computationally very expensive, comparable to that of 3-D models, while not
having any advantages over the 3-D models.

In some layerwise theories, displacement continuity across layer interfaces is
enforced by constraint equations that allow some of the dependent variables
to be eliminated during the model development. Alternately, some layerwise
models are developed by organizing stacks of 3-D finite elements. However,
in the layerwise theory of Reddy: [15,16] the transverse variation of the
displacement field is defined in terms of a 1-D, Lagrangian, finite element
representation, that.automatically enforces C? continuity of the displacement
components, thus resulting in trasverse strains that are piecewise continuous
through the laminate thickness. The transverse variation of the displacements
can be represented to any desired level of accuracy by simply increasing the
number of 1-D finite elements (i.e., numerical layers) or increasing the order of
the transverse interpolation polynomials. Thus the layerwise theory of Reddy
provides a generalization of the layerwise displacement field concept. The basic
idea and accuracy of the layerwise theory of Reddy [15,16] will be discussed in
Section 3. The extension of the layerwise laminated plate theories to laminated
shells was carried out by the senior author [17]. The most significant aspect
of the layerwise theory of Reddy is that it has a data structure that saves
computational time when compared to the conventional 3-D displacement finite
element model, while giving exactly the same results for comparable meshes.

While layerwise finite elements allows accurate determination of 3-D stress
fields, they are computationally expensive to use due to the large number of
degrees of freedom per element, comparable to stacks of 3-D finite elements.
Thus it is often impractical to discretize an entire laminate with layerwise finite
elements. Further, for many laminate applications, the indiscriminant use of
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layerwise elements is a waste of computational resources since significant 3-D
stress states are usually present only in localized regions of complex loading
or geometric discontinuities. A logical idea is to subdivide the laminate into
regions that can be adequately described by ESL models and other regions
that require some type of layerwise model (i.e., a simultaneous global/local
strategy). In this way, the most appropriate model is chosen for each
region, thereby increasing solution economy without compromizing solution
accuracy. Such global/local schemes can be developed using established
finite element technology (see [18] for a review); however, currently available
methods make implementation extremely cumbersome. The primary source of
difficulty is the enforcement of displacement continuity across boundaries that
separate incompatible subdomains. Currently established methods of acheiving
displacement continuity between incompatible regions include: (1) multi-point
constraint equations via Lagrange multipliers, (2) penalty function methods,
and (3) special transition elements. Each of these methods are too cumbersome
for extensive use under a wide veriety of operating conditions. Thus, there is
a need for the development of a global/local analysis procedure that provides
greater robustness, simpler computer implementation, and wider applicability
to practical composite structures.

For a global/local model to be successful and see extensive use, it must be
robust,'simple to develop, convenient to use, and applicable to a wide range of
practical problems. To this end, the overall objective of this study is to develop
a methodology that will allow these qualities to be realized in a finite element
code. By developing methods that significantly increase the adaptability and
convenience of the global/local finite element code, the operating envelope is
extended, since more types of problems become tractable in terms of model
development, much in the same way that automatic mesh generators allow the
creation of models that would be intractable to create manually.

In the present paper an overview of the equivalent single-layer theories is
presented, the layerwise theory of Reddy is reviewed, and a discussion of
a hierarchical, displacement-based, global-local computational procedure is
presented. To permit the accurate, efficient, and convenient analysis of localized
3-D effects in laminated composite plates and shells, a hierarchical (and,
perhaps an iterative), global/local finite model is proposed using a multiple
assumed displacement field. The multiple assumed displacement field concept
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is used on two different levels. First, a hierarchical, variable kinematic (and
constitutive), master finite element is developed by superimposing several
assumed displacement fields of differing levels of kinematic complexity in the
same finite element domain. Second, the resulting variable kinematic elements
are used in a mesh superposition technique that allows a local mesh of variable
kinematic elements to be superimposed on an existing global mesh of ESL
elements. The resulting model allows the coupling of subdomains that are
incomplatible with respect to both the in-plane and transverse discretizations.
In addition, the method allows different sections of the computational domain
to be described by different mathematical models. Thus localized, three-
dimensional subregions can be discretized with a high order, layerwise mesh to
extract accurate 3—D stress fields, while the surrounding regions are discretized
with an ESL mesh.

EQUIVALENT SINGLE-LAYER LAMINATE THEORIES

In the classical laminated plate theory, it is assumed that (the Kirchhoff
hypothesis),

1. straight lines normal to midsurface do not undergo deformation along their
lengths (i.e., inextensible),

2. straight lines perpendicular to the midsurface before deformation remain
straight after deformation, and

3. the straight lines rotate such that they remain perpendicular to the
midsurface after deformation.

The first two assumptions imply that the transverse displacement is indepen-
dent of the thickness coordinate and the transverse normal strain is zero, The
third assumption results in zero transverse shear strains. Thus, in the classical
laminae theory all transverse stresses are neglected.

Shear deformation theories are those in which the transverse shear stresses are
accounted for. These theories are based either on assumed displacement field or
assumed siress field. In the displacement-based theories the three components
of the displacement vector are represented as polynomials in the thickness
coordinate. The coefficients of the polynomial are functions of the in-plane
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coordinates. The governing equations are then derived using the principle of
virtual displacements. An equivalent single-layer theory is called the n-th order
plate theory if the in-plane displacements are expanded up to and including the
n-th power in the thickness coordinate.

The first-order shear deformation theory is based on the following displacement
field:

ui(z,y,2) =u+ 29, uz = (z,9.2) = v+ 243, uz(z,y,2) = w (1)
Here u = u(z,y), v = v(z,y), and w = w(z,y), denote the displacement
components in the z, y, and z directions and ¢ = ¢(z,y) and ¢2 = ¢2(z,y)
are the rotations of a transverse normal about the y— and z—axes, respectively.
Note that the transverse inextenmsibility is assumed by assuming that the
transverse deflection is constant through the thickness, which can be removed
if one wishes. In the first-order theory we account for layer-wise constant states
of transverse shear stresses [i.e. assumption (iii) of the classical plate theory is
removed]. However, the actual distribution of the transverse shear stresses is
quadratic or higher. The discrepancy is corrected in computing the shear force
resultants by the introduction of shear correction coefficients. The first-order
shear deformation theory for isotropic plates is often referred in the literature
as the Mindlin or Reissner-Mindlin plate theory. Since the kinematics of the
first-order theory was due to several others before Reissner and Mindlin (see
[19-22]), it is most appropriate not to name the theory after these authors.

Second- and third-order theories have also beer proposed in the literature
(see [23-29]). In the third-order theory we account for layer-wise quadratic
approximation of transverse shear stresses [i.e. assumptions (ii) and (iii) are
removed]. The third-order theory does not require sh~ar correction factors
because it accounts for quadratic distribution of transverse shear stresses.
There are a number of third-order theories proposed in the literature [24-29].
Many of these theories can be obtained as special cases of the general third-
order theory presented by Reddy [29]. The generalized third-order theory of
Reddy is based on the displacement field:

u(z,y,z) =u+az g—:’ + Bzdy + A%y + 7230,

ow

Oy
ua(z,y,2) = w+ pzys + 92’63 (2)

u(z, ¥, z2) = u+az + B2ég + Az + 7230,
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Here (u,v,w), denote the displacement components in the z, y, and 2
directions, ¢; and ¢ are the rotations of a transverse normal about the y—
and z—axes, respectively, and ¢; and #; are undetermined functions. All of the
generalized displacements are functions of z and y. The displacements fields of
various theories can be obtained from Eq.(5) by giveing proper values to the
constants, called tracers: &, 8, A, v ,p, and 5. For example, we have,

Classical theory: a = -1, f=A=y=u=79=0;

First-order theory: a =0, f=1, A=sy=u=9=0;
Second-order theory: a =0, f=1, A=1, y=0;
Third-order theory of Reddy [27,28]: a=0, 8=1, A=0, y=1, pu=n=0;
4 dw
4 ow
03 =0. (3)

The displacement fields of many other single-layer third-order theories can be
deduced from the present theory. Table 1 of Reference 29 shows the relationship
between the displacements used in various third-order theories.

In most plate problems transverse normals do not experience significant
extensions in their lengths, and therefore one can assume, without loss of
accuracy, that ua is independent of the thickness coordinate (ie., u = g =
0). However, such an assumtion is not necessary in developing higher-order
theories. In order to have the same order terms in thickness coordinate from
each of the displacement components to the strains of a third-order theory,
Reddy [29] used the displacement field (2) and developed a strain-consistent
third-order theory.

THE LAYERWISE LAMINATE PLATE THEORY OF REDDY
Displacement Field

Recall that all equivalent single-layer laminate theories are based on one dis-
placement expansion throughout the thickness of the laminate. Consequently,
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the transverse strains are continuous through the laminate thickness. Such
theories cannot accurately model laminates made of dissimilar material layers.
Noting this restriction of the traditional plate theories, Reddy [15] proposed a
layerwise displacement plate theory. The main ideas underlying the theory are
presented here for a laminated circular cylindrical shell.

The layerwise theory of Reddy is based on the following displacement expansion
through the laminated shell thickness. The i-th displacement component is
expressed as,

N
wi(z,p,2) = Y Ul (z,y) 97(2) = U/ (2.) @'(2) (4)
J=1
where i = 1,2,3, N is the number of subdivisions (e.g., finite-element

discretization) through the thickness of the laminate, and &’ are known
finctions of the thickness coordinate, ., Summation on repeated indices is
implied in Eq.(4). While the same interpolation functions are used in Eq.(4)
for all three displacements for simplicity, independent interpolation of the
displacements (especially uz) can be used. The functions &7 are piecewise
continuous functions, defined only on two adjacent layers, and can be viewed as
the global Lagrange interpolation functions associated with the J-th interface of
the layers through the laminate thickness, and (U, Vj, W;) denote the nodal
values of (u,v,w) at the nodes through the thickness. Because of this local
nature of @ the displacements are continuous through the thickness but their
derivatives with respect to z are not required to be continuous. This implies
that the transverse strains can be discontinuous at discrete layer interfaces,
leaving the possibility that the interlaminar transverse stresses computed
from the layer constitutive equations can be continuous. The inplane strains
(¢z.€y,€xy) will be continuous but the inplane stresses (oz,0y,04y) will be
discontinuous at layer interfaces because of the difference in material properties
of adjacent layers. The resulting theory will have 3N variables and as many
differential equations in two dimensions. An advantage of the layerwise theory
18 that it requires only 2-D finite elements.

The value of N in Eq.(4) can be appropriately selected. When N is chosen such
that at least one element per layer is used, the interlaminar stress distributions
can be determined accurately. The sublaminate concept can be used to model
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several indentical layers as one equivalent layer, in which case N is less than the
number of layers in the laminate. The layerwise theory also yields single-layer
theories as special cases, as shown by Reddy [15].

Strains in the Shell

Here we consider a laminated composite circular cylindrical shell with radius
R, lenght L, and total thickness h. We use the strain-displacement relations of
Donnell’s theory, but also include the transverse strains and the von Karman
nonlinear strains. We have (see Reddy [18])

2 Ou  1(0w\"_ Bus o1 1 (0w 1) (fﬂ J)
sl—Bz+2(83) b 2(3:" Pl

i 2
ez=8—"+%(0;"—’) +% + gy 2(3'”"4") (fi”iq>“')+ﬂ@f

By Ay Ay dy oy e
L, :
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dv  Ow 2. d¢1 6w; I vr -1
““HmtH R Uty Y rRY
I

Oz 3:_“! dz Oz

ﬂu v 6w dw m vy 1 (awr 1) (3“’.} J)
e 3y 8.1: 8z oy (3y+3:)(b+3¢ 8y¢ - )

Governing Equations
The governing equatior 5 for the nodal variables (Ujy,Vjy, W) can be derived

using the principle of virtual displacements. The equations of equilibrium of
the layer-wise theoiy are:
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for I =1,2,...,N, where the resultants are defined by

h/2 h/2
M/ j o;®!(z) dz, SV = / o;®!(z) @' (z) dz, (i=1,2,6)
h/2 —h/2

hi2 gpl a2 gl hf2 gl
Q{ — / a’sd— dz, Q£ = / o’.;—d-— dz, Qé = / g3—— dz,
-nj2 Az -hj2  dz —h/2

hfz hiz
K{ = j os®ldz, Ki= j o4®ldz . (7)
—h/2 —h/2
Thee are 3N differential equations in 3N variables (Uy, V7, Wr).

Numerical Results

Numerical results are presented here to illustrate the accuracy of the layerwise
theory. The numerical results were obtained using a displacement finite element
model of the layerwise theory described above. The reader is referred to the
report by Robbins and Reddy [30] for a description of the finite element model
and additional numerical results.

Consider a cross-ply laminate (0/90/0) subjected to sinusoidal transverse load
at the top surface of the plate. This problem has the 3-D elasticity (see
Pagano [31]) solution. The plies are of equal thickness (h/3), and the material
properties of each ply are:

Ey=25msi, E;=1msi, Ez=FE;, Gy3=05msi,

Gi1a=Gyp3=02msi, ry=1ra3=1r3=025. (8)

The intensity of the sinuscidally distributed load is denoted gg. Two different
finite element meshes are used. The two meshes differ form each other only
in the mesh refinements through the thickness. A 2 by 2 mesh of eight-node
quadratic elements is used in a quadrant of the laminate. The mesh used
through the thickness are as follows:

Mesh 1: Three quadratic elements through the laminate thickness (441 degrees
of freedom).
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Mesh 2: Six quadratic elements throught the laminate thickness (969 degrees
of freedom).

Figures 14 contain plots of nondimensional stresses (o1, 03, 04, 5) through the
thickness of the square laminate (b/h = 4). The stresses are nondimensionalized
as follows:

IE.'.l. =M (ﬂc, Qe, Z) hz/(bEQO)- &3 = aa(aC)GCt z)/qot
&4 = a‘i(“C: b{:! Z) h/(bqo)! 0_'5 — 65(b(.‘tal:lz) h/(ch,)‘ (9)

where a. = 0.105662(b/2), b, = 0.894338(b/2) are the (reduced order) gauss
points closest to the points of maximum stresses. The coordinate system is
taken in the midplane of the laminate, with the origin of the coordinate system
being at the center of the laminate. In Figures 1-4, the solid line represents the
exact 3-D elasticity solution of Pagano [31], the solid circles represent the finite
element stresses at the gauss points for Mesh 1, the open circles represent the
finite element solution at the gauss points for Mesh 2 (refined), and bronken
lines correspond to the classical and first-order theories. Excellent agreement is
found between the 3-D elasticity results and the finite element results based on
the layerwise laminate theory. The deflection w(z,y) coincides with the exact
3-D elasticity solution and is not shown here.

