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Abstract

In this paper the problem of hydraulic positioning system is taken into account. 11 is shown that by modeling the
actuator in a convenient form the system can be interpreted as a mechanical subsystem driven by a hydraulic
one. This structure is called a cascade control strategy. Cascade controllers based on the linear an nonlinear
models are synthesized using Lyapunov direct method. Simulation results illustrated the main characteristics of
the cascade control strategy.

Keywords: Hydraulic Control Systems, Hydraulic Actuators, Positioning Systems.
Introduction

In many robot applications where big loads have to be handled hydraulic actuators are very
attractive due to their ability to provide very high forces (and torques) at very high power levels. This
results in higher torque/mass ratios than those available from an equivalent electric actuator, Another
advantage of a hydraulic actuator is that it is quite stiff when viewed from the side of the load. This is
because a hydraulic medium is mechanically stiffer than an electromagnetic one.

However, the compressibility of the hydraulic fluid can cause detrimental effects on the dynamic
response of the hydraulic actuators, including instability and limited bandwidth. These effects limits
the use of hydraulic actuators, specially in robot applications where high performance and reduced
position errors are required.

In this paper we propose a control algorithm to a hydraulic positioning system, in order to
overcome the limitation in the use of hydraulic actuators. Based on the methodology of order
reduction presented in Utkin (1987), we propose a cascade control strategy.

The cascade control is based on a standard linear third order model, obtained from the
lincarization of the nonlinear differential equations. This mathematical model represents the
dynamical behavior of hydraulic actuators.

By combining the cascade control scheme and the Lyapunov stability method we demonstrate
that the closed loop error is globally exponential stable. This allows the improvement of the dynamic
performance of the closed loop system. This result is not verified when classical controllers such as
the P1D (Proportional-Integral-Derivative) are used.

The dynamic performance of classical controllers and the proposed cascade control scheme are
compared on a benchmark example. Simulation results based on the linearized model confirm the
accuracy of the cascade control strategy. These results show that the cascade control is a powerful
method to obtain high performance with hydraulic actuators.

The paper is organized as follows, First we present the nonlinear and the standard linear third
order model, Then we discuss the hydraulic actuator control problem. The cascade control strategy
applied to the hydraulic actuator is then presented. Next we demonstrate the cascade control stability
properties. Finally, some simulations results for the benchmark hydraulic actuator (Davidson, 1990)
are presented to illustrated the performance of the proposed controller.

The Dynamic Model

We consider the hydraulic actuator shown in Fig. 1. This actuator consists of a cylinder
controlled by a servovalve constituted of a critical center four-way spool (Watton, 1989). The supply
fluid pressure p, is used for the energy transmission.

Presented at the Ninth Workshop on Dynamics and Control - DYNCO, Rio de Janeiro, RJ - August 11-14, 1996,
Technical Editors: Agenor de Toledo Fleury and Hans Ingo Weber.
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Fig. 1 Hydraulic Actuator

In Figure 1, py is the reservoir pressure, p, is the pressure in the 1st cylinder chamber, p; is the
pressure in the 2nd cylinder chamber, v, is the volume of chamber 1, v, is the volume of chamber 2,
Q, is the flow through the servovalve from the pump to the chamber 1, Q, is the output flow from the
chamber 2 to the reservoir, M is the mass attached to the actuator, B is the viscous friction
coefficient, “u” is the servovalve spool position, and “y” is the actuator piston position (and
consequently the position of the mass M).

The dynamic model of this system is obtained using the well-known flow equation. This
modeling is developed in terms of energy conservation and applying the continuity equation to each
cylinder chamber. The final model is obtained applying he Newton second law to the mechanical
mass damper system relating the input “u” (spool position) to the output “y” (cylinder position). This
modeling process is developed by many authors (Stringer 1976, Watton 1989, Burton 1994), and
detailed information can be found in Paim (1996), where the following description is obtained:

M5+ By=Apy + F, M

Pa ud Ay By Ku,| p; —sign(u)p, (2)

+ =
(v/2) =(4dy) ~ (v/2)'—(4y)

where A is the cross-sectional area of the cylinder piston, p, = p, - p; is the pressure difference in the
cylinder, P is the volumetric elasticity modulus, v = v, + v, is the total volume of the cylinder, and F;
is the load applied to the mass M. The other variables have been defined above.

By considering the case F| = 0 (the load will be considered latter as an external disturbance), the
linearization of the model defined by Egs. (1) and (2) around the central position of the actuator
(y=0) allows to write (Watton 1989):
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M5 + By = Ap, 3)

+ R py+Ly=x @)

TR
4PK, " Ktk

where K, is the valve flow coefficient, K. is the valve pressure coefficient.

According to Burton (1994), we can define a state vector as x =[y Y Pa ]7'. then Egs. (3) and

(4) can be written in the state space representation as:

x=Fx+Gu
y = Hx (5)
0 1 1] 0
B A
where F=|0 -~-— - G=| 0 H:[! 0 O]
M M 4BK
p _4PA 4BK¢ Q
v v v

By combining Eqs. (3) and (4) we obtain a third order transfer function relating the input “u” to
the output “y" of the dynamic system:

Gls)="222
(s) M Qs

4B A4 !

2
L +2§mn+wi)

(6)

v

where the natural frequency @, is given by @ , =2, ’%(Az +BK. ) .

It should be remarked that:

The linear model of the hydraulic actuator is represented by a transfer function with a
single pole in the origin and two complex conjugated poles poorly damped, leading to a
lightly damped system response;

The natural frequency of these complex pole ®, depends on the volumetric elasticity
modulus of the fluid and the actuator position. Particularly, the central position leads to
the minimal natural frequency in relation to the other positions (Watton 1989);

In this model the servovalve is considered as a static component. In fact, the transfer
function associated to the valve has real and complex poles superimposed to that of the
transfer function Gfs),_,, described in (6) (Schothorst et al., 1994). In Heintze and
Weiden (1995) servovalve dynamics is represented by a third order linear system, and

When the pipeline between the servovalve and the hydraulic cylinder is long it can cause
a dynamic behavior in this pipeline. This phenomenon is called pipeline dynamics. These
dynamics (see Schothorst et al., 1994) can be represented as second order systems with
lightly damped poles in series with the servovalve dynamics, and with the subsystem
represented by the transfer function (6).
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The Hydraulic Actuator Control

Due the particular structure of the system represented by Egs. (3) and (4) we can easily evaluate
the limitations of the closed loop system performance. The presence of lightly damped complex
conjugated poles implies that the proportional feedback gain may be restricted to small values. In
fact, great values of the gain lead to locate the closed loop poles in the right side of the complex
plane. This restriction in the gain margin is a hard limitation to the system performance. Therefore,
the position errors become difficult to be minimized.

The presence of lightly damped poles lead the system to be poorly robust with respect to external
disturbances like the load F;, and the non modeled dynamics, e.g. the servovalve and the pipeline
dynamics.

The PD (Proportional-Derivative), PI (Proportional-Integral), or PID (Proportional-Integral-
Derivative) controllers introduce poles and zeros in the closed loop system that, in general, do not
change the locations of the complex conjugated poles. This feature can be verified if we plot the
corresponding root locus for each controller. Consequently, with the output feedback using these
controllers is quite difficult to change the bandwidth, or to improve the system performance, or yet o
reduce the position errors.

The damping coefficient of the complex conjugated poles associated with the hydraulic
components has been recognized as an essential topic of investigations by many authors. Watton
(1989) presents four possibilities to improve the system damping: (i) [ntroducing a leakage way
between the lines with pressure p, and p,, (ii) Using a hydromechanical filter between the lines, (iii)
Employing an electronic filter, (iv) Using a state feedback strategy. These possibilities are discussed
in the sequence.

The introduction of a leakage way between the lines can improve the damping as demonstrated
by simulations presented in Watton (1989). However, to an effective damping it is necessary to limit
the closed loop proportional gain. This limitation can be expected to play an important role in the
possibility of reducing the position errors and the bandwidth.

The main feature of a hydromechanical filter is to lead to a leakage between the lines only in the
high frequencies corresponding to the lightly damped poles. Consequently, it is possible to reduce the
position error without substantial changing in the bandwidth as in the case of the direct leakage
between the lines.

Employing an electronic filter with restricted band is a way to avoid the displacement of the
closed loop poles to the right side of the complex plane. The basic idea is to introduce two zeros in a
way to cancel the complex conjugate poles. There are two difficulties to the practical implementation
of this technique. Firstly, it is imperative that the zeros velocities be smaller than the natural
frequencies of the poles. If this is not the case, then the introduced zeros are not able to maintain the
poles in the left half plane (see Franklin et al,, 1994). It is important to note that the natural frequency
associated with the poles depends on the volumetric elasticity modulus B and the cylinder position.
As the volumetric elasticity modulus P and the cylinder position vary, we conclude that, in the
project, a small error in estimating the natural frequency of the poles could lead to closed loop
instabilities.

The second difficulty is related to the filter. In case of practical implementation, the knowledge
about the actuator acceleration ¥(t) and its time derivative are required.

Furthermore, as the approximated cancellation of the poles does not eliminate the lightly damped
dynamics, then the gains, bandwidth and performance remain limited.

Another way to increase the damping of the complex conjugated poles in the closed loop, is to
synthesize a state feedback based controller as presented in Virtanen (1993). In theory, an arbitrary
pole placement is always possible due to the fact that the system (3) (4) is completely controllable.
However, a suitable damping of the complex poles can lead to high control gains. Due to the physical
limitations, the servovalve may be unable to supply the needs of the pressure transfer, and a
saturation can occurs limiting the system performance.

In the next section we will present a way to keep into account these limitations imposed by the
problem structure given in Eqs. (3) and (4). The main objective is to obtain high performance
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requirements where an accurately tracking is necessary, such as in case of hydraulic robot
manipulators.

The Cascade Control Strategy

Based on the methodology of order reduction presented in Utkin (1987), we propose a cascade
control strategy described as follows. Consider a system of the form

J'c_.=h‘,(.r,..r;,1‘)+Bzfx;,x_,,!)h‘ (8}

where x, € "™, x, € W™ and u € R", “n” is the order of the subsystem modeled by (7) and (8) and
“m” is the order of the subsystem (8). Consider that in system (7) (8) the vector x,(t) is required to
track some desired trajectory x,4(t).

The cascade control design consists in regarding the vector x, as control variable for subsystem
(7) and, as such, a desired function x,4. to be designed, is assumed to exist so that the tracking goal
may be achieved. Then u € R™ is designed so that x, tracks x,4. In turn, this allgws X, to track the
desired trajectory x,4(t).

An application of this cascade strategy has been used by Guenther and Hsu (1993) in the control
of robot manipulators with electric actuators, and by Hsu and Guenther (1993) to control flexible
joint manipulators. Recently a kind of cascade control has been used by Heintze and Weiden (1995)
to control hydraulic manipulators.

Inspecting Eqs. (3) and (4) we can rewrite them in the form (7) and (8). In fact, the system (3) (4)
can be interpreted as a mechanical subsystem (3) driven by an hydraulic force g = Ap,, on which a
hydraulic subsystem is superimpose to provide a pressure drop p,, when driven by the spool
displacement "u”. This interpretation enforce the cascade model (3) (4) description.

To describe (3) (4) as a cascade system, we will define g, = p,yA as a desired force so that the
mass M achieve a trajectory y,(t). Let

Pa=Pa—Puas

be the pressure difference tracking error. Using (9) we can rewrite Eqgs. (3) and (4) as:

My + By = Ap,,; + Ap, (10)

v .  Ke 7.
pat——pp+—y= n
4BK,, . Ky 6+K9y ¢ i

| Clearly, this system is in the cascade form as stated in (8) and (9). Equation (10) can be
' interpreted as a mechanical second order subsystem actuated with a desired force g4 subjected to an
| input perturbation d=Ap, . Equation (11) represents the hydraulic subsystem.

The design of the cascade controller can be summarized as follows:
(i) Compute a control law g, to he mechanical subsystem (10) such that the cylinder

displacement achieve a desired trajectory y,1) taking into account the presence of the
perturbation d = Ap, . We can quantify the desired pressure difference using the relation:
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g,
Paa ==4 (12)

(i) Compute a control law “u” such that p, tracks p,(t) defined in (12).

In this paper the design of a control law to the mechanical subsystem g, is based on the controller
proposed by Slotine and Li (1988). The control law “u” is synthesized to achieve good performance
characteristics to the tracking related to the hydraulic subsystem.

According to Slotine and Li (1988) the control law to obtain tracking in the mechanical
subsystem is given by

8a= Wrﬁlth)r*KUs (13)
where K, is a positive constant, ¥, is the reference velocity and s is a measure of the velocity
tracking error. In fact, y, can be obtained in modifying the desired velocity y, as follows
W=V~ F=y-ya: S=y=y, =y +3y (14)
where X is a positive constant,
Substituting (13) in (10} the error equation related to the mechanical subsystem becomes
Ms+(B+Kp)s= Ap, (15)
Consider the nonnegative function:
2, = Ms® + Py? (16)

where P is a positive constant defined in the sequel. Using (15), the time derivative of (16) is given
by

Vi=—(B+Kp)s® + PYy + Asp, an
Expression (17) will be on the stability analysis.