All stresses in the layerwise theory were computed in the post-computation
using the displacement field, linear strain-displacement relations, and linear
constitutive relations. The inplane normal stress (o) in the classical (CLT)
and the first-order (FSDT) theories were post-computed at the gauss points
using the constitutive equations. The transverse shear stresses (o4,05) in the
CLT was post-computed from the first two equilibrium equations of the 3-D
elasticity, whereas they are post-computed in the FSDT both from constitutive
and 3-D elasticity equations.

From the plot of the inplane normal stress oy, it is seen that both CLT and
FSDT predict wrong sigu of the stress-at the layer interfaces. This is due to
the fact that the stress is approximated in the classical and first-order theories
by a linear expansion. In trying to best approximate the nonlinear stress
distribution by a linear variation, both CLT and FSDT yield wrong interface
stress values. This can lead to inaccurate prediction of failure load and failure
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Figure 1. Distribution of in-plane normal stress (&;) through the thickness

of a simply supported, square (0/90/0) laminate under sinusoidal transverse
loading, L/H = 4.
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loading, L/H = 4.
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loading, L/H = 4.
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loading, L/H = 4.
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mode. The equilibrium-based stresses (04,05) from the single-layer theories
are in considerable error compared to the 3-D elasticity solutions; in fact, they
predict maximum value of o5 in the middle layer while the 3-D elasticity gives
in the outer layers. Note that the error introduced in the computation of the
inplane stresses (¢1,03,06) through constitutive equations will influence the
accuracy of the transverse stresses computed using the equilibrium equations.
The transverse shear stress computed in the FSDT by constitutive equations
is in qualitative agreement with the 3-D elasticity results. For all stresses, the
layerwise theory yields accurate results.

Discussion

The numerical results discussed for a simply-supported square laminate
(0/90/0) under sinusoidally distributed transverse load indicate that the single-
layer theories do not yield accurate interlaminar stresses, while the layerwise
theory of Reddy yields values that are in excellent agreement whith the 3-
D elascticity solutions. The inaccuracy of the single-layer theories in the
prediction of interlaminar and free-edge (not discussed here but can be found in
Robbins and Reddy [30,32]) stress distributions will be amplified in laminates
with higher degree of anisotropy and geometric and material discontinuities.
Although different refined single-layer theories have been developed to improve
stress distributions, it remains that none of the single-layer theories can give
accurate interlaminar stresses because they are not based on 3-D kinematics.
The layerwise theory of Reddy is a 3-D kinematic theory with a 2-D type data
structure that saves computational time compared to the 3-D displacement
finite element model.

While the finite element model based on the layerwise theory of Reddy allows
an accurate determination of 3-D stress fields, it is computationally expensive
compared to the single-layer theories. Therefore, the use of the layer-wise
elements in the modeling of a practical laminated structure is precluded, even
with the present day supercomputers. On the other hand, it is not necessary to
model entire structure with such refined elements. Use of the 3-D or layerwise
elements can be restricted to local regions of a structure where 3-D stress
fields exist, and the single-layer elements can be used in the remaining part of
the structure. Such an approach is called a global/local approach (see Reddy
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[18]). A hierarquical global/local computational procedure based on variable
kinematic finite elements is discussed in the next section,

VARIABLE KINEMATIC FINITE ELEMENTS

The variable kinematic, finite element is developed by superimposing several
types of assumed displacement fields within the finite element domain. In
general, the multiple assumed displacement field can be expressed as,

ua(€,1,¢) = uESLE 0, O + k¥ (60,0 + 2610, 0) (@=1,2,3) (10)

where u; and up are the local in-plane displacement components, and ug
is the local transverse displacement component, The coordinates £ and n
represent the local curvilinear in-plane coordinates and ( is the local transverse
coordinate. The underlying foundation of the displacement field is provided by
uESL(g n.¢) which represents the assumed displacement field for any desired
“equivalent single-layer” theory (e.g., the first order shear deformation theory).
The second term uLW (€, 1, ¢) represents the assumed displacement field for any
desired layerwise theory (e.g., the layerwise theory of Reddy). The layerwise
displacement field is included as an incremental enhancement to the basic ESL
displacement field, so that the element can have full 3-D modeling capability
when needed. Depending on the desired level of accuracy, the element can use
all, part, or none of the layerwise field to create a series of different elements
having a wide range of kinematic complexity. For example, discrete layer
transverse shear effects can be added to the element by including uf‘w(&q,()
and ugw(f,n,c), resulting in a type [ layerwise element (or LW1 element).
Further, discrete layer transverse normal effects can be added to the element
by also including u‘%w({‘ 1,¢), resulting in a type II layerwise element (or LW2
element). Finally, uE({,n,C) represents a simple displacement field that is
piecewise constant with respect to the thickness coordinate and is used to model
the kinematics of multiple delaminations [32,33]. Displacement continuity
is maintained between these different types of elements by simply enforcing
certain homogeneous essential boundary conditions, thus eliminating the need
for multi-point constraints, penalty function methods, or special transition
elements. Such variable kinematic plate elements have been developed by
Robbins and Reddy [34] and show much potential for a wide variety of
global/local composite plate problems; however, the concept needs to be
extended to general composite shells.
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To demonstrate the accuracy and efficiency of the variable kinematic finite
elements, a global/local analysis is performed to determine the nature of the
free edge stress field of the free edge effect in a thick, symmetric angle-ply
laminate under imposed axial extension. Consider a thick, symmetric, angle-
ply laminate (45/ — 45), subjected to axial displacements on the ends. The
laminate has a length of 2L, width 2W, and thickness 4h, with L = 10 W and
W = 8h (see Figures 5 and 6). Each of the four material layers is of equal
thickness h, and is idealized as a homogeneous, orthotropic material with the
following properties expressed in the material coordinate system:

Ep =20 x 10%psi, Ep=Ez=21x10%si,

Gpr =Gz = 085 x 10%psi, ppp =pLz = prz =021

where subscript L denotes the direction parallel to the fibers, subscript T
denotes the in-plane direction perpendicular to the fibers, and subscript z
denotes the out-of-plane direction. The origin of the global coordinate system
coincides with the centeroid of the 3-D composite laminate, The x-coordinate
is taken along the length of the laminate; the y-coordinate is taken along the
width of laminate; and the z-coordiante is taken through the thickness of the
laminate. Since the laminate is symmetric about the xy-plane, only the upper
half of the laminate is modeled. Thus the computational domain is defined
by (=L <2 < L,-W <y < W0 < z < 2h). The displacement boundary
conditions for this problem are:

“1[-5‘%3):“0- H][—L,y,Z]:U,

up(—L,0,0) =0, wuz(L,0,0)=0,

uz(z,y,0) =0

The variable kinematic finite elements are used in a global/local analysis to
determine interlaminar free edge stresses near the middle of one of the two free
edges (see Figures 5 and 6). The global region is modeled using first order shear
deformable elements; the local region is modeled with LW2 elements in order
to capture the 3-D stress state near the free edge. Five different finite element
meshes are used. The in-plane discretization for all five meshes is exactly the
same, consisting of a 5 X 11 mesh of eight-node quadratic 2-D finite elements.
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All elements have the same length (2L/5). However, the width of the elements
decreases as the free edge at (x, W, z) is approached. The widths of the eleven
rows of elements, as one moves away from the refined free edge are: h/16,
h/16, h/8, hf4, h/2, h, h, 2h, 3h, Bh, bh, where h is the ply thickness. The five
meshes differ only in the size of the local region that is discretized with LW 2
elements. The LW?2 elements used in the local region employ eight quadratic
layers through the laminate thickness (four per material layer). The thickness
of the numerical layers decreases as the (+45/ — 45) interface is approached.
From bottom to top, the layer thicknesses are 0.533h, 0.267h, 0.133h, 0.083h,
0.083h, 0.133h, 0.267h, 0.533h (see Figure 6).

The five meshes used in this problem are summarized below.

Mesh 1: 3 x 4 local mesh of LW?2 elements, centered about the point (0, W, 0).
The LW2 elements extend a distance of /2 away from the free edge (2354
active global degrees of freedom).

Mesh 2: 3 x 5 local mesh of LW?2 elements, centered about the point (0, W, 0).
The LW2 elements extend a distance of h away from the free edge (2740 active
global degrees of freedom).

Mesh 3: 3 x 6 local mesh of LW?2 elements, centered about the point (0, W,0).
The LW 2 elements extend a distance of 2h away from the free edge (3226 active
global degrees of freedom).

Mesh §: 3 x 7 local mesh of LW2 elements, centered about the point (0, W,0).
The LW2 elements extend a distance of 3h away from the free edge (3512 active
global degrees of freedom).

Mesh 5: 5 x 11 mesh of LW2 elements in the entire domain. This mesh is used
as a control mesh for comparison, (9116 active global degrees of freedom).

Figures 7 and 8 show the distribution of the interlaminar stress ... and o,
respectively, through the laminate thickness. All stresses are nondimension-
alized by multiplying them by the factor (20s0/Ep, where € is the nominal
applied axial strain of ug/2L). The stresses are computed at the reduced
Gauss points nearest the middle of the refined free edge, i.e., along the line
(=0.115L, 0.998W, z). In Figure 7, all four global/local meshes compare very
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Figure 5. In-plane discretization of a (45/—45), laminate under axial extension
(LW?2 = Layerwise elements; FSD = single-layer, first-order shear deformable
elements).
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well with the control mesh. In Figure 8 meshes 1 and 2 show some error; how-
ever, the distributions are qualitatively similar to the control mesh. Meshes 3
and 4 are practically indistinguishable from the control mesh.

Figures 9 and 10 show the distribution of the interlaminar stresses o,. and
0,;, respectively, across the width of the laminate near the (+45/ — 45)
interface. The stresses are computed at the reduced Gauss points closest to
the line (0,y,h), i.e., along the line (=0.115L,y,1.014h). In both Figures
9 and 10, the interlaminar stresses computed with meshes 3 and 4 are very
close to the stresses obtained with the control mesh. Once again, the stresses
computed with meshes 1 and 2 show a slight error; however, the distributions
are qualitatively similar to the other meshes.

CONCLUSIONS

The results of the above example problem suggest that highly accurate free
edge stress fields can be economically obtained using the variable kinematic
elements. As long as the local region completely encompasses the boundary
layer region where the interlaminar stresses are significant (i.e., meshes 3 and 4),
the global/local solution is indistinguishable from the control solution. Even
if the region does not extend the entire width of the boundary layer region
(i.e., meshes 1 and 2), the global/local solution was qualitatively similar to the
control solution, and the quantitative error was relatively small.

While the use of variable kinematic elements allow regions with different
transverse discretizations to be joined together, they still require that the in-
plane discretizations be ‘compatible. Thus the localized regions of layerwise
elements require the two-dimensional global mesh to contain transitiqn zones
to connect the coarse global mesh to the highly refined local mesh. These
transition zones are troublesome for several reasons;

1. The mesh of transition zones is more difficult to generate than the
more regularly discieiized regions, thus complicating the mesh generation
process.

2. Transition zones often result in highly distorted elements, possibly causing
numerical difficulties.
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3. Transition regions often result in excessive discretization for noncritical
regions, thus wasting computational resources.

4. Transition regions greatly reduce the adaptability of the model since the
entire finite element mesh has to be reformed each time the localized region
of interest is changed.

To circumvent the difficulties associated with transition zones, the recently
developed mesh superposition method (see [35]) will be used to allow two-
dimensional subregions with different in-plane discretizations to be joined
together. This method allows an independent, refined local mesh to be
superimposed on an existing global mesh. The displacement field within the
region of superposition is the sum of the displacement fields from both meshes.
The displacements in the local mesh serve as incremental enhancements to
the underlying global displacement field. In recently reported applications
of the mesh superposition method [36,37], both the global mesh and the
superimposed local mesh use finite elements based on the same mathematical
models. In contrast, the present proposed application of the mesh superposition
method involves overlaying a global mesh of ESL elements with an independent,
local mesh of variable kinematic elements. The resulting finite element
model would allow abrupt changes in mesh discretization and abrupt changes
in mathematical model type. The local overlay mesh can include ESL
elements and/or layerwise elements. The transition regions are no longer
necessary. Displacement continuity between the global and local regions is
maintained by simply enforcing homogeneous essential boundary conditions on
the global/local boundary. That is, the added incremental displacements are
zeroed on the global/local boundary. This process can easily be automated
and removed from further concern. Thus the inconvenience of using multi-
point constraints, penalty function methods, or special transition elements is
circumvented,

One of the primary advantages of the mesh superposition method is that local
meshes can easily be created and superimposed anywhere within the original
global mesh. Thus, several different potential “hot spots” can be investigated
(simultaneously or sequentially) without having to reformulate the global mesh.
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Within the context of the proposed computational procedure, several topics
require special investigation (see [34,38]):

1. Investigate the effect of maintaining transverse displacement continuity
across boundaries separating regions that explicitly model transverse
normal strain and other regions that implicity model transverse normal
strain.

2. Investigate the size and mesh density of layerwise mesh overlays necessary
for accurate local stress field determination.

3. Investigate efficient solution techniques that capitalize on the hierarchical
nature of the model, e.g., an independent global solution might serve
as a starting vector for an iterative solution technique. This would be
particularly advantageous for geometrically nonlinear problems in which
local refinement is unlikely to drastically change the global behavior.

4. Develop error estimators to determine when local stresses can be extracted
using post-processing instead of incorporating additional degrees of free-
dom in the structural model.

5. Develop strategies for modeling mechanisms of progressive failure.

6. Develop appropiate preconditioners to assure good convergence of iterative
solvers, particularly for highly nonlinear problems.
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ABSTRACT

Deformation of a thin shell is described entirely by three displacements of its reference
surface, No restrictions are imposed on magnitudes of the displacements, rotations,
strains and/or changes of curvatures of the surface. Ezplicit form of Lagrangian
incremental shell equations is derived for arbitrary configuration-dependent external
static surface and boundary loads as well as for arbitrary work-conjugate static and
geometric boundary conditions. The most general form of the Lagrangian buckling
equations for thin shells is presented.
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RESUMO

Neste trabalho o campo de deformagies de uma casca fina € inteiramente descrito por
trés deslocamentos definidos em sua superficie de referéncia. Nao hd restricées im-
postas sobre as magnitudes dos deslocamentos, rotagies, deformagées e/ou variagdes
de curvatura da superficie. Uma forma explicita das equagées incrementass la-
grangianas de cascas € obtida para carregamentos externos estdticos arbitrdrios, de
superficie e de fronteira, dependentes da configuracdo, bem como para condicées de
contorno arbitrdrias, geométricas e estdlicas de trabalho-conjugado. A forma mais
geral das equagdes lagrangianas de flambagem para cascas finas € apresentada.
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INTRODUCTION

Within the field of thin shell theory hundreds of specialized versions of shell
equations were proposed in the literature, each of them having a limited
range of applications. The specialized versions are usually derived assuming
different constraints on deformation or stress state in the shell space, restricting
the magnitudes of strains, displacements or rotations, discussing only special
material behaviour, shell geometry or external loads, using particular sets

of independent field variables in the resulting boundary value problem etc.,
[14=16].

The rapid development of computer hardware and software based on the
finite element method makes it possible to solve more and more complex shell
problems with sufficient accuracy. However, the shell finite elements available
in the literature are usually based on some particular simplified versions of shell
theory, and their applicability is restricted to the limited range of applicability
of the shell theory itself. Any change in underlying version of shell theory
results in the need of developing a new shell finite element, what makes the
shell analysis so complex and time consuming.

The aim of this paper is to present a unified formulation of a wide class
of non-linear theories of thin shells. In our development we apply only one
apparent assumption: the deformation of the shell as a three-dimensional body
is determined entirely by deformation of its reference surface. No restrictions
are imposed here on magnitudes of the displacements, rotations, strains and/or
changes of curvature of the reference surface. For different material behavicar
the reduction from three-dimensional solid mechanics to the two-dimensional
shell theory may have different analytic representation, which is treated here
as part of constitutive relations of the shell.

Let us note that members of that class of shell theories are various versions of
the classical linear and geometrically non-linear theory of thin isotropic elastic
shells based on the Kirchhoff-Love type constraints [16]. Another example
of member of that class is the bending theory of rubber-like shells developed
in [22], where the three-dimensional shell deformation was expressed through
deformation of its reference surface applying a relaxed normality hypothesis and
incompressibility condition. Still another members of that class are some simple
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versions of inelastic shell theory expressed entirely in terms of the reference
surface deformation as well, as discussed in [20], for example.

A common feature of that class of shell theories is that their equilibriurn condi-
tions have the same form following from the principle of virtual displacements
written for the reference surface. The geometry of undeformed reference surface
is usually the only one which is known in advance, and an arbitrary deforma-
tion of the surface can always be described by components of the displacement
vector u relative to the undeformed surface geometry. Therefore, the resulting
boundary value problem of the shell can always be expressed in the Lagrangian
description in terms of displacements as the only independent field variables.

The unified formulation of Lagrangian non-linear shell equations presented here
1s based on generalization of our results given in [19,15] for the geometrically
non-linear theory of elastic shells, which were extended in [22] into the Jarge-
strain bending theory of rubber-like shells. Our Lagrangian shell equations (8),
(9) are two-dimensionally exact for the shell reference surface. They are valid
for arbitrary configuration-dependent external surface and boundary forces and
moments, as well as for arbitrary work-conjugate set of static and geometric
boundary conditions. In order to allow correct numerical implementation,
the Lagrangian shell equations are presented in Section 4 in the consistent
incremental form applying the general Newton-Kantorovich method [6] to the
functional (6) of principle of virtual displacements. In particular, we take
into account that, in general, the successive approximations to the unknown
equilibrium state may not belong to the equilibrium path. This results in some
unballanced forces (14) appearing explicitly at each iteration step. We managed
to calculate explcitly Gateaux derivatives of all corresponding fields, and to
derive the explicit form of the general Lagrangian incremental shell equations
(24)=(27). As a particular case of the incremental shell equations follows the
explicit form of the most general buckling equations (28) for thin shells.

GEOMETRIC RELATIONS
In this report we apply the system of notation used by Pietraszkiewicz [14=16].
Let the reference surface Al of undeformed shell be defined by the position

vector r(f?), where 8%, a = 1,2, are surface curvilinear coordinates, On M we
have the natural base vectors a, = dr/30° = r,,, the (covariant components
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of the surface) metric tensor a,g = a, - ag with determinant a = |a,g|, the
unit normal vector n = a~1/2a; x ay, the curvature tensor bog = —84'n g and
the permutation tensor £,3 = (aq X ag)-n. The contravariant base vectors a®
are defined through a, -ag = 63‘ and a®f = af . aﬂ are used to raise indices
on M.

The boundary contour C of M consists of the finite set of piecewise smooth
curves r(s) = r[6%(s)], where s is the arc length along C. With each regular
point M € C we associate the unit tangent vector t = dr/ds = v’ = t®a, and
the outward unit normal vector¥ = r,, = t X n = v%a,, V™ = s"’ﬂtﬁ, where
( ),» denotes the outward normal derivative at C.

Let M and C be deformed configurations of M and C defined by the position
vectors T(#%) = r(6%) + u(#*) and r[f(s)] = r(s) + u(s), respectively, where
u = uga® + wn is the displacement vector while #* and s are convected
coordinates. With M and C we can associate analogously defined quantities,
only now marked by an overbar: a,, a,g, @, A, bo,ﬂ, Eapy af, @B t,v etc.
All the quantities can be expressed through the geometry of M or C and
the displacement field u by relations presented in more detail in [15,16]. In
particular, on M we have

tee 3 N S5 R A
aa=l'|cx=3cx+usn; n=§.?laﬂaﬂxaﬁr

aﬂﬁ =agp + 27::13) Baﬁ - baﬁ — Kafl

L LN - = e
Yap = E(rm F,8 =8ap), Ko = Tia 8,5 +bag, (1)

=

Sm‘eﬂ”ﬁaﬁﬁ)‘, .

=R~
N =

a"=a"ag, @ =71+ 29%) 0 - %7,

where 7,5 and k,g are the Lagrangian symmetric surface strain measures.
Along the deformed shell boundary contour C we have [16,8]

F=t+u' =at, a=;'%, x¥,
T =¥+ u, = d; (i + 2
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a; = || , 2yt =F,, T, (2)

=]
~
Il

a X WY
1 = ; = |r:u |2|l"|2 W (rd.-‘ ‘r’)'z 3

a® = jYawP - 2y.a;7 1Py p + a7 VPt

All the vectors in (1) and (2) are understood to be expressed through
components with respeet to the known bases a,, norvy, t, n of M or C,
respectively.

DISPLACEMENT SHELL EQUATIONS

Within the class of non-linear theories of thin shells discussed here the
deformation of the shell as a three-dimensional body is assumed to be
determined entirely by deformation of its reference surface. Therefore, the
equilibrium conditions of the shell should follow from the Lagrangian principle
of virtual displacements for the reference surface [15,8,17)

Glu; éu) = f -/('-\"cxﬂé‘lralg 4 AR Ko aidA—
M
—] /(p-6u+h-6fl}a’.-l —] (T -éu+H- -dn)ds =0, (3)
M 2

which 1s vahd for all kinematically admissible virtual displacements du. 1In
(3) NF and M7 are the internal 2nd Piola-Kirchhoff type stress and couple
resultants. p(u) and h(u) are the external surface force and moment vectors,
per unit area of M, T(u) and H(u) are the external boundary force and moment
vectors, per unit length of C'. while é is the symbol of variation.

Within Af variations of 9,3, k4,5 and n are expressed through u and éu by

(bu,,-az+a, buz),

w8
¥
2]
T,

1l

i

(1,4 ‘lf‘ll.ﬁ +n.3-tu,, ta, éng+ag-dng ), (4)

P2 = B2 =

én=-a’(n-bug).

At the boundary contour ' the vector in = n(s) should satisfy the constraints
' n = 0and i -0 = 1. Therefore, i on C should be expressible
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through the geometry of C', three translations u(s) and one scalar function
w(8) = plu, (8), u'(s)] describing the rotational deformation of the shell
lateral boundary surface.

The general structure of the function ¢, and corresponding four work-conjugate
static and geometric boundary conditions compatible with the principle of
virtual displacement (3), were discussed by Makowski and Pietraszkiewicz [8].
In particular, three physically reasonable special cases of ¢ were noted in [8]: 1)
n, =@-¥ = j~(u’ xv—n)-u,, introduced in [19], 2) v, = a; 2(2—n)- (¥’ x 1)
introduced in [13], and 3) w¢, the angle of total rotation of the boundary, defined
in [14] through displacements by 2 cosw¢ =¥ -¥+t-t+fi-n—1. In what follows all
transformations leading to displacement shell equations are performed applying
n, as the fourth parameter of boundary deformation. Corresponding results
for v, and wy taken as the fourtk parameters of boundary deformation are given
in [8,18], respectively.

Thus, in terms of u and n, the variation of ii of C takes the form [15]

b =ayl[pxn)n- bu' + (¢ xa)dn,], a,=(F xa)w, (5)

where én, = én,[u,, ,u’;éu,,  6u’] is non-linear in u,,, u’ but is linear in

Su,, , du’.

Introducing (4) and (5) into (3), applying the Stokes’ theorem to the surface
integrals, then applying integration by parts to the line integrals we can
transform (3) into [15]

Clasba]= < /M / {T?)5+ p + (b -4%)il 5} - budA+
+ /;- {[TPvs+ F =T —F" + (h-afu3)n) - bu+ (M - M*)én, }ds+
7

+Y (Fa—Fp)-bu, =0, (6)

where
TP = N°%a, + M*PB,0 +{[M ), -3} &2,
F=—a;'[(dxa,) ¥iMPuzn. F=-q;'[(axH)va, (7)
M =a; (i x aq) ¥ My, M*=a;l(axH) ¥,
Fo=F(sn+0)—F(s,-0), u, = u(sy,) .
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Since (6) should be satisfied identically for all kinematically admissible éu,
from (6) follow the Lagrangian equilibrium equations and static boundary and
corner conditions
T?lg+p+[h-a”)ajz=0 inM,
TPua+F' =T+F'—(h-2Py)a, M=M" onCs, (8)
e at each corner M € Cy .
Corresponding work-conjugate geometric boundary conditions are

u(s) = u*(s) , ny(s) = n}(s) on Cy . 9)

All the vectors appearing in (8), (9) are understood to be expressed through
components with respect to known bases a,, n orwy, t, n of undeformed M or
C, respectively.

In the case of an elastic material the constitutive equations for N®7, M28
compatible with (3) are

08 yap_ OF

NOB = )
a7aﬁ 3”&,6

(10)

where L = E(748,8a3) 18 a two-dimensional strain energy function defined
over M. In the particular case of isotropic elastic material undergoing
small strains (but unrestricted rotations) the strain energy T is, to the first
approximation, a quadratic function of the surface strain measures, [5,14,16].
In the particular case of large-strain bending theory of shells made of isotropic
elastic incompressible rubber-like materials the structure of £, to the first
approximation, is given in [22]. Therefore, for each particular elastic material
the constitutive equations can explicitly be expressed in the form N®F =
NPy, 5(n), kop(u)), M*P = M“'B[‘raﬁ(u),xaﬂ(n)] for any u. As a result,
the boundary value problem (8), (9) of the Lagrangian non-linear theory of
thin elastic shells is expressed entirely in terms of displacements u as the only
independent field variables.

It should be pointed out that the underlying principle of virtual displacements
(3) is an incremental principle, which itself does not reguire N®% and M*8
to be derivable from the strain energy function. Therefore, our resulting
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shell relations (8), (9) are valid also for inelastic shells, However, in the
case of inelastic material behaviour N7 and M7 at successive equilibrium
configurations u should be calculated in an incremental-iterative way applying
appropriate two-dimensional incremental form of constitutive equations for
N8 and M4,

INCREMENTAL SHELL EQUATIONS

The highly non-linear boundary value problem (8), (9) can effectively be solved
only by incremental-iterative procedures applying computerized numerical
methods, for which the shell equations (8), (9) should be presented in a
consistent incremental form,

In general, the external loads p, h, T and H may be specified arbitrarily, or
through several independent dimensionless parameters (A;, Az,...,Ap) € A C
RP. In the latter case any information concerning the principal features of the
solution manifold can be obtained analysing the set of solution submanifolds
corresponding to a smoothly varying single parameter. Therefore, in the
following considerations we restrict ourselves to the case when the external
loads are specified by a single parameter A € A C R.

For smoothly varying A the regular solutions of (8), (9) form an equilibrium
path u(A) for which G[u(A);éu] = 0 for all kinematically admissible virtual
displacements éu. For tracing u(A) it is convenient to apply the Newton-
Kantorovich method [6].

Let uy = u{Ay) be an equilibrium state associated with some A = Ay, and let

[ ) be a known i-th approximation to uy,,, which in general may not belong to

(1+1)

the equilibrium path u(A). In order to calculate the correction Auy, ' such

that u('H) = ‘] + Au['H] is the next approximation to u, we linearize

G[u; bu) at ult) in the direction Aulit?,

(6]

what leads to the functional equation

Gu'y:6u] + AG[uY: su. Ault) =0, (11)
(i) .

where AG is the Gateaux derivative of [&) taken at uy,
{1+1)

in the kinematically
admissible direction Au,,  '. When u ! does not belong to the equilibrium
path the first term of (11) allows to calculate the unballanced force vector. The
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second term of (11) is linear in the unknown Au,(:"l] and allows to calculate

(1)

the tangent stiffness matrix at uy, of the problem.

In order to simplify notation, in the following part of this Section we set

ui,';) = uS,';}, au,(;;"'l) = Au, while the values at u of corresponding external

loadings we denote shortly by p, h, T and H.

Let us consider a curve u(n) through the i-th approximation u to u,,, which
in the neighbourhood of u takes the form u(n) = u+ nAu. The directional
Gateaux derivative of the functional G, taken at the i-th approximation u to
Um in the direction Au, is given by

AGlu;u, Au] = - Glu(n)idulo (12)

where G[u(n); éu] is defined analogously as the functional G[u;éu], only now
u(n) appears in place of u.