To achieve the trajectory tracking in the hydraulic subsystem (11) we propose the control law
u=ii- KBy (18)

where K, is a positive constant and i is a nominal control law. This nominal control law is designed
to the system represented by its nominal parameter values.

The design of it and K, is based on a nonnegative scalar function V;:

2V, = Lp} (19)

where L= is a positive constant.

v
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The time derivative of (19) using Eq. (11), and taking into account the pressure difference error
Da(t) and the control law defined in (18) results

ﬁ2=-ﬁaku*-ﬁ)+1(,,ﬁa (20)
where
Kc A
U= Lpug 42 Pt en
Ko Ko

Expression (20) will be used on the stability analysis.

Considering the cascade control scheme proposed, the spool displacement “u” can be computed
using the relationship

u=u~-K,(ps—pas) (22)
with the nominal control @ given by

- -

K A
u= LpM+ == Pp +——Y (23)
Ko™ K

Fi Y Py
where L =-——— isa constant determined using the nominal values related 1o the volume v , the

volumetric elasticity modulus B the value flow coefficient KQ, the valve pressure coefficient Kc
and the cross-sectional area of the actuator piston A.

The desired pressure difference p,; in Eq. (22) can be computed using Eqs. (12) and (13):

Pad = A(Wr*'Byr KD’) (24)

A

The desired pressure difference time derivative p,, in Eq. (23) is the time derivative of (24)

whose computation involves the relationships 3!—; (y.)= y”) and % (s5)=35 . From equation (14)
we can conclude the necessity of the knowledge of the cylinder acceleration V. In the case that

all parameters related to the mechanical subsystem are known, j can be computed using Eq. (3).
Using this approach and expression (14) it is possible to write:

Pag a__[(M_ uﬂ)y_ A[%+l)pﬂ + My +(B+Kp+AM )iy + h(B+ xﬂjp‘,]
(25)

We can note from (21) and (25) that the signal u* is obtained from measuring the variables y, »
and p,, i.e., the state vector “x" associated with the system (3) (4).



115 J. of the Braz. Soc. Mechanical Sciences - Vol. 19, June 1997
Stability Analysis

Combining the trajectory tracking, algorithms presented before a cascade controller can be
obtained. Now consider the linear mathematical model of the hydraulic actuator and the cascade
controller. In this _case, the closed loop system is given by Q = {{10),(11),(13),(18)}. Let

p =EJ y "ﬁa:r be the tracking error vector of Q.

To demonstrate the exponential stability of the closed loop system Q we will take into account
the convergence lemma presented in the sequel.

Lemma - If a real valued function V(1) verify the inequality ¥ (¢)+aV (1)<0 where o is a real
number, then V(1) < V(0) ¢™ (see Slotine and Li, 1991, pp- 91).

Theorem - The £ system above defined is exponentially stable with respect to the origin of the
tracking error vector p.

Proof: Consider a Lyapunov function

1
V=V,+V2=3p’"N,p (26)
where V, and V, have been defined in (16) and (19), respectively, The matrix N, is given by

MM+P MM 0
N.;= ?LM M

0 27
0 0 L

In the case of the parameters referring to the hydraulic actuator are known @ = u*. Then,
according to (17) and (20), the time derivative of (26) is

V==(B+Kp)s’+ Py¥+ Asp, - K, Pz (28)
Using Eq. (14)

V=—(B+Kp)y’ ~[2A(B+Kp)- Py - (B+Kp )3’ +\A5ps + AyPs — K, P2

(29)
Define P= ZX(B+ K'D), then
y T
V=-p"N,p (30)
where
AM(B+Kp,) 0 -4
N,= 0 B+K, -44 31
-4 ~t4 K,

In terms of the controller parameters, if
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KpKp>4 A (32)

then the matrix N, is positive definite, and

V(t)=—p " N,p<0 (33)

Let A, (N,;) be the maximum eigenvalue of the matrix N, and A, (N;) be the minimum
cigenvalue of Ny, and let ¥ =X, (N3 )/ X o (N;) . As N, and N, are definite positive matrices,
consequently all these scalars are positives. From matrix theory N, <Ak, (N;)I and
Ain (N3 JI<(N, ), where | is the identity matrix (see Noble and Daniels 1986). Thus,

xnm]m(hrﬁ)

r
p'Nypz
?“mm’fN.!)

P P N P2y (1) (34)

The use of this result combined with (33) enable us to write V(t)<—yV(t) . According to the
convergence lemma, this result leads to

k. p
Vit)=- p ' Np<k(0)e™ (35)

From (35) and using the relationship p‘r N;pzKmm(N,)Hp(r)”z we can state that the error
vector associated with system p converges exponentially to the origin with a convergence rate greater
than y/2.

As stated by Vidyasagar and Vannelli (1982), the exponential convergence of the closed loop Q
implies that € is robust with respect to limited disturbances like the load Fy . Furthermore it has been
demonstrated by Bodson and Sastry {1989) that exponential ensures robustness against nonmodeled
dynamics like the servovalve and the pipeline dynamics in the hydraulic actuator.

It is clear that if expression (32) is verified then high gains can be used so that performance
requirements can be achieved, i.e. we have no gain limitations. Consequently, the cascade controller
overcomes limitations which inherently appear in the classical controllers. In fact, for practical
purposes, gains are limited by non modeled dynamics concerning the servovalve and the pipelines.

Simulations Results

This example illustrates how to implement the cascade control strategy presented in section 5 for
hydraulic actuator proposed as a benchmark in Davidson (1990).
The hydraulic actuator linear model is described by (3) (4). The benchmark data are (Davidson,
1990): M = 128.7 Kg; B = 162.73 Ns/m; A = 1.075 x 10™ m%; v =0.874 x 10°m’; B = 14 x 10°N/m".
| The servovalve parameters are (Paim, 1996): K¢ = 2.5 x 10"°m*/Ns; Kq = 0.76 m"/s. The hydraulic
| cylinder corresponding to this benchmark data is 800 mm long.

| In the cascade strategy, the control of the mechanical subsystem is designed according to (13)
where K, = 5000, and & = 200.

The control law for the hydraulic subsystem is given by (18) where Kp = 1.0 x 10”, the nominal
control 0 is given by (23) with L=L, K- =K, K, =K, A=A, and the desired pressure different
derivative given by (25).
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The hydraulic actuator closed loop performance with the cascade controller (CC) is compared
with a proportional controller and a proportional derivative controller.

The proportional controller (P) is designed as up = P(y - y,), and the proportional derivative
controller (PD) is upp=P(y -y, )+ D(3y-3,;).

We have employed two desired trajectories. A first one to illustrate our results in a regulation
situation. In this case the desired trajectory starts in y,(0} = 0 and achieve y4(1) =100 mm in 1 sec,
according to a function described by the 7th order polynomial y, = -2t" + 7t* - 8.4¢° + 3,5t A

seconde one is used to verify the closed loop performance in a trajectory tracking situation. In this
case the desired trajectory is described by y4(t} = 100 sin(0.5 nt).

Figure 2 shows the hydraulic actuator responses with the cascade controller (CC) and the
proportional controller (P). The desired trajectory is described by the 7th order pelynomial and the

proportional  gain is P=4x107,  which corresponds to the limit of stability.
[m] * [m]
0.1 yd 0.1} yd
P Controlier y CC Controller
y
0.05 0.05¢
0 d ; 0
0 2 4 0 2 4
time [s] x 10 time {s]
[m] [m]
L ACC u
0 CcC 3
2
-0.02} yyd | [
0.02 1l P
-0.04} P 0
o .06 i A ‘_1 i
¥ 0 2 4 0 2 4
time [s] time [s]

Fig.2 Linear Model Responses to the P and CC Controller With a Desired Trajectory Described by the 7th
Order Polynomial.

Figure 3 shows the responses to the same desired trajectory employing both the c%scadc
controller and the proportional derivative with gains given by P =9 x 10™ and D = 5 x 107 (this
gains correspond again to the limit of stability).
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{m] —
01t yd
¥ PD Controlier
0.05
4]
0 2 4
time [s}
m)
0 cc
\/'/_ y-yd
-0.02} PD
-0.04
-0.06
0 2 4
time [s]

CC Controlier

2 4
time {s]

2 4
time [s]

118

Fig. 3 Linear Model Responses to the PD and CC Controller with a Desired Trajectory Described by the 7th
Order Polynomial.

For the regulation control problem these simulation results illustrate that the steady-state error (v
- ¥4} is zero with the P, PD and CC controllers. Using the PD controller we can reduce the maximum
error with respect to the performance with the P controller. It can be observed that this error should
remain considerable, because of the bandwidth limitations. We can also verify that the cascade
controller leads to small errors (near zero) thanks to high gains.

In Fig. 4 we have the hydraulic actuator responses to the cascade and propertional controllers
considerin% a desired trajectory given by y,(t} = 100 sin{0.5 wt). For these simulation results we have

P=4x10".

[m] fm
0.1 P Controller 0.1 CC Controller
0.05 y 0.05 y
0 0
-0.05 -0.05
0.1 -0.1
0 5 10 0 5 10
i time [s] - x10® time [s]
m
0.05 P y-yd "
0 G 2
cC
-0.05 5
0 5 10 0 5 10
time [s) time [s]

Fig. 4 Linear model responses to the P and CC controller with a desired trajectory described by y,t) = 100

8in{0.5 =t),
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To the same tmjcclory,, Fig. 5 presents the responses to the cascade and proportional derivative
controller (with P=9x 10" and D=5x 107).

To the trajectory tracking problem Figs. 4 and 5 show that the P and PD controllers lead to a
tracking error along the trajectory. This error is smaller with the PD controller, but it can be observed
that it should remain considerable. This occurs again because of the bandwidth limitations. In the

trajectory tracking situation we can also verify that the cascade controller propitiates small errors
(near zero) thanks to high gains.

[m] [m]
0.1 PController | g4l g4  CC Controlier
0.05 y 0.05 y
0 Q
-0.05 -0.05
0.1 0.1}
0 5 10 ] 5 10
time [s] 10° time (s}
[m] - {m] —
0.05 p y-yd "
| e 2
TRVEY I T
-0.05} 1 2
0 5 10 0 5 10
time [s] time [s]

Fig. 5 Linear Model Responses to the PD and CC Controller With a Desired Trajectory Described by y,(t) = 100
8in(0.5 =t).

Conclusions

In this paper, the problem of modeling and control of a hydraulic actuator has been considered.
The main characteristics of the system have been analyzed and a control algorithm has been proposed
in order to overcome detrimental effects on the dynamic responses of hydraulic actuators.

The advantage of the cascade control scheme is to improve the system performances when
compared with classical controllers (e.g. PD and PI controllers). An important feature of this method
is to ensure the exponential stability of closed loop error in the case of all parameters are known. The
exponential stability of the closed loop system ensures robustness against external disturbances (like

the load) and non modeled dynamics like the servovalve and the pipeline dynamics in the hydraulic
actuator.

Simulation results of the cascade control scheme yield satisfactory behavior and good robustness
properties.

Future research includes practical implementation of this method associated with more elaborate
control design procedures: adaptive and robust control techniques applied to the mechanical and
hydraulic components.
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Abstract

When considering the problem of pollutant emission reduction from internal combustion engines, many technical
challenges arise. One of them is the contrel strategy formulation to be applied to the fuel injection and ignition
systems, with the aim at regulating the air-fuel ratio around the stoichiometric value. One of the steps towards
this goal is the development of an engine model. This model has to be validated in a testhed, which includes a
dynamometer and a gas analyser. IPT Engines Lab is equipped with a hydraulic dynamometer, whose dynamics
is slower than the engine one. Modeling and simulation results for these two coupled models antecipate results
for testhed operation and helps to understand and control the engine fransient, where the dynamometer
dynamics is to be excluded from the achieved experimental resulls.

Keywords: Internal Combustion Engine, Hydraulic Dynamometer, Mathematical Modeling, Engine Testbed

Simulation.

Introduction

The appearance of stringent laws related to pollutant emissions from internal combustion engines
(ICE) has been the driving factor for the development of modern engines and for the investigation on
the use of alternative fuels. Besides that, many control technologies have been added to fuel injection
and ignition systems in order to achieve the desired figures of pollutant emission reduction (Cassidy
et al., 1980; Aquino, 1981; Jones et al., 1988; Noble and Beaumont, 1991, Moskwa, 1993; Dan Cho
and Oh, 1993; Abida and Claude, 1994; Chang e al., 1995). Although this problem seems to be
solved for steady-state engine operation, and even there are some off-the-shelf selutions for small car
engines (Kaiser ef al., 1988), the lack of feasible solutions for transient engine dynamics (for medium
or large size engines) has made it a quite attractive topic of research nowadays (Fleury and Lopes,
1994). It is important to remember that the S3o Paulo City traffic legislation points out that in about
10 years all bus fleet (around 12,000) must run on natural gas engines in order to reduce downtown
pollution levels.