Along the curve u(n) the external loads are denoted by p(n), h(n), T(n) and
H(n), while the internal stress and couple resultants by N*#(n) and M*#(n),
respectively. The corresponding Gateaux derivatives of those fields are defined
according to

d d
Ap = p(q) n=0» AT = T(n)ln:ﬂ )
dn ! dn
(13)
d
B _ & noft
NS T N ()jp=0 » ete.

Let us apply the linearization (11) to the already transformed functional (6).

Since our u = u,(.:} may not belong to the equilibrium path, let us introduce
the unballanced residual sutface and boundary forces and couples

pr =Tz +p+ (b a%)]lg,
Pr=TP+F -T-F"+(h-a°vp)a , (14)
Mg=M-M" F,r=F,-F; .
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The quantities (14) allow to evaluate the first term in (11) in the form

Glu;béu] = /M]—pa-éudA+/C (Pgr-bu+Mgbén,) ds+ZFnR-6un. (15)
1 n

In order to calculate the second term of (11), let us remind that along the curve
u(n) the shell geometry is defined by a,(n), a®(n) and n(y). Therefore, taking
Gateaux derivatives of the identities a°(n) - aq(n) = 63, a’(n) -n(n) = 0 we
have in M

Ady = Aug, An=-a"(i-Auy),
(16)
AdP = —(a” - Au ) 2"+ a7 (h-Au, ) @ .
A(8a) = B . 6u,g,
(17)

B? = ((a° - Aux) a* — @ (h Au,)a] @0 + (i Au,, ) 8° @ a" .

Similarly, let us introduce fi(n) and én(n) on C, defined by respective formulae
(2); and (5), where now u(n) stands for u. This allows to calculate Gateaux
derivatives of n and én on C in the form

AR =a) [ xn)n-Au’ 4 (V' xn)An,] ,
(18)
A(6R) = A -6u’ + Bén, + o 1(¥' x 0) A(én,) ,

A=—aj?v (A xa+F x Ad)| xn)®n+a, ' [vx (AA@n+0® An)] ,
(19)
B=—a;%[v-(Au x 2+ x An))(¥ x ) + o]} (F' x An + Au’ x @) .
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With the help of (16)+(19}, (12), (13), (6), (7) and some transformations, the
second term of (11) can be presented in the form

AG[u; fu, Au] = -/ j{[(.a'rﬁ +57)3+ Ap + [(Ah -3°) fi—
M
~h - B?) 5} - budA+ (20)

+/ ({(AT? +5°) vs + (AF +CY — AT - (AF* + C*)' + [(Ah - &) &—
Cy

—h-BPug }-bu+ (AM + K — AM* — K*) én, + MRA(énV))ds+

+ 3 (AF, + Cy — AF}, — C3,) - bu, ,
n

where

AT? = ANP5q + AM®Ph o +[(AM™a,),, &% ,
(21)
87 = NP Au,q +M*P Af,o +[(M™*Au,x )|, -8°] B — (M**a,)), - BP

AF = —a; '[(8 X aq) ¥]JAM*Push |
C=-a;'[¥xn) Auy, ]M“"Guaﬁ - M“‘Biaug TA

(22)
AM =a;' (A x &) - FAM™Pyy |
(= a; (¥ x B) - Au, ] M*Pug + M*Pa,u5 B,
AF" = —a '[ax AH) ¥Ja, C*=-H-A,
(23)

AM*=a;'(axAH) ¥, K"=H.B,
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The fields AT?, AF, AM, AF,, are linear in Au and represent the material
part of changes of u, while the fields 8%, C, K, C,, are also linear in Au but
represent the geometric part of changes of u at the incremental step.

Since (11) with (15) and (20) should vanish for any kinematically admissible
du, from (11) we obtain the following incremental equilibrium equations as well
as the incremental static boundary and corner conditions for the Lagrangian
non-linear theory of thin shells

(AT? +5°) 5+ Ap+[(Ah-a®)a—h B3 +pp=0 inM, (24)

(AT? +8°) vg+ (AF + C)' = AT + (AF* + C*)'—

- [(Ah-&") 5 —h By, — Py }on Cr, (25
AM+ K=AM"+ K", Mp=0
AFp, 4+ Ch = AF, +C, —F,p at each corner M, € Cy .

The corresponding work-conjugate geometric boundary conditions to be satis-
fied at each incremental step are

Au=0, An, =0 on Cy (26)

All the vectors in (24)=-(26) are given through components in the respective
undeformed bases a,, n, andy, t, n.

The incremental shell equations (24)+(26) constitute the linearized boundary
value problem for the increment Au = Aul™*1) which allows from known us,',]

to calculate the next approximation ui.f.“l to the equilibrium state up,.

In the case of an elastic material AN®? and AM®? follow directly from the
constitutive equations (10)

AN°B = (L“l:"’f'I‘]‘“.{WMl + C';m“.ﬁnm ,
(27)
AMaﬁ — CgﬁA”A‘Dm + C:‘ra‘\HAKA“ ;

where C;':m", k=1,...,4 are the tangent elasticities at u, defined as second
partial derivatives of ¥ with respect to 1,3, Kag (see (85) of [22]), while



Unified Lagrangian Displacement Formulation 339

Avap, Akgg are Gateaux derivatives at u of the surface strain measures (see
(82) of [22]). Therefare, for each particular form of X, [5,16,22], the tangent
elasticities can be explicitly calculated as known functions of u. In the case
of inelastic material behaviour the tangent elasticities at each u should be
calculated by some independent incremental-iterative procedure.

The set of incremental shell equations (24)+(27) with (14), (16), (17), (19)
and (21)=(23) derived here generalizes considerably the previous incremental
formulations (7,15,1] which were valid for small strains, linear elastic behaviour
and restricted class of external loads or boundary conditions.

LAGRANGIAN BUCKLING SHELL EQUATIONS

Buckling shell equations are usually derived through linearization of the
boundary value problem about an equilibrium state of the shell [23].

Let u be an equilibrium state whose stability properties are analysed. Since
at u we have G[u;éu] = 0, according to (3), linearization of G' at u in a
kinematically admissible direction Au (note that now Au has different meaning
from Au = Augf“ used in the previous Section) leads according to (11)
to the functional equation AG[u;éu,Au] = 0. Here AG can be explicitly
calculated from (6), and the calculation procedure is exactly the same as the
one performed in the previous Section, where AG has been calculated at an
approximation uw to an equilibrium uy, in a kinematically admissible direction
zlus;;“]. Therefore, it is apparent that now AG at u in the direction Au takes
formally exactly the form (20) with Mz = 0. From vanishing of AG for any
du we immediately arrive at the following explicit form of Lagrangian buckling

equations for thin shells
(AT? +8%) ; + Ap+ [(Ah-a”)a-h-Bf]g=0 in M,

(AT? + 8%) v5 + (AF + €Y = AT + (AF* + C*)'—-
— [(Ah-a”) i — h-BPjy, on Cy,  (28)
AM + K= AM" + K~

AF, +C, = AF}, + C}, at each corner My € Cy ,
Au=0, An, =0 on 'y ,
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where all the quantities are defined through u and Au by exactly the same
formulae as analogously denoted respective quantities of the previous Section
have been defined through um) = u and Au(""” = Au. All the vectors in
(28) are understood again to be expressed through components with respect to
known bases a,,n andy,t,n of M and C, respectively.

The explicit Lagrangian buckling shell equations (28) extend to the large-strain
range of deformation and arbitrary loading the stability equations derived
within small-strain theory of elastic shells by Stumpf [23] in operator form
and by Nolte [9] in explicit form.

REMARKS ON COMPUTER IMPLEMENTATION

The unified formulation of the non-linear displacement 3-field theory of shells
presented here is necessarily quite complex because of its generality and
versatility. Note that x,s appearing in the underlying principle of virtual
displacements (3) is expressible according to (1)3 in terms of u,, and u,,g.
As a result, in any consistent finite element approximation of the resulting
displacement boundary value problem C! interelement continuity is required.
Additionally, in order to allow numerical analysis for various material laws, the
element geometry and kinematics should be decoupled from the constitutive
equations.

These requirements were fulfilled by Harte [4] in the case of thin shells made of
linearly-elastic material undergoing small strains and moderate rotations and
extended by Schieck [21] to the case of shells made of rubber-like incompressible
elastic material undergoing large strains and unrestricted rotations. In those
papers a triangular high-precision doubly-curved shell finite element with 54
degrees of freedom proposed already by Cowper [3] is selected. In the element
of [21] biquintic polynomials are applied as shape functions for all three
displacement components. As 18 degrees of freedom at each node the quantities
Ua, W; Uy 3, W,3 ; Ug Gy, W,5, are used, and the Gauss integration is performed
in 21 points. The geometry of the element is calculated exactly from the given
shell geometry. The shape functions are then condensed in such a way that C!
interelement continuity of all displacement conipoqent.s is assured. The element
is capable to represent only approximately the constant strain modes and the
strain-free rigid-body modes. Test show, however, that the approximation error
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quickly approaches zero with the mesh refinement. The strain-displacement
relations and material laws are disconnected {rom the finite element kinematics.
Therefore, they can easily be changed, if necessary.

The C! shell elernent described above was used with the MESY 3 computer code
of structural analysis, and several test examples were run on CDC Cyber 205
vector computer applying special algorithms and programming techniques. In
particular, the number of DOF of the element was combined with the number of
integration points, what led to the vector length 54 x 21 = 1134 and allowed to
increase the computation speed by the factor 23 over non-vectorized algorithms.
The concise description of the vectorized algorithms developed is given by Nolte
and Schieck [10,11] while the modified vectorized subroutine for calculation of
the element tangent stiffness matrix and the residual force vector is described
in Schieck [21].

With the help of the C! triangular shell finite element described above, several
numerical results for highly non-linear one- and two-dimensional problems of
elastic shells were presented in [21,22]. The application of the element to
problems of elasto-plastic shells undergoing large strains is under development.
The use of other material laws, and application of other C! shell finite elements,
within the proposed unified displacement formulation of the non-linear theory
of thin shells will hopefully be the subject of research in the future.

The C! continuity requirement, and associated complexity of the finite
elements, is considered to be a disadvantage of the displacement formulation
of thin shell theory as compared with a more complex 6-field theory of shear-
deformable shells [14]. In the latter one both displacements and rotations are
the independent field variables, and the finite element approximation expressed
in terms of those variables requires only C? interelement continuity [2].
However, while the 3-field shell theory has been presented here in supposedly
ultimate formulation, the 6-field shell theory is still under development and
several important questions of the theory itself and its FE approximation are
still under discussion. CY shell finite elements bring themselves some problems
(locking effects, spurious zerc-energy modes ete.}) which are still waiting for
commonly accepted satisfactory solutions, The complexity of 3-field C! finite
elements may become less important already in the near future when powerful
parallel processors of the next generation are installed into computers of PC
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class, and then much better approximation quality of C! finite elements may
become a decicive advantage. One can also expect that 6-field shell models will
be absorbed in the future by unified computer codes of 3D analysis of structures,
while the special structure of boundary conditions required by the 3-field shell
theory does not allow it to be degenerated from the structure of 3D theory.
Therefore, one might anticipate that this theory would remain as the only
“shell” theory also in the future structural analysis. These are some arguments
why the derivation of 2D constitutive laws for various material behaviour, and
development of computer codes based on C! shell finite elements, seems to be
of some importance also for future analysis of shell structures.

CONCLUSIONS

In this report a unified formulation of a wide class of non-linear theories of thin
shells has been presented. The analysis has been based on only one assumption:
the deformation of the shell as a three-dimensional body is determined entirely
by deformation of its reference surface. Basic shell equations, in the global (8),
(9) and consistent incremental (24)+(26) forms, have been explicitly derived in
the Lagrangian description in terms of displacements of the reference surface
as the only independent field variables. The most general explicit form of
Lagrangian buckling shell equations (28) have also been derived. Particular
attention has been paid to consistency of work-conjugate boundary conditions,
and to precise evaluation of unballanced forces when successive approximations
to an equilibrium state do not follow the equilibrium path.

Qur formulation of shell equations is valid for an arbitrary geometry of the

.shell reference surface, for unrestricted displacements, rotations, strains and/or
changes of curvatures of the reference surface, for arbitrary configuration-
dependent external surface and boundary loadings, and for arbitrary set of
four work-conjugate static and geometric boundary conditions. Therefore, our
formulation contains many specialized versions of non-linear shell equations
available in the literature.

We have explicitly applied liera the constitutive equations of elastic shells (10},
(27), since for such material bahaviour effective computer FEM programs were
developed, and several one- and (wo-dimensional non-linear problems of shells
within small-strain [4,9,12] and large-strain [21,22] range of deformation were
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analysed. However, our formulation of the non-linear shell theory is applicable
to some problems of inelastic shells as well, provided corresponding incremental
constitutive equations for the surface stress measures are available.
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ABSTRACT

This paper presents a survey of the arbitrary Lagrangian-Eulerian (ALE) Finite
Element Formulation with various mesh updating techniques. Moreover, an efficient
element for solving problems involving shells is also mentioned. Some applications
of the ALE formulation and the shell element are given with a final emphasis on the
shell-flusd interaction.
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INTRODUCTION

Athough the finite element method (FEM) is one of the most powerful and
sophisticated numerical techniques available, most of its early developments
were applied to structural analysis and it was not until the late 1960’s that
finite element techniques were applied to potential flow problems. Recently,
considerable finite element research is being devoted to viscous flows, transport
processes, fluid-structure interaction, compressible inviscid flows, and free
surface flows, among others. This paper is devoted to the development of
arbirary Lagrangian-Eulerian (ALE) techniques for viscous flows with free
surface.

The kinematic description (i.e. the relationship between the moving fluid
and the finite element grid) is extremely important in multidimensional
fluid dynamics problems. Two classical descriptions are used in continuum
mechanics. The first is Lagrangian, in which the mesh points coincide with the
material particles. In this description, no convective effects appear and this
simplifies considerably the numerical calculations; moreover, a precise definition
of moving boundaries and interfaces is obtained. However, the Lagrangian
description does not handle satisfactorily the material distortions that lead to
element entanglement.

On the other hand, the second description is the Eulerian viewpoint, which
allows strong distortions without problems because the mesh is fixed with
respect to the laboratory frame and the fluid moves through it. However, this
latter approach presents two important drawbacks: (i) convective effects, which
introduce numerical difficulties, arise due to the relative movement between the
grid and the particles; and (ii) sophisticated mathematical mappings between
the stationary and moving boundaries are required.

Because of the shortcomings of purely Lagrangian and Eulerian descriptions,
arbitrary Lagrangian-Eulerian (ALE) techniques were developed, first in finite
differences by Noh [19] and Hirt et 3L[6], among others, and then in finite
elements by Donea et al.[5], Belytschko-et al.[1], Hughes et al.[10], and Donea
[3]. This new approach is based on the arbitrary movement of the reference
frame, which is continuously rezoned in order to allow a precise description of
the moving interfaces and to maintain the element shape. Convective terms
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are still present in the ALE equations, but the ability to prescribe the mesch
movement may allow them to be reduced.

The organization of this paper is as follows: The fundamentals of the
arbitrary Lagrangin-Eulerian (ALE) formulation are presented, mesh updating
techniques are indicated and the Finite Element Method in ALE is introduced
[7]. Two applications of ALE on large-amplitude sloshing are presented from
(7.8). An efficient and reliable shell element formulation is adopted from Ref[13].
An example problem studied in [14] is restated to show the effectiveness of this
element in shell buckling analysis. Following the study of the influence of the
tank wall flexibility by Ma et al.[17], conclusions are stated.

KINEMATICS IN THE ALE DESCRIPTION
Review of the ALE Description

Two classic viewpoints are considered to describe the motion of a continuous
medium. The first is Langrangian, in which the material region and the
coordiantes of any point are denoted by R; and X, respectively. In the
second, known as Eulerian, the spatial region is symbolized by R, and the
spatial coordinates by x. In the ALE description, the computational frame is
a reference independent of the particle movement and which may be moving
with an arbirary velocity in the laboratory system; the continuum view from
this reference is denoted as Ry, and the coordinates of any point are denoted
as ¥ (Figure 1).

Consider a physical property, f(x,t), expressed in a spatial representation

fix,t) = f*(x,t) = f~(X,1) (1)

where * and ** denote “with respect to x and X”, respectively,

If the physical property is the spatial coordinate x, then

e v )= 2PN KL 3 (2)
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Spatisl Domain (current configuration of Ry)

L] = : Generally In Motion
T A Particle Motion = #oy"!
Domain
(Fixed)

) Generally in Motion

Material Domain

Figure 1. Diagram of domains for the arbitrary Lagrangian-Eulerian descrip-
tion.

and

O _ oz} Oz
5 (X0lx = FHOhH i) ®

The material velocity v, the mesh velocity ©, and the convective velocity ¢ are
defined as

fz:*
vi= = (X, 0)x (4)
and 3
i z;
v = W (XJ)IX " (5)
oz*
¢; = w; % (6)

The relationship between the material time derivative and the referential time
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derivative can be expressed as

- - B
P (x0lx = 2L b+ gt @0 @

Lagrangian Versus Referential Updates

In the Lagrangian description, the updating of any physical property is simple
and is done through a Taylor series expansion in time

(X 4 dt) = f7(X2) + dt %‘—(X,t)h- Ty 8)

A similar approach can be used in a referetial description

Fr(x.t+dt) = f(x,t) + dt %(x.t)lw--- (9)

However, in a referential description, a simple updating technique, such as
Eq.(9), cannot be used for material point-related variables, such as state
variables in path-dependent materials. For homogeneous materials with no
memory, such as generalized Newtonian fluids, Eq.(9) cab be implemented
with no further complications. Examples of ALE techniques applied to path-
dependent materials may be found in [12,13].

INITIAL/BOUNDARY VALUE PROBLEM
Field Equations in the ALE Method
Conservation of Mass (Equation of Continuity)

The principle of mass conservation is derived in referential form. Consider an
arbitrary volume Vi fixed in the referential domain, Ry, and surface 8V, ; the
medium has a density p(x,t). The total mass in V is

M= [ ptn= [ pax= [ o, (10)
X X

where
Alx.t) = Jp(z,t) , (11)
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P°(X,to) = Jp(,1) , (12)
- dz;

J=det B_x,-'] , (13)
Oz;

J = det E] . (14)

The principle of mass conservation states that the local rate of increase of the
total mass in the volume must be equal, if no mass is created or destroyed
inside Vy, to the rate of inflow of mass through the bounding surface 9V.

Conservation of Momentum (Equilibrium Equation)

Using the same definitions as in the copservation of mass, the principle of
conservation of momentum states that the fofal rate of change of the total
momentum of the medium occupying at time ¢ the referential volume V,,

%lx/y p(x,t) v(x,t) dQx , (15)

is equal to the net force exerted on it.

The final form of the field equations to be used in the finite element method in
conjunction with ALE are given as

ap dpw; .
= L + =0 iRy, (16)
_ Ovy; dv; 8?_,‘.’

p Elx+pwj E - E Tf‘ﬂgi in Ry , (17)
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p is the fluid density, g is the acceleration of gravity, and o and T are the
Cauchy and first Piola-Kirchhoff stress tensors, respectively.

AUTOMATIC REZONING

In the ALE description the moving boundaries can be tracked with the accuracy
charactenistic of the Lagrangian methods and the mesh can conserve its
regularity to avoid element entanglement [4,11,16,20]. The rezoning techniques
are based on heuristic developments.

The reference frame is fixed, but its movement with respect to the laboratory
or the continuum is arbitrary. The particle velocity viewed from the reference,
w, and the mesh velocity, ©, are interrelated by

fz*
2 18
Ox; (18)

v =05+ w;
Depending on which velocity (0, w, or mixed) is prescribed, three different
cases may be studied,
Mesh Motion Prescribed a Priori

The case where © is given corresponds to an analysis where the domain
boundaries are known at every instant. The rigid-body viscous fluid problem
studied in (8] falls into this type of ALE problem.

Lagrange-Euler Matrix Method

Let w be

Axi
w; = a—’; o= Gi—ag) vy, (19)

where &;; is the Kroneker delta and [ayj] is the Lagrange-Euler parameter
matrix such that a;; = 0 if ¢ # j and ay; is real (underlined indexes meaning
no sum on them). The Lagrange-Euler matrix needs to be given once and for
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all at each grid point. It is very difficult to maintain regular shaped elements
inside the fluid domain by just prescribing the a’s.

ALE technique based on the Lagrange-Euler parameters is very useful in
problems such as the propagation of long waves (‘tsunamis’) and, in general,
in very free surface flow where the free surface may be written as z3,(z1,23,1)
with an Eulerian description used in the z;- and z;-directions.

Mixed Formulation

One of the goals of the ALE method is the accurate mapping of the moving
boundaries which are usually material surfaces. The other goal of the ALE
technique is to avoid element entanglement.

FINITE ELEMENT FORMULATION

The Petrov-Galerkin formulation is used for the equilibrium and mesh updating
equations, while the Galerkin method is applied to the continuity equation.
Furthermore, a pressure-velocity (P — v) formulation is implemented for
numerical efficiency and accuracy. Constant pressure elements are used; thus,
both weight and trial pressure functions are constant inside the element and
discontinuous across interelement boundaries. The pressure weighting function
is denoted as §P, and the integral equation associated with the continuity
equation 1s

/6P18P| dR,-t-Zf 6Pa”‘ dR; =0, (20)

where the spaual domain, R, is discretized into element subdomains, RS, and
Y symbolizes the sum over all elements.

For the equilibrium equation the streamline-upwind/Petrov-Galerkin formula-
tion requires discontinuous weighting functions of the form

v =éw +8p (21)

where éw i1s continuous in R; and dp is the discontinuous streamline upwind
perturbation; 6p is assumed smooth in the element interior. The variational
equation can be written as
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Z/.jvm%% dR¢+Z/R‘ buipe; a—t’fdﬂm
e z

36u, bw;) 3(5(4,)] [191;l 191.»',
[ e pane+ [ 5[ a

—Z/ a,,,a"ﬂdm E] Sv;pg; dRe — j Swih;dS=0. (22)

The mesh updating formulas are obtained using again the streamline-
upwind/Petrov-Galerkin Method, where the weighting functions, éx, are con-
sidered to be composed of both the continuous interpolation functions and the
perturbation functions.

6:,| de f (51;‘—01*)ka2| 6 = de -/ dz; U dR-x 0. (23)

Rx

0z; NSD v~ UJ i ¥
/ S| R f&r,z Jdeféa, vi = s | dhy =0,

=1
L

(24)

MATRIX EQUATIONS AND PREDICTOR-MULTICORRECTOR
ALGORITHM

The spatial discretization of the integral Eqs. (21), (22), (23) and (24) leads
to the following system of partical differential equations:

MFP +/P(P)+Gtv =0, (25)
Ma + n(v) + K,v — GP =, (26)
Mi + #(z) - Mv =0, (27)
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Numerical Results

Figure 4 shows the discretization of the fluid domain used for the computations.
It consists of 2758 constant pressure-bilinear velocity elements (25 layers) which
imply 3052 nodes. Notice the concentration of elements around the blocks
needed to caputre recirculation, Two areas are defined in the domain, see
Figure 4; an Eulerian description is implemented in the bottom one (i.e., the
mesh is fixed), while the mixed ALE formulation [7] is used in the upper zone.
The latter formulation allows a continuous remeshing such that element shapes
are maintained.

TR LTIy T ST TR T T T Y T Y T TEA T IR CRETT T IR ATl T f ST L IIIIIIIIIII
| g | II]::II I:II [IRERIIIIReRiiny IlIIIII L IIIIIII'I (LT L T I
{11

MOYING
MESH

| " ] -
| I i If (i
FIXED y i
I il l il {} |
MESH n 1] I I :Hll:

Figure 4. Mesh discretization.

The time step chosen is such that 200 time steps are needed in every cycle;
that is, At is obtained dividing 27 by 200 x w. However, for Re = 500000, 300
time steps must be used in the tenth cycle due to large convection.

Concerning the boundary conditions, zero velocities are prescribed around the
blocks, while perfect sliding boundaries are assumed for the bottom and sides
of the tank, The material surface conditions described in the previous section
are imposed on the free surface.

The case corresponding to pure water, i.e., Re = 500000, is studied
first. Instantaneous configurations of the domain with velocity vectors and
streamlines are plotted in Figure 5 for the tenth cycle. At wt = n7 (n integer),
1.e.,at maximum amplitude and minimum velocity,the recirculation around the
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Figure 5. Instantaneous configurations of the domain velocities, and stream-
lines for tenth cycle.

blocks is obvious. At mimimum amplitude and maximum velocity, most of
the flow is concentrated in the upper half of the tank; nevertheless, the flow
perturbation due to the presence of blocks is clear. The non-linear evalutation
of the free surface is reflected by its vertical motion at the center of the tank,
in spite of the vertical material velocity at that point being equal to zero. The
presence of blocks induces a reduction in the wave height and a magnification
of the horizontal particle oscillation at the central portion of the tank.

The influence of viscous effects is observed in Figure 6 for three Reynolds
numbers, The free vibration part after the tenth cycle shows a 6% damping.

RESULTANT STRESS DEGENERATED SHELL ELEMENT

The general nonlinear shell formulation of Hughes and Liu [9] is expanded
ta develop degenerated shell elements with stabilization through an improved
representation of a fiber coordinate system.
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Figure 6. Time history of the wave height at the left wall with submerged
blocks.

This variational approach developed by Liu et al.[15] is applied to the buckling
analysis of shells in Ref.[14].

Prior to the nonlinear calculation, linear buckling analyses of the cylindrical
shell with two different boundary conditions are performed: one with clamped
ends and the other free; however, all rotations are fixed. In both cases, the
buckling loads for different modes are very close to each other. A comparison
shows no significant effect of the edge constraints. In other words, the initial
stress field is not influenced by the end conditions.

In the nonlinear analysis, the prebuckling deformation is accounted for by an
incremental displacement formulation.

As shown in the load-displacement curve (Figure 7), a postbuckling branch
(BD) for the buckling mode (cos 148) is traced out by a succession of equilibrium
states of the cylindrical shell. Along the postbuckling curve, the deformation is
characterized by a special trend: the radial displacements increase drastically
while the end displacements decrease. On the postbuckling curve (BD), each
point represents an equilibrium state of the cylindrical shell whose internal



Arbitrary Lagrangian-Eulerian Finite Elements for Fluid-Shell 38l

1.150

n=24

—
-
o
L=
L

1.060 +

1.000 +

Normalized Axial Load p/p.

o ' — — — i

.800 900  1.000  1.100 1200 1300  1.400
Normalized End Displacement, u/u,,

Figure 7. Normalized load-displacement curve.

strain energy can be considered as the sum of two components, membrane
compression and bending. At point B the internal energy is dominated by
membrane compression, while at point D the internal energy is dominated by
bending. The path from B to D represents a simultaneous process transforming
the membrane compression energy to bending energy. Since the deflection
associated with bending deformation is substantially larger than the deflection
associated with membrane compression, the reduction of end displacements
of the cylindrical shell is accompanied by a large accumulation of radial
displacements. Figure 8 depicts a summary of diamond modes.

SEISMIC RESPONSE OF 3-D FLEXIBLE TANK

In order to demonstrate the importante of the tank wall flexibility in the seismic
design the hydrodynamic response of a 3 — D flexible tank is studied.

The finite element model and the dimensions of the tank are shown in
Figure 9. This model consist of 180 fluid, 56 shell and 63 contact elements. A
10 s duration acceleration history with a maximum of 0.5 g is applied at the
base. Two cases for the sloshing wave height and the fluid dynamic pressure at
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Figure 8. Summary of diamond buckles.
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56  SHELL ELEMENTS
63 CONTACT ELEMENTS

Figure 9. Finite element model of a 3-D fluid-tank system.

the tank top are presented here. One assumes rigid walls, the other one with
a tank fundamental frequency of 2.5 Hz. The results are depicted in Figures
10 and 11 for the pressure and the wave height, respectively, The observations

can be summarized as follows:

(1) The fluid dynamic pressures in a flexible tank are substantially greater
than those induced in a similarly excited rigid tank. For the flexible
tank, the fluid dynamic pressures become very sensitive to the frequency
variation, as the frequency of the tank system approaches to the maxi-
mum amplification region of response spectrum of the base acceleration.
Hence, it 18 very important to properly include the fluid inertia in as-

sessing the dynamic characteristic of the fluid-tank systems.
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(2) The coupling effect between the tank fexibility and sloshing response may be
important, even if the frequency between the tank system and sloshing motion
is well separated.