This work is part of a large research project under development at IPT with the aim at developing
results to make the use of natural gas on urban buses engines feasible. This project comprises four
sub-items: a thermodinamic simulator for engine design, the design of new combustion chambers for
natural gas use, studies on the influence of natural gas composition over engine performance and
studies on natural gas fuel injection and ignition control systems performance under transient
conditions.

Given this context, this work presents the development of a dynamical model for a spark-ignited
internal combustion engine coupled to a hydraulic dynamometer. Dynamometers have been used for
decades to analyse and calibrate ICEs under specified steady-state conditions. When one has to deal
with transient operation, the engine-dynamometer dynamics influences torque and rotation
measurements. Then, for identification of basic transient engine parameters, it is of fundamental
importance to distinguish between engine and dynamometer contributions to the complete system

Presented at the Ninth Workshop on Dynamics and Control - DYNCO, Rio de Janeire, RJ - August 11-14, 1996.
Technical Editor: Hans Ingo Weber.
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dynamical response. Two case studies are considered. First, the engine equipped with an ideal gas
mixer is simulated; second, a fuel injection/ignition system controlled through a predictive scheme
(GPC Controller) substitutes for the mixer, looking for a near future practical application.

Problem Statement

Natural gas is one of the most important clean alternative fuels nowadays, because it has no SO,
and particulatc emission and exhibits low emission rates for CO and HC. Unfortunately, the NO,
emission rate is still high and must be controlled in some way.

The development of natural gas engines to meet the stricter than ever emissions requirements can
use two distinct approaches: use of stoichiometric mixture with 3-way catalyst; or use of lean-burn
mixture with turbocharger and aflercooler. In most cases, ICEs are being developed to operate with
stoichiometric mixture, where the reduction or oxidation of emission gases is performed by a 3-way
catalitic converter (Fig.1). This means a serious control problem, because a 1% deviation in the air-
fuel ratio (relative to the stoichiometric rate) may correspond to a 50% degradation in the converter
efficiency (Dan Cho and Oh, 1993). In this way, there 1s neced for a very precise fuel
injection/ignition control system, to be implemented by electronic {microprocessed) means. A
complete scheme for the solution of this problem is shown in Fig. 2.

Our current challenge (not yet fully implemented) is the design of a natural gas spark-ignited
engine simulator, from a system dynamics point of view, in order 1o allow plant, actuators and
sensors simulation and control strategies development, specially in transient conditions. This
simulator is being developed while TPT"s new Engines Lab is in implementation phase, with an
experimental set-up consisting of a gas converted engine, a hydraulic dynamometer and a gas
analyser (Fig. 3).

A
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(a) {b)

Fig. 1 Typical Emissions (a) Without and (b} With Catalitic Converter
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Fig. 2 Typical Scheme for Engine Control
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Fig.3 Experimental Set-up Scheme

Keeping in mind the importance of the transient analysis and the absence of off-the-shelf
controllers for use on natural gas bus engines, performance analysis of some candidate control
strategies assumes fundamental role. In this way, there is need for good engine models. On the other
side, engine model validation has to be carried out at engines laboratories before implementation in
on-board computers. Results concerning dynamometer modeling are very scarse in literature: Powell
(1978) has presented an engine model considering the dynamometer as a variable load, and Isermann
et al. {1993) has developed a complete identification model of an electrical dynamometer. Since there
is need also for a good dynamometer model and no hydraulic dynamometer model is available in the
literature, a decision was taken to create a simulator for engine-dynamometer set consisting of a non-
linear simplified engine model, a non-linear parametric dynamometer model and fuel
injection/ignition actuators and sensors models (under construction), in order to understand the
complexity of the problem. In the sequence, engine-dynamometer set modeling and simulation shall
be presented pointing out that for consistent transient engine results dynamometer responses must be
considered. The simulator, whose parameters must be identified through specific tests in near future
shall allow the development of advanced control techniques, as GPC (Clarke ef al., 1987), and the

forecast of new components performance before laboratory tests, thus saving time and financial
resources.

Engine Model

The simplified engine simulation model for control and identification purposes has been designed
under the general scheme shown in Fig. 4. A modular representation has been used to describe its
main subsystems: intake manifold, combustion and rotational dynamics, with typical parameter
values assumed when empirical data have not yet been identified.

from controlier of ideal mixer

d from acceleralor's pedal
‘homogenized and distrbuled
mibdure for each cylinder
ar
e INTAKE MANIFOLD
- > MODEL
fuel T T Ry mra .1 NIK! “M
(natural gas) T
ROTATIONAL '
DYNAMICS + COMBUSTION T
MODEL MODEL
|_ | I power genaration
inerbal, friction and load effacts on net rque generation

Fig.4 Engine Simulator Scheme



AT Fleury el al.: Modeling and Simulation Results for a Natural ... 124
Intake Manifold Model

The intake manifold model is described by its air and fuel dynamics. The main hypothesis are
unidimensional and isoentropic compressible air flow (ideal gas) through the throttle, constant
discharge coefficient at the throttle and uniform pressure and temperature distribution at the
manifold.

The throttle area is modeled as shown in Eq. (1).

i I
(G)—T(J 2cosa - cos’ ) 0

where @ is the throttle angular position, A(at) is the cross-sectional area of the flow and D is
the throttle diameter. Once calculated A(a}, the air mass flow through the throttle can be obtained
under two possible flow conditions (Moskwa and Hedrick, 1992):
B [ 2 ) k-1
o> || s—
I P \k+1 '

i
! kel =112
M, =Cy* Afa)* Fy s(_{)* t[ 2 J*"'t 2% _, I—[i] .
o [R*T, \P, k+1 k-1 P,
(2)
k
A& ( 2 JIL'J
iy fo NRRLD e ked flow),
1 kel
My = Cy * Afo)* ——— *k5~( 5 ]""‘”
urp r‘RoTﬂ k+ 1 6)

where m,, is the air mass flow, P, e T, are the stagnation pressure and temperature respectively, Pis
the intake manifold pressure, C, is the discharge coefficient through the throttle, R and k are gas
thermodynamic constants for the air.

The air dynamics inside the manifold is based on the continuity law , defined by the air mass flow
inlet 1., and the air mass flow to the cylinders, m, (Eq. 4).

Mar‘. n N:ﬂ e ¥ P—" Vm "’I.

Here N, isthe number of cylinders, V,, is the cylinder volume, » is the engine angular velocity,
P is the intake manifold pressure, T is the intake manifold temperature and 7, is the engine
volumetric efficiency. Then, the air pressure dynamics can be written as in Eq. (5).
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3 L
P = (titgy — 1ty )* RVT
(5)

where V' is the intake manifold volume.

The fuel dynamics that define the fuel flow to the cylinders corresponds to a diffusion process on
the intake manifold. A simpler representation is normally used to keep the system integrable. This is
done by adding just a smoothing block and a transport delay block (Dobner, 1983) to the fuel
injected at the nozzle. The fuel dynamics model is then simplified to the Eq. (6).

I

= T um,
14T, inj

my
(6)

where 7. is the smoothing time constant (assumed 0,01 s), 7, is the fuel transport delay (assumed

0.01 s) and #y, is the fuel mass flow defined by the ideal gas mixer or by the GPC controlled
injection system (Lopes, 1996).

Combustion Model

Chemical and thermal processes ocurring in the combustion chamber for the transformation of
the fuel chemical energy to torque and/or angular shaft velocity are highly complex and the
corresponding chemical and thermal models are not useful for dynamic simulation and control. From
a system dynamics point of view there are two important phenomena to consider. The first one
corresponds to the torque generation and the second corresponds to the exhaust gas transportation
from the combustion chamber to the catalitic converter inlet where the oxygen sensor (A sensor)
measures the air-fuel ratio. Then, the combustion model comprises two blocks that allow to calculate
the indicated torque, based on ICE efficiency and ignition angle maps, and to include a variable
transport delay for the air-fuel ratio, corresponding to the ICE 4-stroke cycle. ICE torque is modeled
as:

.= i i

(7}
®

where T, is the indicated torque (Nm), H is the lower heating value for natural gas (assumed
4.10 J/kg), o is the engine angular velocity (rad/s) and 1, is the indicated engine efficiency,
function of the air-fuel ratio and of the ignition angle. Typical surfaces assumed for n,, and ignition
angle as empirical static maps are shown in Fig. 5.

(a) (b}

Fig.§ Typical ignition Angle {a) and Indicated Engine Efficiency Surfaces (b)
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The air-fuel ratio measured at the A-sensor is approximated by:

a5 Tys
lfs = lm"‘e i

(8)

where A, is the air-fuel ratio from intake manifold dynamics, %, is the air-fuel ratio to lambda
sensor and T, is a variable time constant proportional to the inverse of the angular speed.

Rotational Dynamics

The rotational dynamics module is used to calculate shaft angular acceleration, @, due to
changes in the preceding modules. It includes the engine and dynamometer inertias and typical
friction and load components when producing angular acceleration from net torque, that represents
the difference between indicated and hydraulic torques (Eq. 9).

TM_S—L=J‘.{.|‘). (9)

where 3 is the friction torque, calculated as a linear function of the angular velocity n, L is the
hydraulic torque from dynamometer model, J, is the total inertia (engine + dynamometer, kg.m?) and
o is the angular velocity, that is used in combustion and intake manifold models.

Dynamometer Model

IPT engines laboratory is equipped with a hydraulic dynamometer Schenck model D360-le,
which is usually used to evaluate the engines performance under steady state conditions. A schematic
dynamometer view is shown in Fig.6.

1 - Rotor shaft;

2 - Water inlet;

3 - Whirl chambers;

4 - Double rotor,

5 - Housing;

6 - Stator;

7 - Coupling flange,

8 - Toothed belt drive;

9 - Drive motor for control valve;
10 - Coupling shaft;

11 - Control valve throttle;
12 - Piston valve;

13 - Guideway;

14 - Dynamometer basis;
15 - Speed transducer;

Fig. 8 Schematic View of the Hydraulic Dynamometer SCHENCK D360-1e (Schenck 1)
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The dynamometer operates based on the Fottinger principle. Water from a supply tank [2] flows
to the whirl chambers [3] in a way that brakes the rotor and cools the system. The heated water flows
off through the control valve [11,12]. The resistant torque that the dynamometer offers to the engine
is a function of the water level, which is controlled by a valve, among other variables. The housing,
supported via a lever on the force measuring equipment, rotates thus indicating the corresponding
torque.

The dynamometer can operate in two basic modes: rotation or torque tracking. In the first mode,
feedback is provided by an angular velocity transducer, while in the second one, feedback is obtained
through a load cell. In both cases a PID controller closes the loop.

The hydraulic dynamometer is a highly complex system which involves complicated processes as
flow turbulence at the whirl chambers, forces actuating on the piston valve, housing movement, etc.
Based on some simplifying assumptions as disregarding the local effects of the turbulent flows and
based on fundamental principles, a parametric mathematical model has been built (Moscati et al.,
1996). This model still remains a nonlinear complex one as shown in the sequence.

As water circulates in the chambers, it receives momentum at the rotor side of them and looses it
in the stator side of the chambers, what causes a braking torque on the rotor. Simultaneously, kinetic
energy is transfered to the water; is then transformed into thermal energy through turbulence, and
heats the water.

Assuming a water layer circulating in the periphery of the chambers, with a thickness AR over

the most external radius R of the chambers, one can estimate the pressure caused by the water layer
as:

AP=p.w’ R, AR (10)

where R, is the mean radius of the water layer [R,, =R- é—;;) and o is the angular velocity of the

dynamometer rotor.

This same pressure is assumed to promote the flow off the dynamometer through the control
valve.

By applying the Continuity Law to the chamber, one can obtain the time variation of the water
film height inside the dynamometer as:

AQ=§;(2::.£.R,,,,AR)=Q,—Q_, )

where AQ is the water volume rate within the chambers, 0, and Q, represent the water inlet and outlet
volume flow rates and £ is the chamber width.

The hydraulic torque 7 transmited to the housing by the water can be estimated by applying
Euler's moment of momentum equations to the fluid, while using values of head loss factors based on
hydraulic pumps and turbines:

T.=p.R .0’ 2r.R, AR (12)
This hydraulic torque reacts in order to brake the rotor, and one can use the Moment of

Momentum Theorem to write:

T, =Jg.0+ Ty (13)
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where @ is the angular acceleration of the rotor, T, is the efective engine torque (7., — J) and J,

is the moment of inertia of the dynamometer shaft and rotor.

Assuming that the housing resistant torque is equal to hydraulic torque T, and considering the
housing-arm set as a second order system (inertia-torsional spring-damper), the housing-arm
movement can be described by:

?Ewa—-J‘.é“‘l'CT,éc-FKT.ec (14)

where J_ is the housing-arm set moment of inertia, C, is an equivalent damping constant for the set,
Ky is an equivalent spring constant, 0, is the housing angular displacement relative to the static
equilibrium and 6_ e 8_ are its angular speed and acceleration, respectively. Note that, as the
housing is supported via a lever on the measuring equipment, the load cell signal is proportional to
the housing angular displacement.