(3) Higher modes of sloshing motion are important to the post-earthquake sloshing
analysis. The phenomena are not fully understood yet, more studies are
required.
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CONCLUSIONS

The development and some applications of the arbitrary Lagrangian-Eulerian
techniques to solve free surface viscous flow problems are presented. Various
mesh updating methods are indicated including the streamline-upwind Petrov-
Galerkin formulation. The applications presented here show that ALE
approach allows an efficient and accurate description of large free surface
motions. The formulation of a reliable resultant stress degenerated shell
element together with stabilization procedures facilitates a large increase in
computational efficiency. This is tested on the diamond buckling of shells.

The coupled fluid-structure-free surface formulation is used to study the
seismically induced sloshing phenomenon. The numerical analysis of a three-
dimensional flexible fluid-tank system provides a better understanding of
sloshing response.
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ABSTRACT

Significant displacernents and rotations by small strains are made possible in thin-
walled structures by o special design, one assuring a stressed state of the kind inherent
for flexibility. The relevant specialization of the general theory simplifies it to the
flexible shell theory. This theory helps to gain an insight into the design properties of
flerible shells and to treat them numerically. Applied to curved tubes and bellows it
covers the influences of the imperfect geometry, edge stiffening (flanges etc.), as well
as nonlinearity,
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RESUMO

Considerando-se o estado de tensbes apropriado a estruturas de paredes finas, sdo
oblidos em pequenas deformagdes os relevantes deslocamentos e rolagdes necessdrios
6 avaliagdo da flezibilidade de cascas. A especializagio dos resultados a partir
da teoria geral rezuz-se a leoria de cascas flexiveis. Esla permite o entendimento
das caracteristicas de projeto das cascas fleriveis e o seu tratamento numérico.
Aplicada a tubos curvos e foles esta teoria inclui os efeitos de imperfeicoes na
geometria, da rigidez nas extremidades (flanges, etc.) bem como da ndo linearidade
no comporiamento geral de cascas flexiveis.
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INTRODUCTION

The main types of flexible shells employed by industry are presented in Fig.1.
By all the obvious diversity, these shells are similar in two essential respects:
the kind of loading and the kind of the stress state. The load is applied to the
movable edge of the shell and/or consists of a normal pressure. The stress state
has the semi-momentless character.

The kind of stress state immanent for flexibility becomes clear in the simplest
case shown in Fig.2. It is a cantilever plate bent by edge moments M. By
thickness h and the extensional strain €3 , the plate has elastic curvature 1/R
determined by the relation h/(2R) = €2 . The edge of the plate has thereby an
angle of rotation @ = L/R = 2Le3/h and its displacement is w = R — R cosa.
For a steel plate with €3 = 0.002 and h/L = 0.002 this means a = 2.0 radian
and w = 0.708L. The plate is indeed flexible. This is rendered by the bending
of the thin wall, not its membrane éxtension, being dominant. This case is
extreme - the membrane strain occurs merely inside a narrow edge zone.

In general, the deformation of a flexible shell cannot be restricted to wall
bending and twisting. Avoiding the membrane strain as far as possible remains
an optimization aim.

A few words on the position of the theory of flexible shells (short FS) in the
entire theory of shells. Since the first publications on shells (Aron, 1874 and
Love, 1888), shells designed to be stiff, to work with as small displacements
as possible (in buildings, ships etc.), have been the predominant concern in the
literature. An ideal stiff shell must have as little wall bending as possible:
the "inextensional bending” is ”... nearly always excluded in well-designed
shell structures” (W.T.Koiter [2], p.38). In a stiff shell the wall bending may
occur merely in narrow zones near the edges or as a buckling deformation.
The two kinds of deformation are ideally served by the two classical branches
of the shell theory (presented, e.g., in [1]): the membrane theory and the
Donnell — Mushtary theory (extended to large displacements by Koiter,
[2])- The two specialised branches, together with the Reissner theory [3] of
axisymmetrical shells, have served virtually all of the applications concerning
the stiff shells.
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Figure 2. Flat plate in bending.

One-dimensional, problems of FS, have been covered by the Reissner axisym-
metrical theory. This includes the Karman (1911) famous solution for curved
tubes. Two-dimensional FS problems were no exception. They were treated
with the aid of a specialized branch of the shell theory - the FS theory, It has
been proposed, first for the analysis of the nonlinear bending of finite tubes, by
Azelrad [4]. A review of development of the FS theory and further references
can be found in 1], [5] and [6].

The significance and role of the general shell theory, including its recent
nonlinear developements, has been, actually, to provide the basis for the
specialized branches of the theory, responsible for applications.

The following is written by engineer for engineers. It gives an outline of the
hypotheses, equations, edge conditions of the FS theory (Sect.2) and the uses
of this theory for tubes and bellows (Sect.3,4). A fuller presentation of the FS
theory and its applications, specifically, in the treatment of tubes and bellows,
can be found according to the text references.
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BASIC FEATURES OF STRAIN AND STRESS IN FS

The inherent features of the FS deformation, that is of large displacements
by small strain, constitute the basic hypotheses of the FS theory. Taken
into account in the general shell theory the hypotheses simplify it without
any additional inaccuracy. The hypotheses can be stated [7] either as a set of
physical assumptions or as a single mathematical restriction on the variation
of strain and local shape along the shell middle surface.

Consider these two mutually complementary versions of the hypotheses.
Physical hypotheses

The schemes of Fig.1 illustrate, in fact, suggest, the following two features
immanent for the flexibility. Their formulation produces a full set of FS
hypotheses. Concerning the strain and, respectively, the equilibrium but not
the matherial properties of shells, the hypotheses are relevant also for large and
even nonelastic strain.

i) The relative extension £; along one of the surface coordinates (z% = @ in
Fig.1) can be neglected in the analysis of strain.

i) The wall-bending moment M; (Fig.3) per unit length of the cross section
running along the 22 - lines can be neglected in all relations of equilibrium.

Consistent with these hypotheses the A ookean shell-theory elasticity relations
must, as has been shown in [8], be specifically simplified. Namely, for isotropic
homogeneous shells these relations become:

M, ER?
e1ER =Ny —uNy 2 Ny, =2 = kg + Ky k9, D= ———
1 1 2 1 D 2 1 2 12[1_}}2)

Gh®
Gh‘)f = S, = 21’?

(1)

The stress resultants Ny, Np, S = S + Hs/Rz and the normal-section
curvature 1/ /s are shown in Fig.3. The strain parameters 1,7, &1 and x3
are defined, e.g., in [1], Ch.1,
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Figure 3. Stress resultants in curved pipe under bending loading.

iii) Additional simplifications, possible for isotropic FS are: a) disregarding
the shear strain resultant v (angle of shear between the coordinate lines)
in the analysis of strain, and b) neglecting the torsional moment H in the
relations of equilibrium.

Disregarding v and H terms is not justified, in particular, for materials with
relatively small shear stiffeness (G/E < 1) and for problems with large
intensively variable N forces, as for the tube with the "stiff” flanges, discussed
in Sect.3.

Mathematical FS hypothesis

It has been shown in [1] and more generally in [6], [7], that the above
physical hypotheses are equivalent to a single mathematical statement. The
simplifications (i), and (ii) are, namely, consistently due for any stress state,
which varies with respect to the surface coordinate z! much less intensively,
than with respect to z*. Specifically,” this means for all the stress and strain
resultants (denoted summarily by F' ) the condition (a and b determine the
lengths adz! and bdz? of the elements of the respective coordinate lines
§=1z',0=12%:
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9*F

b 99*

% F

a’og? g

el (2)

All other equations of the FS theory, as well as its boundary conditions, follow
with the hypotheses (i), (1) or (2) plus the elasticity relations (1) from the
classical shell theory. The assumptions (i) and (ii) introduce an error of the
order of ve, the error of (iii) is of the order of (E/G)e . Has ¢, defined in (2),
the order of magnitude of the error of the general thin-shell theory (h/R3 ) or
less, so has the FS theory the same accuracy as the general one.

Actually, the FS theory can be based on all three hypotheses (i), (ii) and (iii).
With the assumptions (i) and (i), but not (ii), the shell theory reduces to the
"extended” semi-momentless theory, somewhat more general than the theory

of FS (cf [1]).
Discussion

The FS theory contrasts on one principle to the general shell theory and to
its other specialized branches, The membrane theory and the Donnell-type
theories describe strain states which vary slowly or, respectively, strongly with
both coordinates. The FS theory describes strain states which vary slowly with
one of the surface coordinates, £ in (2), and vary strongly with the other, #
in (2). It does not regard the stress and deformation in the directions of the
two coordinates in an equal way. The coordinate £ = z! is intended for a
direction specific for the entire class of FS , the # = z? - for the other specific
direction. This is conspicious enough in all the hypotheses (i)-(ii1) and (2) and
in the examples of Fig.1. The difference of the FS stress and strain along
the coordinate z! to that along 2% does, of course, determine the difference of
conditions on the respective shell edges. The conditions on an edge 2% = const
are all those (four) imposed in the general shell theory. On an edge z! = const
the FS theory imposes, in accordance with (i)-(ii), only two conditions, those
of the membrane stress and strain.

Conditions on a shell edge z' = const are of two kinds.
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a) Those concerning the extension €3 of the z? line and the wall-bending
moment M, determine the edge effect deformation which dies out inside
a short distance from the edge.(This distance has for a tube (Fig.3) the
assessment of 3.5v/hb , well-known for cylinder shells),

b) Conditions determining the main deformation which varies with z! slowly .
The main deformation concerns the entire shell outside the edge-effect zone
and determines the strength and deformability of a FS almost entirely. It
fulfills the condition (2) and is adequately described by the FS theory. The
relevant two edge constraints or forces are of the "membrane” | tangential
to the middle surface, sort.

For a FS there is usually no need to consider the edge effect at the edge
z! = const. Moreover, the relevant edge constraints and moments, are seldom
known reliably. If need be, the edge effect can be determined comparatively
simply and superimposed on the main deformation. It will not be discussed

further in what follows.

Numerical solutions are made essentially easier by the FS theory. For one,
by substantial simplification of both the field equations and the boundary
conditions. Still more crucial is the facilitation of the numerics, which results
from the exclusion of the edge-effect part of the solution. - The FS stress
state varies with respect to z' as much as Ry/h times less intensively than the
edge effect (1/R; is the normal-section curvature), of which the general-theory
description of a problem has to be freed numerically.

Thus, the clearly delimited class of problems, those in the analysis of large
deformations by small strain, has a consequently specialized simple theory.
Whether a problem can be adequately treated with the aid of the FS theory is
usually perceivable without calculations. A solution already obtained can be
checked by applying the criterium (2).

A more complete treatment of the FS theory can be found in [1] and [6], its
discussion from certain general viewpoints in [7]. Consider the possibilities of
the FS theory on hand of two applications,
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TUBES
The problem

A thin-walled tube is flexible in the cases shown in Fiig.1 — I. The flexibility is
a consequence of wall bending. As can be perceived in Fig.3, the longitudinal,
tangential to the z'-line, stresses have in a curved tube resultant forces acting
to or from the curvature center of that line. These forces deform the cross
sections. This, transverse, deformation, in turn, influences the longitudinal
stresses. - The z!-lines are displaced in their curvature planes so, that their
elongation is diminished. The described effect (the Karman effect) becomes
substantial when: a)the curvature of the tube (initial or caused by elastical
deformation) is not too small, b) the tube wall is sufficiently thin and c) the
tube between the end constraints or ribs is long enough to allow a substantial
wall bending.

Consider now, summarily, the FS-theory description of the flexure of curved
tubes. The following is restricted to linear analysis. Large deformations and
buckling are discussed in [1] and [7]. (The history of the tube analysis can
be found in [6], [9]. It is rather instructive with sidesteps and downright
retrogressions.)

Let the tube have initial curvature 1/R,, (Fig.3), in the limit case 1/R,, =0
(cylinder shell). The cross section is initially circular. The load is applied on
the edges which are constrained by flanges. The chosen surface coordinates
have the lengths determined by

adf:%bdf, bd, R= Rm +bcosd (3)

At the tube ends { = const two (limiting) cases of flanges and the case of
transition to an adjoining tube have beeen considered.

(a) Thin flange, while preventing deformation of the tube edge in its plane,
does not restrict its warping. Any external longitudinal forces are thus
directly transmitted to the edge . With the edge forces distributed as b cos f
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and statically equivalent to a moment M shown in Fig.3 the described
conditions on the tube edge are

M cosf (4)

Ko =0, N, =
4 LY Ty

(b) Stiff flange prevents both the deformation of the tube edge in its plane
and its warping out of this plane. The relevant boundary conditions of the
semi-momentless theory based on (i) and (ii) (but retaining H and % - not
using the hypothesis (iii) ) are according to [1], (3.108), (3.105), (1.86):

r

o2
Ky =0, r—%(-(#)2=0, ()a—al)'="é("‘ (5)

(¢) On a line £ = const dividing a tube from the other part of a pipeline
(e.g., of different curvature 1/R,,) must be satisfied four conditions of
continuity: 2,7, N7 and S must be equal on the two sides of the dividing
ine. (The remaining four continuity conditions are excluded in the FS
theory, they determine the mentioned "edge effect”.)