The above equations are dependent on the volume of water inside the dynamometer. As the water
inlet flow is constant, the internal volume is regulated by a complex control valve at the
dynamometer outlet. It is composed by a butterfly valve, actuated through a DC motor that is part of
the dynamometer control loop, and a hydraulic pressure attenuation device. This device consists of a
hydraulic circuit that transmits pressure from the chamber just before the throttle to the internal side
of a piston. The piston is free to move between two stops, acording to the differential pressure
between its internal chamber and the chamber before the throttle. The piston movement regulates the
area for water flow outside the dynamometer. The control valve and its different pressure chambers
are shown in Fig. 7.

- Dynamic pressure before throttle;

\\\\\

AW
L
p; - Pressure after throttle;

p; - Pressure in piston internal chamber

Fig. 7 Outlet Flow Control Valve

The flow through the control valve, corresponding to the outlet flow from the dynamometer, Qs,
is given by:
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CyA(x) . 2p; 1s)
]
aD* A(x)

where C,; 15 the discharge coeficient assumed constant (C,;= 0.67) and A(x) is the water flow area as a
function of the piston position x:

Os=

D} 0<x<105e-3 (m) 1
2
A(x)=4{nD? - ‘3‘ [sin@ + 27 - 6] 105e-3<x<275e=3 (m)y (16)
0 x2275-3 (m) [
In Eq. (16),
6= 2arcco:[w] (17
0.0085

and D, is the diameter of the four outlet holes uncovered by the piston.

Assuming that the outlet flow can be approximated by the flow through the throtlle, thus
disregarding the flow necessary to move the piston, and using Eq. (15), one can write the pressure p,
as:

clA?
e TN o 18
P2 F(I)'FC:AE Pi ( )
where:
2 5
F(x)=SdA(x) (19)
Fy(x)
S ..o i
a(x)=1-~ EA(J:) (20)
_[_078(1-cosar) |nD’ e
Y 1-078(1-cosa) | 4

and « is the butterfly angular position and D is the piston diameter.

The pressure p; is calculated considering the pressure drop along the tube that links the chamber
before the butterfly valve to the internal piston side:
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¢ i R
Pi=P- 90610 ‘x1x| {22)

Note that, as water can flow in both directions according to piston travel direction, a module
function has to be included in Eq. (22) to describe situations where pressure p, is greater than p, .

In order to obtain the piston position x, one has to solve the following force balance equation:
Frow =M% = p3Apy —mg — Foopy, (23)
where A, is the efective area under the piston, mg is the piston weight and £, is the steady state
component of the reaction force to the change in flow momentum, due to variation in flow direction.

The water level inside the whirl chamber is controlled through an usual PID controller (ISA
algorithm), that commands the butterfly valve angle, a(t) , as a function of the error signal e(t):

de(1)
dt

where the parameters K, (proportional gain), 7, (derivative time) and 7 (integral time) can be
tuned in the dynamometer control module.

a(t)= KyLe(t)+ T, L &L feftjar] @8

When the dynamometer is operating in the rotation tracking mode, the error signal e(t) is the
difference between a rotation reference signal and the rotation measured by an angular velocity
transducer. In the torque tracking mode, the error signal is the difference between a preseted torque
and the torque measured by the load cell. In both cases, the control signal commands the control
valve, increasing or decreasing the water level inside the whirl chamber.

Complete Simulation Scheme

Since engine and hydraulic dynamometer are coupled through a rigid shaft, the resulting torque
produces changes in angular shaft velocity that are feedback for both models. In terms of external
inputs, the engine torque depends basically on engine throttle position time behaviour and
dynamometer torque depends on the desired reference for torque or rotation. In this way, different
operating points can be achieved as defined previously. Finally, the initial conditions for manifold
pressure (in the engine model), water film level at whirl chamber, control valve angular position ,
piston position and velocity (in the dynamometer model), and shaft angular velocity are necessary for
simulation. The complete simulation scheme is illustrated in Fig. 8.

throttle ENGINE
—_— —d
MODEL

1/s w

reference
(torquesrotation) HYDRAULIC -
S LSS DYNAMOMETER
MODEL

Fig.8 The Testbed Simulation Scheme
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Simulation Results

Two fuel injection conditions have been simulated. The first one considers an ideal gas mixer,
i.e.,, a mixer that instantaneously injects the necessary amount of gas to maintain a stoichiometric
mixture ratio. In the second case , the injected fuel mass flow and ignition angle have been
determined using a predictive control strategy given by a multivariable GPC (Generalized Predictive
Controller). A detailed description of this controller and its tunning to this particular problem are
shown in the work of Lopes (1996).

The ideal gas mixer represents the simplest condition for this problem, although not feasible for
practical implementation. The GPC controller is seen as a candidate for future applications on natural
gas ICE fuel injection and ignition control systems.

Fig. 9 shows the results related to an ICE equipped with an ideal gas mixer system where the aim
is to track a torque reference of 325 Nm up to 10 s, a linear increase of 100 Nm between 10 and 20 s,
and a 425 Nm reference up to 40 s. This is the set-point profile sent to the dynamometer PID
controller operating on the torque tracking mode. A transient engine acceleration is applied to the
engine throttle by changing it from 68° to 80° at t=28 s.

The first 4 seconds are used to reach steady-state operation as can be seen in Figs. 9 (d)-(j). In the
range of the linear increasing torque reference (10 to 20 s), engine power requirement is fixed
because there is no throttle command. Then, the shaft angular velocity decreases, while manifold
pressure is increasing since it is a measure of engine load profile. On the other side, the hydraulic
torque reference is associated with water resistance imposed to the rotors and, as consequence, the
brake water level increases as butterfly and piston valves close.

ACCELERATOR PEDAL (THROTTLE) POSITION TORQUE REFERENCE
" -

~
o
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~
w

10 20 30 40 0 10 20 a0 40
time, & time, »

(a) ()
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-
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£
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Fig. 9 Simulation #1: Ideal Gas Mixer With 10° Throttle Transient Inputs: (a) and (b); Engine Variables: (c), (d),
and (e); Dynamometer Variables: (f), (g), (h), (i); Torques: (j) and (k). (cont. on next page)
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Fig. 9 Simulation #1: Ideal Gas Mixer With 10° Throttle Translent Inputs: (a) and (b); Engine Variables: (c), (d),
and (e); Dynamometer Varlables: (f), (g), (h), (i); Torques: (j) and (k).

At t=28 s, the engine throttle transient causes an increase in engine power and a small deviation
from the stoichiometric fuel-air ratio at the A-sensor as expected by the engine model, which
considers a delay in the fuel path, Fig. 9 (c). The PID reacts to maintain the hydraulic torque at set-
point, thus increasing the shaft angular velocity and trying to hold the manifold pressure constant.
This is done by opening the control valve for a short period of time and then decreasing the whirl
chamber water level. This is the only way to maintain constant hydraulic torque when there is an
increase in the shaft angular velocity. Note that the piston operates as a servo, tracking the butterfly
valve movements of closing and opening water outlet.

Figures 9 (j) and (k) demonstrate that under steady-state conditions the torques are equal and
dynamometer gives a correct measure for the engine torque. This is the normal dynamometer
operating condition. Nevertheless, in transient operation the dynamometer torque information is
smoother than the engine one, as expected, and as one can measure only dynamometer response the
achieved torque profile is fundamental to analyse and understand engine transient behaviour. Just in
case of available good engine-dynamometer models, engine transient parameters can be derived from
measured load cell dynamometer responses.

In Figure 10, a GPC controlled injection system is simulated substituting for the ideal gas mixer.
Test profile consists of linearly increasing angular velocity reference, from 2100 rpm to 2400 rpm,
during 20 s. A 10° engine throttle transient condition is imposed at t=10 s.

A linear increase in the angular velocity reference implies in manifold pressure and hydraulic
torque decrease, because power requirement is constant (no throttle transient). In this case, the brake
water level in the whirl chambers decrease, commanded by the control valve opening. When the
throttle transient is applied, the opposite happens. Because of power instantaneous increase, there is
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an almost instantaneous manifold pressure and engine torque increase. In consequence, angular
velocity and hydraulic torque also increase. To maintain the shaft angular velocity close to the
reference, the PID acts in order to reduce angular velocity through control valve closing, thus
increasing the brake water level. After this period, all the variables continue to follow dynamometer
profile. On the engine side, the GPC controller stabilizes the fuel-air ratio around 0.4 s after the pedal
command, with a maximum fuel-air ratio excursion of around 5% of the stoichiometric value. In the
sequence, all returns to the later condition.
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®0 _ : 2400 . -
i i !'“ - . PR T . .....
gzm ... B D R ;,. i :
E‘ﬁﬁ' ...... e
2 : : ;
: 2 ; :
BEd o - ...... o ‘ 21BOL -
. : 2100 ' ; '
”0 5 10 15 20 . [} ] 10 15 20
time, s time, 8

(a) (b)

FUEL INJECTION

17— et
H : ' :
310 A _

(c)

MANIFOLD PRESSURE SHAFT ANGULAR VELOCTTY

1] 1L 1% 20 L] B 10 15 20
time, 8 time, s

(d) (e)
Fig. 10 Simulation #2: GPC Controlled Gas Injection With 10° Throttle Transient. Inputs: (a) and (b); Engine

Variables: (c), (d), (e) and {f}; Dynamometer Variables: (g), (h), (I) and (j); Torques: (k) and (I).
(cont. on next page)
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It can be seen that, during transient, the PID action allows a 100 rpm deviation from the
reference. Furthermore, and very important, the deviation from the hydraulic torque measurement to
the real engine net torque, at t=10.1 s, is around 75 Nm. This is crucial for the dynamic prediction of
the engine environment.

Conclusions

In this work, the importance of the gas pollutant emissions control from ICEs has been described.
Although this topic has made a lot of progress in the last decade, much rests to be done and/or
implemented in practical cases. Available injection control systems provide emission reduction
based only on steady-state conditions. A more stringent emission control is depending on engine
transient analysis through very expensive tests, demanding expensive new cquipments. Our effort
points towards the improvement of available equipments, modeling and identification of their
dynamical interactions, in order to understand transient engine operation, and design of controllers
capable of efficient emission reduction.

A natural gas ICE and a hydraulic dynamometer dynamic models have been presented. Two
simulation have been shown, the first one considering an ideal gas mixer and torque reference
tracking, and the second considering a GPC fuel controlled injection system and engine shaft angular
velocity tracking. Torque prediction errors during transient have exceeded 50 Nm. This justifies
deeper studies for a serious engine control research program. Future developments, like the study of
other control strategies for fuel injection and ignition systems or for dynamometer control
{substituting PID to get transient performance improvement), and even complete control
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(simultaneous torque and rotation tracking) shall be necessary. The next steps are the validation of
the engine and dynamometer models including sensors and actuators models in laboratory.

Acknowledgements

The authors thank FAPESP- Fundagio de Amparo 4 Pesquisa do Estado de Sdo Paulo - for
financial support of part of this Project under Grant 93/0566-9 and CNPq- Conselho Nacional de
Desenvolvimento Cientifico e Tecnol6gico - for financial support of José Augusto Lopes through a
RHAE/MCT Program Scholarship.

References

Abida, )., and Claude, D., 1994, "Spark Ignition Engines and Pollution Emission: New Approaches in Modelling
and Control." Int. J. of Vehicle Design, vol 15, n° 3, pp. 494-508.

Aquino, C_F., 1981, "Transient A/F Control Characteristics of the 5 Liter Central Fuel Injection Engine”. SAE
paper 810494,

Cassidy, J.F., Athans, M., and Lee, W.-H., 1980, "On the Design of Electronic Automotive Engine Controls
Using Linear Quadratic Control Theory”. IEEE Transactions on Automatic Control, vol. AC-25, n° §,
pp.901-912.

Chang, C-F., Fekete, N.P,, Amstutz, A, and Powell, J.D., 1995, "Air-fuel Ratio Control in Spark-Ignition
Engines Using Estimation Theory”. 1EEE Transactions on Control Systems Technology, vol. 3, n® 1, pp.22-
3l

Clarke, D.W., Mohtadi, C., and Tuffs, P.S., 1987, "Generalized Predictive Control - part I: The Basic Algorithm
and part [1": Extensions and Interpretations, Automatica, vol. 23, n® 2, p.137-148 and pp.149-160.

Dan Cho, D-IL, and Oh, H-K., 1993, "Variable Structure Control Method for Fuel-Injected Systems",
Transactions of the ASME: Journal of Dynamic Systems, Measurement and Control, vol.115, pp.687-693.

Dobner. D.J., 1983, "Dynamic Engine Models for Control Development - Part I: Non-Linear and Linear Model
Formulation”, Int. J. of Vehicle Design, Technological Advances in Vehicle Design Series, SP4, Application
of Control Theory in the Automotive Industry, pp. 54-74.

Fleury, AT, and Lopes, J.A,, 1994, "A Review on the Control Approaches to the Problem of Reducing
Emissions From Natural Gas Intenal Combustion Engines" (in Portuguese) In: Congresso Brasileiro de
Automdtica, Rio de Janeiro, RJ, Anais. pp.488-493,

Isermann, R., Voigt, K U, and Pfeiffer, K., 1993, "Parameter Estimation and Digital Control With Continuous-
time Models and Applications to a Combustion- Engine Dynamometer”. In: IFAC 12th Triennial World
Congress, Sydney AUS, Proceedings. vol.10, pp.1-4.

Jones, WM., Goetz, WA., Canning, H., and de Voodg, A., 1988, "Closed Loop Fuel System and Low
Emissions for a Natural Gas Engine”. In: NGV-88 Conference, Sydney AUS. Proceedings. n® 38.

Kaiser, G., Zechnall, M., Plapp, G1-independence., 1988, "Closed Loop Control at Engine Management System
Motronic". SAE paper 880135,

Lopes, J.A., 1996, "A Generalized Predictive Controller (GPC) Applied to the Air-Fuel Ratio Control Problem in
Natural Gas Otto Cycle Engines, for Emission Reduction”. (in Portuguese), MSc Thesis, Sao Paulo, 134 pp.

Moskwa, J.J., 1993, "Sliding Mode Control of Automotive Engines”. Transactions of the ASME: Joumal of
Dynamic Systems, Measurement and Control, vol.115, pp.687-693.

Moscati, N.R., Trielli, M.A, Fleury, A.T., Nigro, F.E.B,, and Lopes, J.A., 1996, "Modeling and Simulation of a
Hydraulic Dynamometer”. (in Portuguese) In: X1 Congresso Brasileiro de Automética, Sdo Paulo, SP. Anais.
pp.1137-1142,

Moskwa, 1.J., Hedrick, J K., 1992, "Modeling and Validation of Automotive Engines for Control Algorithm
Development”, Transactions of the ASME: Journal of Dynamic Systems, Measurement and Control,
vol.114, pp.278-285.

Noble, A.D., and Beaumont, A.J., 1991, "Control System for a Low Emissions Natural Gas Engine for Urban
Vehicles®. SAE paper 910255,

Powell, BK., 1978, "A Simulation model of an Intemal Combustion Engine-Dynamometer System”. In:
Summer Computer Simulation Conference, Newport Beach, CA. Proceedings. pp.464-473.

Schenk | "Hydraulic Dynamometer DYNABAR®, Publication" L3051/7 (in Portuguese), Schenck do Brasil, Ind,
Com. Ltda.



RBCM - J. of the Braz. Soc. Mechanical Sclences ISSN 0100-7386
Vol. XiX - No.2- 1997 - pp. 138-146 Printed in Brazil

Stochastic Optimal Linear Parameter
Estimation and Neural Nets Training in
Systems Modeling

Atair Rios Neto

Universidade do Vale do Paraiba

Instituto de Pesquisa e Desenvolvimento
12245-720 S80 José dos Campos, SP Brasil

Abstract

Supervised training of feedforward neural networks for nonlinear mapping and dynamical systems modeling is
addressed. Viewing neural nets training as a stochastic parameter estimation problem, results in Kalman
filtering are adapted to develop training algorithms. Many levels of approximation are considered to develop a
range of full non parallel to simplified parallel processing versions of algorithms, together with an adaptive
approach intended to give to these algorithms the features of good numerical behavior and of distributing the
extraction of learning information to all training data.
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Introduction

In recent years, the experience with optimal linear parameter estimation procedures has been
explored to develop neural networks supervised training algorithms having the structure of recursive
least squares (Chen and Billings, 1992) and of Kalman filtering (Singhal and Wu, 1989; Watanabe,
Fukuda and Tzafestas, 1991; Scalero and Tepedelenlioglu, 1992; Chen and Ogmen, 1993; Chandran,
1994; Lange, 1995).

In this paper the author further explores the possibility given by Kalman filtering. Previously full
non local processing (Rios Neto, 1994) and local parallel processing (Rios Neto, 1995) feedfoward
neural nets training algorithms are presented together with the development of an adaptive procedure.
Extending the stochastic optimal parameter estimation selution of the neural net supervised training
problem one models the weight parameters as random walk stochastic processes. Noise dispersion
adaptation (Rios Neto and Kuga, 1985) is then used as an automatic way of conditioning the
covariance matrix of parameters estimation errors, thus avoiding loosing the capacity to extract
information of new data as the processing goes on. The use of this adaptive procedure is thus

intended to be effective along the processing in distributing to all data the extraction of learning
information.

Fundamentals: Feedforward Neural Networks and Dynamic Systems
Modelling :

Among the types of feedforward artificial networks used for modelling and identification of
systems(Chen and Billings,1992) the most basic and frequently used one is the Multilayer Perceptron
made up of layers of basic artificial neurons connected forward, as illustrated in Fig.1, for the ith
neuron of a kth hidden layer, with ng neurons:

Fig. 1 Artificial Neuron

Presented at the Ninth Workshop on Dynamics and Control - DYNCO, Rio de Janeiro, RJ - August 11-14, 1996.
Technical Editors: Agenor de Toledo Fleury and Hans Ingo Weber.
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h—§ 7

Sf= X wixj™ + v L
J=

kK =a(St) k=12...1-1 @

with the activation function a(s) being typically taken as :
a(s)= 1/(1+ exp(-s)) or a(s)=tanh{s) 3)

The inputs to the first hidden layer are xf =x;,i=12,..,n, the network input vector. For the
neurons of the output layer (k=) it is sufficient to have and are frequently used zero threshold
weights w,-'ﬂ and identity activation functions:

s -l Lo
y,-EI:= & w,{,x; li=12,....m (4)
J=1

Feedforward artificial neural networks can be trained to uniformly and with the desired accuracy
represent a nonlinear and continuous mapping (see, €.g., Zurada, 1992):

feC:xeDcR"—>yeR" (5)

The theory already available (see, e.g., Hechi-Nielsen, 1990) guarantees that for the case of the
Mutilayer Perceptron it is enough to have a neural network built with just one hidden layer , as
illustrated in Fig. 2.

Fig.2 One Hidden Layer Perceptron

The training of a feedforward network is usually done by supervised learning from mapping data
sets:

() A 1) =1 (<) 1=1.2..... 1) ()

adjusting (estimating) weight parameters to approximately fit the artificial neural net correspondent
computational model to this data of input-output patterns.

The processing by the trained artificial neural net of the input data x(t) , to produce outputs
j}(t) , can be viewed and treated as an parameterized mapping:
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50)= (x40 o

where w is the vector of weight parameters. In the case of the perceptron neural net with one hidden
layer and hyperbolic tangent activation function (Fig.2), Eq. (7) is expressed as:

& ny n
yil)= .1’31 wﬁ[ran tzf wj* xp(1)+ wjﬂD 8)
i= =

This capacity of feedforward artificial neural nets of representing nonlinear mappings can be used
to approximately model dynamic systems of the type:

x=f(x,u) 9)

as long as f() is invariant in time (see, e.g., Chen and Billings, 1992). To do so , one has to
implicitly assume that it is possible to consider a system as in Eq. (9) as if it was approximated by a
discretized model like:

x(r+ a)= F(x{e), x(t = At).....x(e = n Ac) ult) ot - 42)....ft =, A), W) (10)

which is of the type of Eq. (7) and where n,,n,, A are to be adjusted together with the neural net
arquitecture and size, depending upon the problem treated and desired accuracy. Notice that Af can
be treated as an extra component of the input to the neural net. What feedforward neural nets do in
this case is to learn the mapping of Eq. (10).

At this point is opportune to remember the similar situation that occurs when numerical
integrators are used and dynamic systems as in Eq. (9) are treated as discretized approximations , like
in Eq. (10).

Supervised Training: Optimal Linear Estimation Procedure

A usual approach to solve the problem of supervised training of feedforward neural nets is to
minimize, with respect to the vector of weights w, the functional:

)= 5| o= P o)+ o) 740 &0 -T0w)]

}1 lhe (ﬁut output data {x(¢),y(1): t=1,2,.....L}, an a priori estimate W , and the weight matrices
P!

In the proposed solution (Rios Neto, 1994), a linear perturbation is adopted to approximate the
functional of Eq. (11) in a typical ith iteration, imposing the condition that:

a(i)[Ae) - 7(e.0)]= £, (x(0). %(0)) [ (i) - ] (12)

where, i=12,...1; W(!) is the a priori estimate of w coming from the previous iteration, starting
with (1) =, 7(t,i)= £ (x(t), %(i)): fru(x(¢). (7)) is the matrix of first partial derivatives with
respect to w; and 0<a(:’)£ I is a parameter to be adjusted in order to guarantee the hypothesis of
linear perturbation. The resulting approximation of Jfw) in Eq. (11) is then:



J(u{ )-—[[u{: w]r_ ( )+'E;(z(r :] H(f :]u( ) R’i( (z{n H(i:w{)) ] (13)

where the following compact notation was adopted:
=(e.d) = ali)[ y{e) - 7(e.0)] + £ (x(0). 7)) (i) (14)
H(1,i)= f,(x(e), (1)) (15)

The solution of minimizing the functional of Eq. (13) is formally equivalent (see, e.g., Jazwinski,
1970) to the following stochastic linear estimation problem:

w=wi)+ée (16)
2(r.i) = H(t,i)w(i) +v(¢) (17

E[e]=0.E[e2"|=P (18)

E[W(0)]=0. E[w(epv" (1)]= R(:) (19)

with e and v(?) not correlated and taken to have Gaussian distributions.

Proposed Off Line Solution

Following closely Rios Neto (1994), a Kalman filtering algorithm is proposed for an off line
batch solution of problem of Eqgs. (16) to (19):

Wi)=w + K(i)[ (i) - H())w] (20)
K(i)=PHT () H()PHT (1) + R] (1)

w(i+ 1)=wi),ali) ¢—a'(f+l) (22)

where all the values of ¢ = /,2,...,L were considered to define the extended vector z(i), matrix H(i) and
the error vector v with covariance matrix R. The off line solution after iterations i=1,2,...,1 is given
by:

w=w(1), P(1)=[1- K(1)H(1)|P (23)

If afi) is suﬂ' iciently small to disregard high order terms in the linearization and enough
redundancy exists in the training data ,then unless of bad numerical behavior of the Kalman filtering
algorithm (Bierman, 1997) theory guarantees that P(f) is an approximation for the estimation error
covariance matrix, that is:

P(i)= | w= ) w—)']
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For this off-line solution the following remarks apply:
i Since the natural situation is to have components of the error v uncorrelated , then R is

diagonal and the recursive Kalman filtering algorithm can be used to process the vector z(J)
componentwize , avoiding the need of matrix inversion in Eq. (21) (Jazwinski, 1970);

ii If it happens that a new data set of pairs {x(1),y(t)} is to be considered for network training,
one only has to consider the recursive nature of Kalman filtering algorithm and take as new a
priori information;

Wew  and Pe P(I ) ;
iii Though the backpropagation rule can be used to calculate the gradients in matrix H(i)
(Chandran, 1994), the algorithm presented does not attain paralell processing, and

iv Due to Kalman filtering typical behavior one should consider adopting some kind of
factorization (Bierman, 1977) and or adaptive technique (Jazwinski, 1970; Rios Neto and
Kuga, 1985) to avoid either numerical divergence or loosing the capacity of having learning
distributed to all data.

Simplified Solutions: Paralell Processing

Algorithms with the structure of a Kalman filtering, which coincides with that of a recursive least
squares, can be simplified to produce versions which preserve the local parallel processing capability
of artificial neural networks (Chen and Billings, 1992). Exploring this possibility the author in a
previous paper (Rios Neto, 1995) proposed approximated versions of the off line stochastic optimal
parameter estimation algorithm (Egs. (20) to (23)) and showed that even for the most simplified
version of the stochastic optimal linear estimation, Kalman filtering algorithm leads to a local paralell
processing algorithm still more general and sophisticated than the usual Backpropagation.

To better fulfill the purposes of this paper, in what follows one summarizes these resulis
previously proposed by the author. Examining the equation bellow:

({0 5(0.)]= () T ) ()] +(0) a0

which is equivalent to Eq. (17), it can be seen that in the ith iteration the input-output data set can be
locally processed to get an estimate of the vector of weights wg(i) of the Ith neuron in the kth layer if
one considers that:
i  For connection weight parameters wg(i) of neural net layers forward or after the one where
processing is being done there are alrcady available the estimated values W,(i) and
associated error eg(i) of known distribution;

ii For parameters wgf(i), correspondent to weights of connections do the other neurons in the
same layer, there is an a priori estimate W,(i) with error 2,(i) of known distribution which
can be taken as an approximation for wy;

iii For the weight parameters wg(7) correspondent to connections to the neurons in earlier layers
there is also an a priori estimate W, (l) with error e, (s) of known distribution which can be
taken as an approximation for we(i}, and

With the previous assumptions, the problem of getting an estimate for the vector of weights

wii(i) of the Ith neuron in the kth layer is reduced to the local estimation problem in the ith iteration
and forr=1,2,....L:
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W)= wy (i) + 2y 2%

a(i)(r) - 3(t.9)] - fwa(x(r (i) (1) = %2 ()] = Fon (5(2), %)) wia () - Wi (1))
+fw (x(e) w(i))ea (i) +f,,,’( (¢), w(i))es (i +fw,_.( (2). (i))ee (i) + (1)

(26}

or, in a more compact notation, and for all the data corresponding to (=1/,2,...,L:
Wu(i)=wyli)+8y @7
Zy(i) = Hy (i) wu (1) + 7 (i) (28)

where €y is the correspondent partition of € in Eq. (16) and since in an ith iteration this problem
can be locally and recursively solved with the Kalman filtering algorithm, starting with P diagonal,
there results that the components of the errors e, () ()ana' e (r) associated to parameters of
different neurons are not correlated.