Solution

The FS equilibrium equations of an element of a curved tube follow from the
general theory (e.g.,[1], (1.59) ) with the assumption (ii) in the form (notation of
Fig3, ¢ = cosa and s = sin adeterminetheshapeofthecross — section, ( ), =

a()/o(z") ):

N1 (RYS), i(czﬁ),z c

e g TR § Tantusl
(6)

S1  (RN2)a 1 § Q2 3

T T TRt gt resl

Where N3, @y and Qg are expressed in terms of H and Mj:
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Ny _Gu  (RQx)z e

R~ & B i te
(7)

Ql:{f?ﬁ),g 0, = (RMa)a | Hi

R%p $ Rb a

The corresponding compatibility equations are obtained from those of the
general theory (e.g.,(1.36) of [1]) with the hypothesis (i). There is no need
to write them out here. They follow from (6) and (7) by replacing the stress
resultants with the strains according to the static-geometric duality:

[Mr & Ms H)—~[ke —v —&1 5/2] (8)

Two equations (6) with the expressions (7) together with the analogous two
equations of compatibility and the equations (1) comprize a system of four
partial differential equations:

X;=AX+B, X = {N] kz 8 ) (9)

This system determines the column matrix X of four resultants which fully
represent the stress in the cross-section £ = const and its deformation
(including warping). In the case of zero distributed load B = 0

The deformation of the tube, symmetric with respect to the plane 8 = 0, can
be represented by the series:

[N1 k] = Xlg; f_,-]cosj!? ; [ 7= E[pj I"J'] sin j6. (10)

The go and py; represent the resultant forces in a cross section. In the
case under discussion {Fig.3)they are equal to zero and g; = M/(wb?h) for
h = const. Conditions of closedness of the cross-sections, i.e., of the @-lines,
give fo, fi,r1 = 0. Inserting (10) into (9) gives a system of 4N — 4 differential
equations for the remaining g;(€), f;(§), p;(€), rj(§). The system can be
integrated numerically, this is drastically facilitated by the exclusion of the
edge effect. The Euler-form general solution C;exp d;€ requires calculation of
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the eigenvalues d;, possible with the aid of standard procedures (cf.reference in
[1], p-222). The FS-theory eigenvalues are near to those of the general theory,
which represent the main de formation. (It must be clear, that dropping at a
tube end those terms C; exp d;€ with Re(d;) > 0, as done in the literature, can
lead to substantial error. - Some of the main-deformation terms Cjexpd; do
not ”"decay with the distance from the end” intensively enough.)

Much simpler than both mentioned is the double Fourier-series solution [1]. It
combines (10) with the £-series of the form

[fn 9n]=2[fnj gnj]COB.ff {11)
This reduces (9) to a system of algebraic equations for the fp;, ...
Results

The design requires the basic relations of a problem to be stated ezplicit{y and
be hand-calculable. Such simplest solution has been obtained (cf. [1] ) for a
wide class of pipe bends. It encompasses most tubes intended for high pressure
- all tubes with the thickness and curvature satisfying the condition:

b g b B
;S:m(S, h® = m (12)

Where Dy, and h,, are the values of D and h ( h may vary with #) on the line
R = Ry,. For tubes with D defined in (1): h° = 0.303hy, /b.

When the condition (12) is fulfilled, it is sufficient to retain in the series (10)
merely the terms with n < 3. The system (9) then can be reduced to one
differential equation. Its Euler solution contains only four constants C; which
are determined by the conditions on the tube ends explicitely. This gives for
the flexure angle, caused by the moments M (Fig.3) and the normal pressure
¢ (external pressure - negative) the formulas:

R
¢'~¢=FM%, FeFy = F5ks b (13)
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TTRRT I
By L. (14)
Y g
a) For “thin flanges”
_ sinh!+sinl _ e b 5 ¢Rm
= Teebit Toosl’ z‘(36+4) vhe (13)

b} For “stiff flanges”

cosh ! — cosl

=2 — — 16

[sinh! + Isin! (16)
The stress state and flexibility of the tubes are exemplified in Figs.{ and 5.
The solid-line graphs represent the solution of eqgs. (9), broken lines - formulas
(13)-(16). The pertinent discussion of the specific role of the hypotheses (i)-
(iii) and of applicability range of the simplest solution (13)-(16) can be found
in (1], pp.234-241 (cf.also [12]), together with the (substantial) simplification
of equations (9) by setting R = R .

A cautionary remark is called for, concerning the warping of the tube edges.
- A section of the relevant publications is still anaware of the effect of the edge
warping. It is this effect, what causes the striking difference, seen in Figs.4 and
5, between the cases (a) - free warping of the edges - and (b) - zero warping.
In the case (a) for the example of Fig.4 the maximum stress is 12.5/1.76 = 7.1
times higher than in the case (b). The angle of flexure is 16.6/2.89 = 5.7 times
more. The experiments show (Fig.5) the fexibility of real tubes to lie between
those of the limit cases (a) and (b). But the experiments are obviously nearer
to the case (a). (Moreover, a flange stiff enough to eliminate the warping, to
model the case (b), is difficult to realize, even in experiments.) The oversight

of the edge warping leads to errors of up to 200 % and more.
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(a) (b)

3

Figure 4. Flexibility factor and stresses in the midlength cross-section of tubes
with h/b = 0.02, b/Rm = 1/3, p = 55.07, v = 90°. (a) Thin flanges. (b) Stiff
flanges. Notation: oy = Ny/(hop), a3 = My6/(h%cg), op = M/(?rbzh).
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Figure 5. Flexibility factors of pipe bends under different warpping boundary
conditions at the edges.
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BELLOWS
The problem

Bellows is the most flexible of shells of revolution (Fig.1). The nominal shape
of a bellows, is set forth by detail drawings as composed of straight lines and
circle arcs (Fig.6), with h = const. The real shape and thickness depend on
the manufacturing technology (cf.profiles and a ground edge presented in [1],
Figs.63 — 65). The hydraulic shaping of a cylinder tube with R = Ry, h = hg
into a bellows with R = R(#) produces h = h(f) = hg\/Ro/R. This relation
has been derived analytically [13] and confirmed by measurements.

Figure 6. Bellows convolutions in both undeformed and after large elastic
deformation configurations.

The axisymmetric nonlinear solution for bellows with arbitrary profile and
h = h(f) has been obtained in 1966 [13]. (This problem setting has been
rediscovered in 1984 - Proc. Int. Conf. Pressure Vessel Technol., San Francisco,
v.1, New York).
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A substantial simplification of the analysis leans on the possibility to disregard
the edge effect on the ends of bellows. - This deformation extends not further
from an edge than one convolution and its influence decreases the stress
[1]. Without the edge effect the axial extension and pure flexure deform all
convolutions of a bellows identically. These problems become periodical with
respect to x9 = @ (Fig1 = I1I).

For the bending by lateral forces at the ends of a bellows the periodicity has
a more general form. - The cross-sectional bending moment (L in Fig.1 — I1]
) varies along the bellows L = L(#). It is, however, as a rule, possible [1] to
apply to this case the description obtained for L = const. The accuracy is not
thereby impaired when the bellows consists of three or more convolutions. In
any case, the deformation can be regarded as periodical in # with the period
encompassing the entire bellows. Is the coordinate @ chosen so, that it varies
from fy to g + 27, inside one period of deformation, so can the stress state be
represented by the Fourier series (10), (11).

Solution

The basic problems of large displacements and rotations of bellows, both the
axisymmetrical deformation and the flexure, can be effectively treated with the
aid of the following FS equations ([1], p.110):

(F,z ;) usin(at+W)-psina =0, (W %) j—pF cos(a+W) = Q. (17)

In the axisymmetric case, when F and W depend only on #, these equations
reduce to Reissner equations simplified by the FS assumption (2).

The variables F' and W represent all stress and strain resultants substantial in
the FS theory; in particular

Ny = F2EhR®, Kk =W,. (18)
It is denoted in (17): » = R/Rm, t= h/hpy. The angle o, the middle radius

Ry and middle wall-thickness hy, are denoted in F'ig.6. The term () represents
in (17) the loading, both applied on the edges and distributed over the surface.
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The equations (17) are obtained from the integrals of the FS equilibrium and
compatibility equations. They are additionally simplified by dropping terms
which are for bellows of the order of b/(nRm) = /&, with ¢ defined in (2) and
27b - the extended length of one wave of corrugation. Further, n denotes here
the number of the most substantial Fourier-series term in (10). Practically n
can be assessed by ,/u.

The coefficients fn;, gn; of the solution (10), (11) are determined by
incremental iterative procedure. The increments of the Fourier coefficients
are calculated by solving a system of linear algebraic equations, separate for
each j = 0,1,2,... . This system is obtained from (17) with (10), (11) using the
matrix operations with Fourier series ([1], p.130-) and the numerical spectral
method, due to V.Axelrad [14]. The iterative procedure assures simplicity of
the algorithmus and a chosen accuracy of satisfying the equations (17). It is
realizable in a short time with a portable computer.

Results

Two of convolutions of a bellows are shown in Fig.6 in both the undeformed
state and after large elastic deformation of pure flexure. It is the meridianal
section in the plane of flexure, on the compressed side of the bellows. The
dimensions are (mm): Ry, = 25, R(0) = 30, h = hyy = 0.4, the length of the
bellows consisting of 20 corrugation waves is 20-8.8 = 176, the extended length
of one convolution 2wb determines b . The deformation has been computed
in the manner indicated in Sect.4.2. By small, elastic, extensional strain,
here €2 = x2h/2 = 0.0058, the angular and linear displacements are really
considerable: the angle of flexure of each convolution - 3.6 degr., the entire
angle of rotation of an end of the bellows with respect to the other end amounts
to 72 degr..

The applications of bellows often encompass their use with strains above the
elasticity limit. The FS theory can, as mentioned in Sect.2, be extended to the
elastic — plastie range. Specifically, such a generalization is possible for the
solution summarized in Sect.4.2. The basis would be provided by equations
analogous to leading to (17).
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ABSTRACT

In this report we revisit the analysis of [1] and [2] on the behavior of softening bars
in tension. We show that when the length of the softening portion 3! a bar is smaller
than some critical value the “incomplete” load-displacement egquilibrium trajectory
found in [1] can actually be smoothly continued until failure at zero applied load. The
point where the load-displacement trajectory was left incomplete in [1] is a point with
a vertical tangent and the continuation of that trajectory corresponds to a snap-
back: both the load and the displacement decrease thereater because the rate at which
the softening portion of the bar elongates is smaller than the rate of shortening of
the efastiqaﬁy unloading portion of the bar. We also show that in a continuous bar
with a finite region of minimal strength and with smooth stress-strain loading curves
(do/de = 0 at the point of marimum stress) the correspoding load-displacement
equilibrium trajectories have a tangen! bifurcation at the point where the applied
load attains its mazimum value: at that point all post-bifurcation trajectories have the
same (horizontal) tangent as the pre-bifurcation trajectory. Each of the infinite post-
bifurcation trajectories corresponds to a specific combination of the portions in the
region of minimal strengh where strain-softening or elastic unloading occur thereafter.
Keywords: Damage s Softening Bars in Tension a Snap-Back » Tangent Bifurcation

RESUMO
Neste trabalho estudamos o comportamento de barras tensionadas capazes de apresen-
tar amolecimento. Usando idéias desenvolvidas em [2] retormamos o problema apre-
sentado em [1] reformulando-o e completando-o. O estudo inicial é feito considerando

duas barras homogéneas em série e depois generalizamos a andlise considerando o caso
de uma barra onde as propriedades variam ao longo do comprimento. No caso das
duas barras ufarscc um ponto de retorno que corresponde a uma retragdo da estru-
tura. Apds este ponto tanto o carregamento aplicado quanto a deformagdo decrescem
até o rompimenf: da estrutura. Para a barra conlinua apresenfando uma regido de
resisténcia minima de medida ndo nula e uma curva de teno&'o-d?omac&o suave
encontramos uma situagdo inleressante, apareniemente inédita na lileratura de en-
genharia. No ponto onde a lensdo € marima todas as trajetérias pés-bifurcagdo tém
a mesma tangente horizontal, ao que denominamos de bifurcagdo tangente.

Palavras-chave: Dano » Amolecimento de Barras Tensionadas s Retragio =
Bifurca¢io Tangente

Submetido em Fevereiro/92 Aceito em Julho/92
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A SYSTEM WITH TWO BARS IN SERIES
Governing Equations

Following [1] we consider a one dimensional system of two bars in series with
undeformed lengths L;, as shown in Fig. 1. We assume that the materials of
both bars satisfy the following constitutive equations (see Fig. 2)

o = Ei(1— D;) gi,i=1,2 (1)

Dy = Ki{é;)i= 1,2 (2)

Here oy, ; and D; € [0,1] are the stress, the strain and the damage at bar 1,
respectively. E; is the elasticity modulus of bar i at zero damage, the constants
K; in the damage evolution laws (2) are positive and (z) = max{0,z}. All the
above quantities are constant within each of the bars, but a;, ¢; and D;,i = 1,2,
depend on a strictly increasing time-like parameter t. The equilibrium equation
is

01 = 03(=0) (3)

and the kinematic compatibility condition is

Liey + Laga =6, (4)

where & is the imposed total elongation of the bar at each time {. We further
assume that at the initial time the two bars are virgin and undeformed, i.e.,

Dy=Dyg=e1=e3=0att=0. (5)
6
—>
Z: v
S 2 =
A4 Ly L2
|

Figure 1. Two bars in series subjected to tension.
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Figure 2. Loading and unloading-reloading ¢ — ¢ paths for the constitutive
equations (1,2).

Solving the problem

Continuing to follow [1] we combine (1) and (3) to get

Ey(1-Dy) ey = Ey(1 —Dy) e . (6)

Integrating (2) and taking into account the initial conditions (5) we obtain
I¥ = Kei (7
which is valid only while ¢; > 0,7 = 1, 2. Inserting (7) in (6) we obtain

o= d =E1[1—K1£1)£1 :Eg(l—KzEg] €9 = 09 , (8)
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which can be rearranged in the form
I N 1 % E;, E
kb (a-5) =8 (a-mc) +3(R-7) - ©

Without loss of generality, only the cases (a) E3/K; > E;/K; and (b)
Eq/Kq = E1/K; need to be considered.