Further approximations can be done to produce simpler local parallel processing algorithms by:

iv Disregarding the off diagonal terms of the covariance matrix Ru(i) of the error \7”(1') (Eq.
(28)) allows to process Zy(i) componentwize in Eq. (28), thus avoiding the need of matrix
inversion; taking this approximation corresponds to consider e,,(:'],é_,(f]and E,(f] in Eq.
(26) not correlated to each other and to w(#), R(#) diagonal, and to disregard off diagonal terms
of the covariance matrices of:

Fud(0),9(0))ea (). 70, (x(0). 902, (). 7, (x(0). (0 e (),

v Disregarding the information on the level of accuracy in previous knowledge of
wa(:'), w,(i)anﬂ' w,(f) , and taking these values as if they were:

wal i) =W (i), wy (i) = ,(0), we (i) = (i) 29

what implies a further simplified version of Eq. (26):

ali [y(r] yr:] fw )[wﬂ( wu(i)]+v(r) (30)
and which combined with Eq. (27) results in the simplified estimation problem for the data
corresponding to t=1,2, .., L

wiy(i) = wi(i) + 2y Gan

2y(i) = Hy(i)wy(i) +v (32)
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This last simplified version is still more sophisticated than the usual Backpropagation algorithm,
and can be shown to be the result of application of Newton’s method to the functional of Eq. (13)
when the approximation of Eq. (29) is considered.

Adaptive Solution: Distributed Learning of Neural Weights

The problem with least squares type of estimators, and with Kalman filtering in particular , is that
due to both algorithm bad numerical behavior and observation model errors, divergence ysually
occurs as many data sets are .Thisisduclothefaclihﬂthea]gorithm“Ieamstoo“tllthe
wrong information” (Jazwinski, 1970) loosing capacity of keeping learing as new data are processed,
What happens is an excessive and unrealistic decrease in the estimated dispersions of the errors in the
calculated estimates. This corresponds to the situation of having the matrix of estimated covariances
of the errors and the estimates with eigenvalues too close to zero.

To avoid this ill behavior and to try to keep a distributed and as much as possible uniform
capacity of learning , it is common to use forgetting factor type techniques or more effective adaptive
state estimation techniques like the one proposed by Jazwinski (1970) and modified by Rios Neto
and Kuga (1985).

To apply an adaptive procedure based on a criterion of statistical consistency to balance a priori
information priority with that of new leamning information, the neurons connection weights
parameters in the problem of neural net supervised training need to be modeled as random walk
processes. Thus, in the ith iteration and for t=1/,2,...,L- 1"

w(i, ¢+ 1)=w(i,1) + (1) (32)
E[n(r)]=0. E[n{t)n"(7)]=AT)5.. 33)

where &, is the Kronecker symbol and for the n,, weight parameters:
o1)=diaglq,(1):j=12,....n,] 34)

With this modeling approximation for the neural weights, learning from the th input-output data
pattern is transformed in the estimation problem:

w(i, £)=w(i,t) +2(i.) 33
2(2.i) = H(t, ))w(i.1) + (1) (36)

starting with 2(i,/) =2, w(i,/)=w(i) and for 1=1.2,....LL.

To propagate estimates from t to t+1 Kalman filter predictor is used considering the dynamics of
Eq. (32) ;

(i, + )= i, 1) (37)

P(i,t + )= P{i,1) +0(r) ' (38)

where P(i,t +1)= E[E(i,r +1)&7 (it + !)] and P(i,t) is given by the filtering algorithm:
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Pli,0)=[1-K(i, 1) H(1,1)]P(i. 1) 39
where P(i,f) starts with P{(i,7)= E[e2"|=P .
The adaptation is done by adjusting the noise 7z} dispersion such as to keep statistical
consistency to attain distributed leaming:
BE[v; (e + D))= H, (e + L[ Pli.0)+ AT (¢ + L) 152 B (40)
where j=1,2,...,m and fis to be adjusted close to 1 in order to have distributed learning.

This adaptive condition leads to the associated observation like condition , after some algebraic
manipulations and adoption of a compact notation:

29(e+ 1,0, B)=H(t + 1,i)g(r) @an

In order to use the same Kalman filtering algorithm the following associated estimation problem
is considered:

0=g(r)+&* (42)
2(t+ 1i, B)=H(t + 1i)g(t) v¥(e + 1) (43)
£[e*]-o. E[E*E‘r]= I 4)
E[v‘(: " ;)]=0, E[v3(e + 1v9(e + :)]= R(t+1)=0 (45)

which is a problem with exact observations that can be processed with Kalman filtering as long as
one takes R4(r+/) in the limit as being zero (Freitas Pinto and Rios Neto, 1990). The solution gives a
é(f) which is closest to zero in magnitude. Whenever a q“,(t) component is less than zero it is
disregarded and taken to be zero , since the condition of positivity has to be observed.

Conclusions

Possibilities of results and past experience already existent in stochastic optimal linear parameter
estimation were explored adapting Kalman filtering type of algorithms for feedforward neural
networks supervised training . Full non parallel processing algorithms suitable for off line use as well
as simplified parallel processing algorithms suitable for on line use which allows to stochastically
treat the accuracy of training data were developed. Exploring past experience with state noise
estimation in stochastic state observers, an automatic and adaptive approach was proposed which is
expected to prevent these Kalman filtering based neural net weight estimators of loosing the capacity
of distributing the extraction of information to all training data.

There is no reason for not expecting in neural nets training the same behavior stochastic optimal
linear estimation algorithms have had in other applications of systems identification. The versions
developed in this paper are all more sophisticated and realistic than the usual Backpropagation
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algorithm. The price to be paid is more numerical complexity. This should be not a serious limitation
for off line applications. For on line , real time applications , the computational resources already
available for parallel processing may be enough to make competitive the use of the simplified
versions , specially in mechanical systems where typical times of response are not so small.
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Abstract

A numerical simulation of the interactions among the structure of an aircraft wing, the flow around it, and the
devices that control the deflections of the ailerons is described. In the present simulation, the structure, flowing
air, and controls are considered to be the elements of a single dynamic system. All of the governing equations
are numerically integrated simultaneously and iteractively. The procedure is illustrated by an example of a very
high-aspect-ratio, very flexible wing. Instead of a simple formula for the aerodynamic forces, there is s rather
involved computer code. The input to this code, needed to impose the boundary conditions on the flowfield, is the
velocity and position of all the points on the wing. As the airspeed increases and the angle of attack decreases in
such a way that the lift force remains constant, the uncontrolled wing eventually begins to flutter. When the
controls are turned on, the flutter can be suppressed up to approximately twice the critical airspeed.

Keywards: Flow Structure Interaction, Flight Control System.

Introduction

During the last two decades or more, enormous effort has gone into the development of large
computer codes that predict, rather accurately in a wide range of situations, unsteady
hydro/aerodynamic forces on bodies executing general motions. In order to take advantage of the
increased accuracy and generality that these codes offer to the development of control strategies, one
must consider a rather different type of problem. In contrast with the familiar approach, in which the
forces acting on a body are represented as somewhat simple functions (typically polynomials) of the
state variables, the forces are obtained from a computer code; no direct formula exists. When the
loads are required in the course of simulating the motion of the body, a computer code must be
execuied. Perhaps not surprisingly, this type of simulation promotes the concept of treating the
complete dynamic system, but cannot make use of much of the vast amount of progress already made
in the field of control of dynamic systems.

In the present paper, an example of this type of simulation is presented: the use of actively
controlled motion of the ailerons of a very flexible, very high-aspect-ratio wing to suppress its flutter.
The approach is to treat the flowing air, the elastic structure, and the devices moving the ailerons as
elements of a single dynamic system. All the governing equations are solved interactively and
simultaneously in the time domain, In the next section, the three elements are described; the manner
in which all the equations are solved is presented after that, then some results are discussed, and
finally some concluding remarks are made.

The Three Subsystems

The Structure

The long, slender wing is modeled as a prismatic, cantilever beam with constant properties. The
governing equations written in dimensionless form are as follows:

¢-D,#"=q,0, (1)

Presented at the Ninth Workshop on Dynamics and Control - DYNCO, Rio de Janeiro, RJ - August 11-14, 1988,
Technical Editors: Agenor de Toledo Fleury and Hans Ingo Weber.
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0+ Dyuft = Dy (20" 20" + 100 0™ + 3073 ) = % GOV +9,0,-W (2)

1
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where overdots and primes represent derivatives with respect to time and position (y), respectively;
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Ef is the flexural stiffness; GJ is the 1orsional stiffness; m is the mass per unit length of the wing;
Le is the characteristic length; V is the airspeed; /g is the mass polar moment of inertia per unit of
length; p is the density of the air; w is the weight per unit length; ¢ is the angle of twist; v is the
deflection; and u is the axial displacement.

Here the nonlinear terms arise from expanding the curvative in the relationship between bending
moment and deflection; there are other nonlinear terms that are formally the same order as these, but
they are not included because the intent is to illustrate that for simulations of this type including
nonlinear terms presents no difficulties,

In Equations (1) and (2) the aerodynamic twisting and bending moments per unit of length are
representicd by @y and Qp, respectively. They are functions of o, 00,44, and ¢ as well as the
history of the motion. Moreover, they can only be obtained from a computer model of the flowfield.
In the present model there is no structural coupling of twist and bending, but there is serodynamic
coupling. 1t is important to note that the acceleration appears on both sides of the equations of
motion, explicitly on the left and implicitly on the right; there is no way to rearrange the equations so
thal the acceleration only appears on the left.

The boundary conditions on v and ¢ have the following form:
$(0.1)=0 ¢'(L,1)=0
v(0,1)=0 v"(Lt)=0

v'(0,t)=0 v"(Lt)=0

To solve for the deflection of the wing, one must integrate Eqs. (1)-(3) while executing the
computer code to determine ¢y and Qp simultaneously.

The Flowing Air

The wings is modeled as a vortex sheet on the camber surface; the vortex sheet is represented by
a grid of discrete vortex lines. Each clemental length of the grid is straight and has constant
circulation, and hence, the velocity it induces is given by the Biot-Savart law. The circulations
(around the individual segments are determined by imposing the no-penetration condition at the
! centroid of each elemental area of the grid. At the wing tips and trailing edge, the difference between
the pressures on the upper and lower surfaces must vanish; hence, vortex segments are shed from
| these edges into the flow, convect downstream at the local fluid-particle velocity while the circulation
! around any given segment remains constant, and form the wake. The flow at the surface of the wing
and, therefore, the loads are affected by the vorticity in the wake. Because the vorticity in the wake
' now was shed earlier, the loads now are influenced by what happended earlier. Thus, the loads are
history-dependent, and the historian is the wake.
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The loads are obtained by integraling the pressure over the surface, and the pressure is obtained
from Bernoulli's equation. For unsteady flows, Bernoulli's equation contains the derivative of the
velocity potential. The potential depends on the velocity of the wing, among other things, and sa its
derivative is a function of the acceleration; hence, the acceleration appears on both sides of the
equations of motion, explicitly on the left, implicitly on the right. The acrodynamic meodel is
inherently nonlinear; morcover, it couples the flexural and torsional deflections through the loads.

The Control System

The motion of the wing is controlled by sending commands to a servomechanism that moves the
aileron, which is located near the wing tip. In the present example, the control law that generates the
commands has the following form:

5.=G,0(0.95L,t)+G,$(0.95L,1) (4)

where L is the span of the wing and G; and G are constant gains. The two velocities can be |
obtained by integrating the signals from two accelerometers, one near the leading edge and the other |
near the trailing edge. The sum of the two signals is proportional to v and the difference is
proportional to ¢ The commanded flap deflection, &, is fed to a severomechanism which moves the
aileron and is governed by an equation of the following form:

3+2§w¢'+w2§=w3(5(‘ (5)

where & is the actual deflection of the aileron and & and @ are constants. As in the case of the
structural model, these equations do not have to be linear. The instantaneous hinge moment can be
calculated as part of the simulation and could be included in the equation of motion.

Numerical Integration of the Governing Equations

The partial-differential equations governing the wing structure are integrated by first converting
them to ordinary-differential equations: to this end we express the deflections as the following
expansions:

A 3

O(y.t)= L By(t)fp(y) (6a)
n=f
N o

#(.t)= TCu(1)6n(3) (6b)

where ¢f and @], are the linear free-vibration modes in flexure and torsion, respectively, for a
cantilever beam. The time-dependent coefficients are the generalized coordinates of the motion.
Expansions (6) are substituted into Eqs. (1)} and (2) and Galerkin's procedure is followed to produce a
set of second-order ordinary-differential equations. The integrals over the span of the wing of the
products of the aerodynamic forces and modes produces the generalized forces. The second-order
equations are written as a set of 2(M + V) first-order equations, which are integrated by Hamming's
modified predictor-corrector method. This iterative algorithm was selected for two reasons: 1) the
acrodynamic model functions best when the loads are evaluated at only integral time sieps and 2) the
accelerations appear on both sides of the equations of motion.
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Fig. 1 Flow chart of the numerical scheme

The flow chart for the numerical scheme is shown in Fig. 1. The general algorithm is a four-step
process. The solutions are required at the four previous time steps: hence, before the general
algorithm is implemented, an Euler algorithm 1s used to generate the necessary previous solutions.
Usually two, sometimes three, iterations are required to achieve convergence of the corrected state,

An Example

The following are the physical properties for the wing and air used in the present example:

Chord 1.0m

Aspect ratio 20.0

Elastic and inertial axis 0.305m from the leading edge
Mass per unit of span(m) 10Kg/m

Mass moment of inertial per unit span(Jp) 15.0Kg/m

Torsional stiffness(G.J) 2.493 x 105N - m2
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Bending stiffness(El) 3.686 x 105N - m2

Density of the air in the freestream(p) l.OS?ZKg{m:"

These values are representative of a high-altitude, long-endurance, unmanned aircraft.

The following are the natural frequencies (rad/sec) for the first few flexural (subscript 5) and
torsional modes:

wp | =675 wy | =20.26
wp 2 = 4230 @y 2 =60.79
wh 3 = 11845 @y 3=101.25
wp ¢ = 383.75

In the first simulations, the wing without control is run at 5 different speeds and five different
angles of attack: 50 m/s, 5.9 deg; 75 m/s, 2.4 deg; 100 m/s, 1.2 deg: 125 m/s, 0.65 deg; 150 m/s, (.35
deg. The lift is nearly the same for all cases. hence, the results correspond to the same aircrafl (weight
is constant) flying level at different speeds.

At each speed, the simulation is run until either a static steady-state emerges or flutter develops.
The motion rapidly settles into a steady state at 50 m/s. At 75 m/s, the motion also settles into a
steady state, but it takes at least four times longer than it took at 50 m/s; 75 m/s is slightly below the
flutter speed. Although the model of the flow is inviscid, there is aerodynamic dynamic because of
the phase between the loads and the motion. FFTs of the response reveal that the kinetic energy is
concentrated at two frequencies: Those of the first flexural mode and the first torsional mode. These
two frequencies change with speed: they are much closer at 75 nv/s than they were at 50 m/s. At 100,
125, and 150 m/s the motion does not settle into a static steady state; instead its amplitude grows.
FFTs of the motion reveal that now the kinetic energy is concentrated at a single frequency. At the
onset of flutter this frequency is between the two frequencies that present in the decaying motion. As
the airspeed increases and the flutter region is penetrated more deeply, the single frequency
diminishes. Initially seven modes were included in the analysis, but numerical experiments revealed
that only two are needed: the first flexural and torsional modes.

In Figure 2 the wing-tip deflection and rotation as well as the aileron deflection are plotted as
functions of time with and without the control system being activated. The gains were obtained by
trial and error. Clearly, an appropriately controlled aileron can suppress flutter, at least in the
simulation. In this example, the airspeed is nearly twice the critical speed.

More details and references to other works can be found in Luton (1991).
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Flg. 2 The response of the wing with and without control. The velocity is 150 m/s and the gains are -1 and
1000.

Concluding Remarks

A new type of control problem has been illustrated in the present article. In this type of problem,
the designer does not have a relatively simple formula to predict the loads, but must rely on a
numerical model; every time the force is needed, a computer code must be executed. The numerical
models offer greater accuracy and generality, but when they are used, much of the wealth of
information developed in classical control theory does not apply. Hence, there is currently a need for
some basic research in this area.

In the present simulations, interactions are virtually instantaneous. When a command to the
controls is input, an unsteady response begins to develop. This response immediately affects the way
the controls will perform, which in turn influences the developing response. In the present type of
simulation, all of these interactions are modeled.



153 J. of the Braz. Soc. Mechanical Sciences - Vol. 19, June 1897

More development of computer models of flowfields will occur in the near future, and it is likely
that more designs will be based on simulations like the one described here.
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Abstratct

A general procedure for the optimization of the parameters of dy ic newiralizes is presented, It can be applied
to the minimization of the vibration response and sound radiation of linear structures subjected to excitations in
a specified frequency range. Modal theory and generalized equivalent quantity concepit for the neutralizers,
introduced by Espindola and Silva (1992), are applied to a non-linear optimization scheme. The proposed
procedure can be applied to relaxed and time invariant structures. It is not dependent on the structure
complexity and the degree of discretization adopted. In such conditions, a significant reduction in computing
work is achieved, {f compared with the more traditional methods.

Keywords: Vibration Isolation, Viscoelastic Neutralizers, Multidegree of freedom Vibration.

Introduction

Vibration neutralizers, often also called vibration absorbers, are mechanical devices to be
attached to another mechanical system, or structure, called the primary system, with the purpose of
reducing, or controlling vibrations and sound radiation.

Since neutralizers were first used to reduce rolling motions of ships (Den Hartog, 1956) many
publications on the subject have steadily come to light, demonstrating their efficiency in mitigating
vibrations and sound radiation in many structures and machines.

With modern technology of viscoelastic materials, which makes it possible to tailor a particular
product to meet design specifications, vibration neutralizers are easy to make and apply to almost any
complex structure.

In recent times, a great deal of effort has been done to extend and generalize the theory of
vibration neutralizers, applied to more complex structures than the single degree of freedom
undamped one, tackled by Den Hartog and Ormondroyd (1928).

Single degree of freedom neutralizers applied to particular positions of uniform beams, with
particular boundary conditions, have been studied. Also mass distributed neutralizers have been
analyzed. Simply supported uniform thin plates have also been considered as a primary system
(Broch, 1946, Korenev and Keznikov, 1993).

In a recent work Espindola and Silva (1992) derived a general theory for the optimum design of
neutralizer systems, when applied to a most generic structure of any shape, any amount and
distribution of damping. This approach has been applied to viscoelastic neutralizers of various types
(Espindola and Silva, 1992, Freitas and Espindola, 1993).

The theory is based on the newly introduced concept of equivalent generalized quantities for the
neutralizers. With this concept, is possible to write down the equations for the movement of the
composite system (primary plus neutralizers) in terms of the generalized coordinates (degrees of
freedom) previously chosen to describe the primary system alone, in spite of the fact the composite
system has additional degrees of freedom.

Presented at the Ninth Workshop on Dynamics and Control - DYNCO, Rio de Janeiro, RJ - August 11-14, 1996.
Technical Editors: Agenor de Toledo Fleury and Hans Ingo Weber.
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This fact is crucial in the development of the theory. It permits a coordinate transformation using
the modal matrix of the primary system, which is invariant during the optimization process.

In the modal space, it is possible to retain only few modal equations, encompassing the band of
frequencies of interest. If coupling is not considered between these equations, then the neutralizer
system can be designed to be optimum for a particular mode, in parallel with Den Hartog's simple
optimization method. If a set of modal equation is retained, covering a particular frequency band,
then a nonlinear optimization technique can be used to design the neutralizer system, to be optimum
(in a certain sense) over that frequency band.

This paper reviews the concept of equivalent generalized quantities and how the composite
system of equations can be written in terms of the generalized coordinates of the primary system
only. It shows the coordinate transformation and describes the optimum design of neutralizers, in a
frequency band, using a small set of modal equations. Numerical results are produced and discussed.

—— Nomenclature
C = ordinary viscous m, = mass of a SDOF Z,(12) = mechanical impedance
damping matrix of primary system at the root of a
primary system m, = mass of a neutralizer neutralizer
¢ = modified viscous M,(¢2) = dynamic mass at the a,,(¢2) =receptance function;
damping matrix root of a neutralizer response taken at g
c(f2 = equivalent viscous m; = " modal mass of the due to excitation
damping constant of a primary system associated with g,
neutralizer m,(£) =  equivalent mass of a & =LY,
¢ = f"modal damping neutralizer n(6.0) = loss factor of elastomer
constant of primary n = number of degrees of g, = |oss factor of jy,
system freedom of the primary neutralizer
F() = Fourier transform of f(t}, system #  =temperature
or a transformed vector A = numberof modes inthe 4 = m,/m,
of applied loads frequency band of P
G (64) = complex shear modulus interest %Zﬁi;
of elastomer p = number of neutralizers e f
G (85 =d P b used for reducing 5 = —"_‘L__
, ynamic shear modulus 3 m
of elastomer vibrations and sound J ”
; radiation @ = matrix containing #
i = J—_I p(l)= generalized principal eigenvectors of the
K = ordinary stiffness coordinate of the primary system
matrix of the primary primary system 2 = angular frequency
N system p(3) = Fouriertransformof p(t) 12, = anti-resonant frequency
K (849 = complex stifinessofa () = J* physical generalized of a neutralizer
piece of rubberlike coordinate £, = anti-resonant frequency
material Q) = Fourier transform of of " neutralizer
K, = j modal stifiness of the gt 2 =/ natural frequency of
primary system Q() = Fourier transform of primary system
L = constant dependent or q(t), or a vector of {} = column matrix, or
the shape of the piece transformed vector
of rubberlike material displacement []  =rectangular or square
{(dimension L") M2 = G /G(2) matrix
m = ordinary mass matrix of X = a vector of design AT =transpose of A
primary system variables

m = modified mass matrix
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Equivalent Generalized Quantities for the Simple Neutralizer

The simple neutralizer has a single lump of mass connected to a based through a resilient device,
assumed here of a viscoelastic nature (Fig. 1), with complex stiffness equal to (Espindola, 1990):

K(6.92)=1G(0,02)= LG(6,22)[1+in(6,02)] n

For simplicity of notation, the letter 0, standing for temperature, will be omitted from now on.

LG (Q) 2(Q)

F(Q)

Fig. 1 A Simple Neutralizer Scheme

In the above figure Q(f2) and F(f)) stand for the Fourier transform of the massless base
displacement ¢() and the applied force f{1), respectively.

It is a simple matter to verify that the impedance and the dynamic mass at the attachment
(massless) plate are given by:

-im, UG ()
= 7 2
2 () @
M, (D) sy =22 3)
m, 422 — LG(£2)

The anti-resonant frequency of the simple neutralizer is defined as the one such that, in the
absence of damping, makes the denominator of Egs. (2) or (3) equal to zero:

a3 = L6(2a) 4
mg

(Note that, in absence of damping G(£2)=G(£2)).

Since one can write LG(QQ) = LG(Qy)r(QQ), Egs. (2) and (3) can be rewritten as:
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£ar()1+in(2)]

=ttt i )]

&)

r(2)]1+in(2)|
“ &l —r(2)f1+in()

My (82)=-m (6)

The equivalent generalized viscous damping is defined as the real part of the impedance (Eq. (5))
and for this simple neutralizer is:

3

o )mmyft, —LAD0 Q)
[e2-rc)] +[rc2)n02)]

In an analogous way, the equivalent generalized mass is the real part of Eq. (6):
r(2){e3 - re)1+n?(2)]}

m,(£2)=—my, (8)

[¢2 ~re)] +[repm)

Now, it is a simple thing to verify that both schemes shown in Fig. 2 are dynamically equivalent
(Espindola and Silva, 1992). The primary system "feels" the neutralizer as a mass mg(€2} attached to

it along a generalized coordinate gt} and a viscous dashpot (even if the damping is solid) of constant
ce({2 linked to earth.

WP A A IOV AT S A

m, 0() () tlj o(@)

LG(Q) m, (Q) l

Fig. 2 Equivalent Systems

The dynamics of the resultant system (primary + neutralizer) can then be formulated in terms of
the original physical generalized coordinates alone, although it has now added degrees of freedom.
This is the main advantage of the concept of equivalent generalized quantities.

The above described generalized equivalent quantities correspond to a generic dynamic
neutralizer. Particular cases, such as viscous or viscoelastic damping, can be analyzed by inserting the
pertinent expression into the general equations.

If many such neutralizers are added, the equation of motion can be written as:
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[-22m+ g% + x] 0(2)=F( 1) &)
Naote also that the effects to the added neutralizers are in modifying the mass and damping matrix.
The vector of generalized coordinates of the primary system remain unchanged.

As a mean of illustration of the above ideas, assume thal p simple neutralizers are attached along
p physical generalized coordinates ggy. qx2 .- qkp. Their equivalent generalized masses and
damping are meg J, mg2. ... mep, and Co, Co2. ... Cep-

The modified mass and damping matrices will be:

"0 A
myy 0
m=m+ i
0 e,
1]
L S nEn
[0 |
("&‘f 0
c=c+ (10)
0 Cep
0
L ANnxH
Now, in Eq. (9) assume the transformation:
()= P(2) (1)

where @ is the modal matrix of the primary system, obtained numerically or experimentally, and is of
order nx#, where n is its number of degrees of freedom and 7 is the number of eigenvectors

actually computed, or measured. Normally n<<n .