(a) The case E3/K2 > Ey /K,

In this case (9) represents an hyperbola, as shown in Fig. 3. Only the lower
branch of this hyperbola contains the initial state £ = £€9 = 0 and leads to
quasistatic solutions to the problem, while £y, > 0 and €2 > 0. From Fig. 3
we conclude that €; > 0 holds only in the interval 0 < ¢£; < €] = 1/2K;
which corresponds to 0 < e3¢5 = 1/2K),¢; attains a maximum, so that,
differentiating (9) and imposing €2 = 0, we get

et _ | _EaK;
f2= 2K, : T By K,y £
and then
f Eiffz\
DQ—KQ Eg— [ EgKl
Ey K
Ej=(1-Dj) Ea= 3 (1+ 1= E:K: (11)

For €1 > €] = 1/2 Ky we have é; < 0, so that bar 2 must unload efastit:a.lly
while bar 1 softens (¢ = 6; = 73 < 0 and €; > 0). For bar 1 equation (7)
continues to apply, while for bar 2 we have now Dy = 0 and

2= Ejey = Ea(1 - Dj) €2, (12)

with E3 and D} constant and given by (11). From (6), (7) and (12) we have
now
E;€2=E1(1—K1 El) €1, (13)



Snap-Back and Tangent Bifurcation Phenomena 391

1.00F - —
- \\ ',I
X
L \\“(9] ’d,
-~ 075 R ¥
o~ L \\‘ ” ’
@ K o
3 A (14) (al)
= kL
2 0.50_—
- s (14)(a2) 8 =Gc
m -
o i N
X 0.25F (14)(a2) ~
i (9) M CRNN
i Klel KI Elc N
i ~N
0.00 Levge e ife M oup gy oy ik a1 Ll Al 4 _1
0.00 025 0.50 0.75 100

Kl . STRAIN (BAR |)

Figure 3. The hyperbola (9) and the parabola (13) for a case (a)
(EyK2/E2K1 = 0.9). The straight lines (14) for a case (al) (Ly/L; K7 = 2,
with § = 0.5L,/K,) and for a case (a2) (L1 K3/L2 Ky = 0.5 with § = 05L, /K,
and 6§ = 6. = 1.275L,/Kq).

which replaces (8,9). This is the equation of a parabola and, comparing it with
(9), we may check that for each value 1/2 Ky < &1 < 1/K, the value of &
given by (13) is larger than the corresponding value given by (9): the parabola
is above the hyperbola (see Fig. 2).

In the present case (a) the problem (1-5) is thus reduced to the determination
of the intersections between the curve made of the hyperbola (9) (for 0 < g <
1/2 K1) and the parabola (13) (for 1/2 K7 < &1 < 1/K7) with the straight
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lines (4)
Iy )
62——L281+L—2. (14)
for continuously varying values of the total elongation §. Depending on the

angular coefficient —L1/Ly of these straight lines, two situations may occur:

(al) For each é there exists a unique intersection if the slope of the curve (9,
13) is everywhere (algebraically) larger than the slope (— Ly /L3) of the straight
lines (14) (see Fig. 3). From (13) we have that the minimum slope of the curve
(9, 13) is

dey 2=, e

dE] e;:ﬁl— - E; :

so that the solution to (9, 13, 14) is unique if

Ly E

=t 202

L, ~ Ej (15)
(a2) On the other hand, if

L < E!. (16)

Ly ~ Ej y

then for small values of §(0 < § < §p) the intersection is unique, for g < § < &,
there exist two points of intersection and, finally, for § = §. the straight line
(14) is tangent to the parabola (13) (see Fig. 3). It is easy to check that =

bo = L1/ Ky
and that ' ik
PR 1 2
=%, (” LzEI) :

In order to interpret the above results we shall now study the load-displacement
equilibrium trajectories (o versus 4).

Differentiating (4) and (8) for 0 < ¢y <eJ =1/2K,and0< e <5< 1/2 K,
we get
do 1
A PR WY TR (1)
Ey 1-2Kqeq  Ey 1-2K;5,
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and then do/dé decreases monotonically from (Lg/E2+L1/E1)"atey = g3 =
0 to zero at €1 = €7,€3 = €5. On the other hand for 1/2K, = €] <¢; £ 1/K,,

we get
do 1
' ) : 5’3_‘ (18)

BE1-2FKia B

and then, for 1 = ¢] = 1/2 Ky, do/dé is zero. This means that at the point
where bar 2 starts to unload elastically and bar 1 initiates softening there
exists no discontinuity on the slope of the plot of ¢ versus §. Continuing our
study, we consider first the case (al): we have L1/E > Ly/E3 and from (18)
it follows that do/dé decreases monotonically from zero ﬁt ey = 1/2 Kq to
—(Ly/Ey = Ly/E})™! < 0 at gy = 1/K;. Considering now the case (a2), we
have Ly/Ey < Lp/Ej and: (I) when €, increases from 1/2 K to ef then the
slope do /dé decreases from zero to —oc; (I1) when ¢ increases from £ to 1/K;
then the slope do/dé decreases from +oo to —(Ly/Ey — Ly/E3)™", which is

now a positive quantity.

In Fig. 4 we show the equilibrium trajectories (o versus é) for both cases (al)
and (a2). These trajectories were evaluated by computing for each g1 in the
interval [0, 1/K ] the corresponding pair (¢,0): ¢ is given by (8) as a function
of £1, and 6 is given by (4) as a function of £1 and €9, the latter being evaluated
from the hyperbola (9) or the parabola (13). Tt is clear that in case (a2) the
region 11 (Ef < €1 < 1/Ky) corresponds to a snap-back: both the load ¢ and
the total elongation & decrease. This happens because, when the length Ly of
the bar in strain-softening is smaller than the critical value Ly Ey /E3 (16) and
€] < £1 < 1/Ky, the rate at which bar 1 elongates in softening is larger than

the rate at which bar 2 shortens elastically:

Ly Ly

B0~y e Te0

€1 Ly +é3 Ly =
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Figure 4. Load-displacement equilibrium trajectories (o versus §) for two cases
(a): E1K2/EqK; =0.9, and Ly/Ly Ky =2, (case (al)) or L1 Ko/L2Ky = 0.5
(case (a2)).

Note that from this analysis the only possible conclusion is that, as soon as
the elongation § attains the critical value é., it becomes impossible to increase
it further in a quasistatic manner. The staterment of [1] that “there is no
solution for values of § larger than a certain critical value” is correct. However
it is at least misleading to classily the point where 6 = §. as the point “where
the damaged solution ceases to exist” because the damaged solution continues
thereafter with decreasing o and & (snap-back).
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Before concluding the study of case (a) we wish to point out that the solutions
shown above are unique in the sense that any other possible solutions only
involve trivial trajectories of elastic unloading or reloading of both bars 1 and
2, which neither dissipate energy nor lead to failure.

(b) The case Eq/Kq = E} /K,

As found in [1] the hyperbola (9) degenerates in this case into the two straight-
lines (see Fig. 5).

K,
= — 19
€2 Rp €1 (19)
1 I'L'l
B, BSE . 20
£2 K, K, €1 (20)

Only the first of these contains the initial state (5) and leads to solutions to
the problem, for €; > 0 and €3 > 0. For ¢; = €] = 1/2Ky, €2 = €5 — 1/2K;
the stresses in both bars attain the maximum value

o" = o]

o3 = E1/4K) = E3 /4K,

and thereafter the stresses must decrease. At e; = 1/2K1, €2 = 1/2K; we have
the possibilities:

(bl) bar 1 strain-softens and bar 2 unloads elastically,
(b2) both bars strain-soften,

and, of course, the trivial unloading of both bars or the situation (‘le with
bars 1 and 2 interchanging their roles.

With the arguments used earlier, it follows immediatly that the left derivative
do/db at £y = 1/2K1, 9 = 1/2K; is null. In case (bl) the equations that apply
on the right of that point are the same as those that apply on the left, so that
the right derivative is also null. Case (b2) leads to a situation analogous to the
case (a) for 1/2K; <€) < 1/K; and equation (18) applies again. This shows
that the right derivative do = dé at £y = 1/2K, €2 = 1/2K; it is also null.
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Figure 5. The straight lines (19,20) for case (b). In the post-bifurcation range
1/2Ky < €1 < 1/K), case (bl) corresponds to the parabola (13) and case (b2)
corresponds to the straight line (19). Also on the same figure the parabola
that corresponds to the trajectory of the type (bl) that bifurcates from the
trajectory of the type (b2) at a point where &1 = 0.8K3 €2 = 08/K,.

We conclude that the bifurcation on the equilibrium trajectories at the point

of maximum load is a tangent bifurcation: all the post-bifurcation trajectories

have the same (horizontal) stope as the pre-bifurcation trajectory (see Fig. 6).

Without giving the details we finally observe that every point of the post-

bifurcation trajectory (b2) is also a bifurcation point from which a trajectory
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Figure 6. Load-displacement equilibrium trajectories (o versus §) for case (b)
(F1Kof/E2Ky =1, LyK3/La Ky = 1). Post-bifurcation trajectories of the type
(bl1) and (b2). Trajectory of the type (bl) that bifurcates from the trajectory
of the type (b2) at a point where £ = 0.8/Ke2 = 0.8/ K>.

of the type (bl) emanates. These additional bifurcations are not tangent
bifurcations for ¢* > & > 0 (see Figs. 5 and 6).

A CONTINUOQUS BAR IN TENSION
Governing Equations

We consider now a bar A = {z : 0 < 2z < L} such that the constitutive
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equations
o(z) = E(z)(1 - D(x)) (=) (21)

D(z) = K(z){é(x)) (22)

hold at each point of the bar. Here E(z) and K (z) are strictly positive functions
of 2 € A and o(z), e(z) and D(z) are the unknown stress, strain and damage,
repsectively, at each z € A. The equilibrium equations is

olz)=c¢ Yz €A (23)

and the kinematic compatibility condition is

L
] g(x)de =4, (24)
0

where & is the imposed total elongation of the bar. For simplicity, we omit
from the notations the dependence of o(z), e(z), D(z), ¢ and § on a strictly
increasing time-like parameter {. We also assume that at the initial time the
bar is virgin and undeformed, i.e.,

D(z)=(z)=0 Vr€A att=0. (25)

Solving the Problem
Similarly to (8) we get

c=g0(z)= F(z)(1 - K(z) e(z)) e(z) (26)
for all r € A, while

éz)>0 VYzeA. (27)

It follows that, while (27) holds, we have

1 1K (z) o
e(z) = TRE) [1 l————

with

1
0<elr)< —— and 0<o< ——+

K@) 1K(z) (28)
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While (27) and (28) hold, the positive stress and elongation rates are given by

4K(z) o .

o= E(z)/1-

dr

5=&LLE(:)‘[{_4K¢ e

xr

so that the positive slope of the & versus § curve is

do _ 1
db _" )
B« )\/ K(z) o

Let o* be the maximum admissible stress at the points of the bar with minimal
strength

(29)

o* = min 2(z)
TEA 4K( )

We assume that the set

" . Bz _ .
_{::EA ' 1K (z) =0 }
has non-zero length and we denote

A;:A\AI:{zGA : 411{(2—)=>a‘}

Now, if t* is the time at which the increasing stress ¢ equals ¢, it is clear that
the expressions (28) hold for 0 <t < t*, while for t = {* we get

=, Blz]
B = =

&(z) = 2K( 3 Yz € A}

U(::):ﬂ"(-—E—(ﬂ- Vz € A7 .

e(z) < K (z)

1
2K (z) ’
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The constitutive behavior in A} then implies that ¢(z) < 0 for all z € A] and
for all £ > t*. It follows that

ag=0(z)<0 YzeA Vi >t*.

which in turn implies that all the points of A3 initiate elastic unloading at
t = t=. If “trivial” elastic unloadings of the whole bar are excluded, then, for
some { > t* and some subset of points z of A], equation (26) is still valid with
o(z) = o < o, e(z) > 1/2K(z), 6(z) = ¢ < 0, é(z) > 0. For t > i* we shall
denote

N o G 4K(z) o y
A]—{IEA.E(S)—W[]+ 1-—8(3) }CA],

.'\2:{:61\ : [1+

i 4K(z) o 1
21{(:)[ V'~ |29 <%E

4K(z) o %
1-— _.E-?(_J.‘."_)_ } 2 A3

A= {z €A :a(z)= —E(-"}ﬂl - 4];:.{;))0 5(1’)} CAr,

Aa={z €Ay : a(z)= Ej2(z) €(2)} C Ay .

where ¢ amd ¢ denote right stress and strain rates, respectively, and Eyq(z) is

given by
Epa(z) = E(;) (I e %—"-) , (30)

forz € Ay, ¢ > o > 0, t = t*. Note that A; is the set of points on the
strain-softening portions of the o(z) —e(s) constitutive relations, Ay; is the set
of points in A; where elastic unloading unitiates precisely at the time ¢, A; is
the set A\A; and Ay is the set Aj\Aj2. Note also that for all z € Ay the right

stress and strain rates at time ¢(> {*) are related by
a(x) = £ £(x) ,

where (compare with (11) and (30))
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@(H 1 2B PN e anig

= 2 E(z)
21X} =
E(;) (1 = % . for some o €la* o*[if z € A7\A}

(31)

For t > t* and 0* > ¢ > 0 the elongation § is thus related to the stress & by

S _AK@)e| o 92
°= 7K@ l” e [A,Ez(z)’

while the corresponding (right) rates are related by

§=¢ -/ .
A 4K o d. d
1 E(::)‘/l - —E((—?,—‘; + Jarz E—n,fz + i, E—(—”ﬂ;

The (right) slope of the o versus & curve at ¢ > t*, o €]0, o*] is thus

do _ 1
dé d 4K (z) o d d l
i fAu E&T L= Eizi + fi\u Euxizi + fl\: E;xir]

(32)

Having excluded “trivial” elastic unloadings of the whole bar (length of Aj; > 0
for all o €]0,0*]), we may conclude from (29) and (32) that, independently of
the size and the distribution of Aj; and Aj2 along AJ, the right slope of the
o versus & curve at ¢ = ¢* is always equal to the null left slope of that curve
at the same point. This means that the equilibrium point at the maximal load
(¢ = ¢®) is a point of tangent bifurcation from which an infinite number of
equilibrium trajectories emanates. These trajectories differ from each other
on the size and the distribution of softening and unloading portions along the
finite-length region of minimal strength (A}). In addition, all the points in
these post-bifurcation trajectories are also bifurcation points at which different
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sizes and distributions of Ay; and Aj3 in Ay also originate an infinite number
of distinct solutions. These additional bifurcations are not in general tangent
bifurcations. For a discussion on the stability of these bifurcated trajectories in
related problems see [2]. Finally we observe that expression (32) also shows that
a snap-back may also occur in a continuous bar: when the softening portion
Aj1 of a bar and the stress o are sufficiently small the slope do/dé may become
positive,
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