If Equation (I1) is taken into Eq. (9). one get, assuming proportional damping in the primary
system:

[—Q-’[dfag(m}- J+my (!2)]+:'.()[d:'ag(f_; J+ CA(.O)]+ diag( K , )] Pr)=N(2) (12)
where

N(Q2)=OTF(2),m (2)=PT (m-n)® and ¢ ;(2)=DPT (T —c)D (13)
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~ Expression (12) represents a system of f1<<n equations and be solved directly with use of Eqgs.
{7) and (8). Returning back to (11), the solution in physical coordinates is accomplished.

From (12) and (13), it is easy to show that:

O()=0D' " F(Q2) (14)
where

D=D, - m,(2)+iQc (2) (15)
and

D, =diag(k,—m,F +isx,) (16)

From (14), the receptance matrix of the primary system, after the neutralizers have been attached,
can be seen to be:

a(2)=e D' @7 (17

A particular member of this matrix is

a(02)= :‘EJ ,>":,C,.-f b b (18)
jl: =

gl
where Cjj are elements of [Dl :

This can be compared with the receptances before the attachment of the neutralizers

a,(2)=0D,' @ (19)

and the pertinent response ratios compuled:

g (£2)

(20)
@y (£2)

Ri(£2)=
The modulus of the response ratios can be taken as a measure of the efficiency of the neutralizers.

For systems with one degree of freedom, the recommended mass-ratio between neutralizer and
primary structure, by Den Hartog (1956), is: 4 = ma/ms = 0.1 to 0.25.

The use of the modal mass-ratio concept has been proposed by Espindola and Silva (1992) for a
system of multiple degree of freedom as:
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m, i¢2 k;..’
£ i=!

Hy m, (21)

(Note that, if the cigenvectors are orthonormalized, m; = 1)

Optimization for a Frequency Range

A technique for controlling the modes of interest, one at a time. is presented by Espindola and
Silva (1992). This assumes that matrices m4(£2) and c4(f2 are diagonal, which is not strictly true.
This approach assumes p; given by Eq. (21) and uses the optimization technique suggested by Den
Hartog (1956) and Snowdown (1959) for primary systems with one degree of freedom. For each
mode, the corresponding equation in 12 is taken, neglecting any coupling.

This method gives pretty good results and, since c4(f2} is far from diagonal, the benefits of
reducing response in one mode are generally spread to the neighboring ones.

In the optimization procedure of dynamic neutralizer presented here, neutralizer anti-resonant
frequency and elastomer loss factor are considered design parameters while mass is fixed as
expressed in Eq. (21). So, the design vector is:

xT = (£2,).62,3.....820.CNat CG3 - .Clip) (22)

the number of components being 2p.

The letter C, in front of the loss factors above, represents a fixed multiplicative factor, with the
purpose of making Crg,; of the same order of magnitude of the neutralizer's anti-resonant
frequencies, numerically.

This is good for it speeds up convergence. A recommended value for C is given numerically by
the average of the two limiting frequencies of the band of interest.

The initial guess for the neutralizer's mass is taken as follows: select a figure for 4 within 0.10 to

0.25, say, and with expression (21) compute each neutralizer mass mg and take the average in the
band considered.

The objective function used in this work, in order to solve the optimization problem, is given by:

f(x)=  max mIark,m.:vc)l (23)

where ayg(€2x) is given in Eq. (18) for each design vector x, and 1, Q2 are the lower and upper
limits of the frequency band of interest.

The constraint functions could be defined from the following relation between the components of
the design vector, x, and the range defined by x,-L and x,f'; :

Zr<n<al, i=1, 2p (24)

After the optimization is completed, compute each neutralizer stiffness using the formula:
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Koi=mgf2,/ (25)

where the m is the average neutralizer mass,

Now choose an elastomer (from a pertinent data sheet) whose maximum loss factor (al the
environment temperature and frequency under consideration) is equal Lo 1;. This maximum loss

factor lies where the shear modulus increases approximately proportional to the frequency (see Fig.
3)

AR o — Loss factor
AS)

— — Shear Modulus

#=constante

er[ﬂa,-] —————— b mm o e

G[Qm-]

\

|
7
_a !
|
|
i o
Qai 9(3-1)

Fig.3 Variation of n{Q) and G{Q2) With Frequency

With 77,4; (computed) and G(42,;/ selected as in Fig. 3, one can compute the neutralizer's complex

stiffness K (6,£2) , provided L has been chosen properly (see formula 1). This ends the design
process.

In practice, normally one material alone is selected, for simplicity and economy. So, in this case,
an average loss factor and shear modulus is taken in the design.

Example
The above theory was applied to a freely supported steel rectangular plate.
The dimensions of the plate were 240 x 360 x 6 mm and it had a total mass of 4,0 Kg.

This plate has been divided in fifty-four elements and the modal parameter of the first eight
modes were computed.

It was imagined that four neutralizers were fixed at the plate, one at each corner.

As explained previously, it was assumed that the resilient part of the neutralizers were made of a
viscoelastic material, operating at the frequency transition zone, where the loss factor is large and the
shear modulus is proportional to the frequency (see Fig. 3).
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As an example of calculations, a band of frequencies from Q1 = 2875 s-1 to Q2 = 4750 s-1,
comprising modes three and four, has been considered. An average mass for the neutralizers,
computed as explained above, were 21.37 grams.

Table 1 shows the computed optimum values of anti-resonant frequencies for the neutralizers
together with the corresponding loss factors.

Table 1 Optimum Values of (), and v, for Modes Three and Four

i Qajs™! Nai

1 3503 0.267
2 3413 0.304
3 4111 0.453
4 3403 0.356

In Fig. 4 a particular frequency response function is shown before and after the application of the
neutralizers. These curves are produced to demonstrate the general effect of these simple devices.

Although the modes of concern were three and four, the coupling due to matrices m 4(f2) and
€ 4(5d (see Eq. (12)) is beneficial to the neighboring modes,

-30
- -~ - Primary System
| — Composite System with
2 Optimum Neutralizers
1 -50 | 3
-60 -
% -70 -
F 80 A
w
-90 -
-100 + ¥ + i + + H E —+ —i +
1000 1300 2000 2500 3000 3300 4000 4500 5000 5500 @000 @500

Frequency {1/s))

Fig. 4 A Particular FRF of the Primary Structure and the Effects of Neutralizers Upon it

One should note that the reductions in the frequency response levels are remarkable, with an
addition of only 84,5 grams, i.e., of only two per cent of the primary plate mass.

Conclusions

The concept of equivalent generalized quantities can lead to a representation of the modal space
of the composite system in terms of the modal parameters of the primary one. Retaining only a
limited number of modal equations, an optimization scheme was devised, which leads to optimum
parameter selection of a system of viscoelastic neutralizers.

This procedure is general, independent of the geometrical complexity of the linear primary
structure, which is represented by its modal medel. For best performance, the viscoelastic material
should work in the frequency transition zone.
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The performance of an optimum neutralizer system can be remarkable, at the expense of only a
small increase in the overall weight, which makes this technique particularly valuable for light
structures.
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Abstract

A method for the identification of different malfunctions which cause only or mainly [x rev. vibration
components is presented, The methodology is based on the model of the shaft alone, therefore avoiding the need
of a linearized model of the oil film and of a reliable model of the casings and foundation, and uses the vibration
readings in the bearings during coasi-down transients. The results show that the method seems to be appropriate
to distinguish between different causes such as concentrated wunbalances, coupling misalighments and
concentrated or disiributed bows which could be produced by a partial rub (in a seal e.g.) or by a non uniform
heating or cooling transient (in a generator or a steam turbine during load variations), and to determine the
location along the rotor, the angular phase and the amount of unbalance or bow, in other words 1o identify the
position and the severity of the malfunction.

Keywords: identification, Model Based Diagnosis, Rotordynamics.

Introduction

Continuous monitoring of the shaft vibrations in correspondence of the bearings of main rotating
machines, which generally are equipped with two proximity probes, and of the operating conditions
of the plant, is standard practice in most power or petrochemical plants. A major change in the
vibrational behaviour can be detected by comparing the actual data with previously recorded and
stored data (when the rotor was free from any malfunction): these data should be related to the same
operating conditions. Conventional European power plant turbogroups (with output powers in the
range of 240 1o 800 MW) are composed by several steam turbines whose shafts are rigidly coupled to
each other and the last one of the set to a generator, and constitute therefore a 30 to 50 m long shaft,
supported generally by 11 oil film bearings. Generally, al normal running speed, at least the same
generator reactive and active output powers and the same temperatures (of steam, lubricating oil and
cooling water e.g.) should indicate identical operating conditions. During a coast down transient, care
should be taken to have the same initial conditions and the same stopping procedure (e.g. the vacuum
breaking in the condenser should happen at the same time with respect to the starting point, and at the
same turbine rotating speed). In these conditions, the vibrations of the shaft inside the bearings
related to different periods of time, or to different run down transients, can be directly compared,
avoiding the errors introduced by a certain thermal sensitivity of the camplete system, rotor + oil film
bearings + supporting structure, which leads to additional exciting causes (rotor thermal bow) and to
a different frequency response (oil film coefTicients depend on oil temperature and on alignment
conditions).

The vibration vectors' changes in all bearings (which are the differences of the actual vibration
veclors minus the original vibration vectors) in normal operating conditions and at the different
rotating speeds during the coast down can then be analyzed in order to assess a "symptom matrix" in
which the characteristics of the vibrations are pointed out (such as frequency content, amount of
different components and corresponding location of bearing, and so on). This symptom matrix can be
compared with a "cause matrix", and a first guess of type of malfunction and its rough location (in
which shaft e.g.) can be determined. This type of approach or a decision tree approach have been
applied in some advanced monitoring and diagnostic systems (see c.g. Kanki et al. {1993} and

. Tanaka (1993)).

Presented at the Ninth Workshop on Dynamics and Control - DYNCO, Rio de Janeiro, RJ - August 11-14, 1906.
Technical Editors: Agenor de Toledo Fleury and Hans Ingo Weber.
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The nest step in diagnostics is a model based diagnostic procedure which has the advantage of
identifying not only the type of malfunction but also its amount or severity and its location along the
rotor system. This step can be called malfunction identification. The model based diagnostic
procedure is based essentially on the comparison of the actual vibrational behaviour (obtained as
difference as previously described) with the calculated behaviour, which is generally obtained
through a model of the complete system (rotor + bearings + casing or pedestals + foundation + a
suitable model of the considered malfunction). In order to obtain acceptable results the model has to
be sufficiently reliable. And to allow to operate in the frequency domain and to have the system
represented by its elastodynamic matrix which has to be inverted, the model must be linear: therefore
linearized oil film stiffness and damping coefficients, as usual in rolordynamic calculations, have to
be used.

In the following paragraphs first the obtainable results with the complete linear model of the
system are discussed, and then the possible errors in the identification procedure due to the linear
model of the oil film bearings and to a poor model of the supporting structure are emphasized. In the
last section then a modification of the identification procedure is presented which avoids the
linearization of the oil film forces and works without any model of the supporting structure, using the
"partial” model of the shaft alone.

Applications of model based malfunction identification

This method, which uses the linear model of the complete system, furnishes excellent results
when applied to simulated data, as shown e.g. in Bachschmid et al. (1995a), but if experimental data
from real machines in normal operating conditions are used, then acceptable results are obtained only
if the data are somehow filtered (if e.g. some of the available measured bearing vibrations are
disregarded and/or some speed ranges are disregarded) as reported in Bachschmid et al. (1996). A
good agreement between experimental and calculated results is found only in a smaller speed range
and generally by tuning previously the model. Many different reasons may be responsible for this
situation:

» The run down transients which are compared might be carried out in slightly different
thermal situations in which the rotor exhibits different thermal bows, This effect could not be
taken into account in the mentioned papers since the records of the values of the parameters
which characterize the thermal situation of a rotor, just before and during the run down
transient, were not available;

¢ The foundation of the machine, which can strongly influence the dynamical behaviour of the
rotor, is poorly represented by one d.o.f mass damper and spring systems (as usual considered
in many rotordynamic calculation programs), Unfortunately, in the above mentioned case
studies, a more reliable model of the supporting structure was not available, and

e The oil film may be strongly non-linear, and is poorly represented by the linearized model.

In order to show which are the non linear effects in the oil film bearing which may affect the
identification procedure based on the linearized model, in the following paragraph some calculated
results with the non linear model are presented.

An in order to remind how important the dynamic effects of the foundations are, especially in the
case of flexible foundations, which sometimes are used in place of the more massive concrete
foundations, some calculated results related to a four oil film bearing test rig on a flexible supported
foundation are shown in the next paragraph.

The method which is presented in the last section of this paper has the goal to overcome the last
two problems: the model of the foundation is not anymore needed and the linearized model of the oil
film is substituted by the non linear oil film forces. The effectiveness of the methodology will be
tested with numerical results obtained on the above said test rig model shown in Fig. 1.
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Fig.1 The Test Rig Composed by two Rigidly Coupled Shafts Supported by 4 Oil Film Bearings Equipped With
Force Transducers Mounted on a Flexible Supported Foundation Frame

Some causes produce only major changes in 1x rev. components: these are mainly a concentrated
unbalance (caused e.g. by a blade loss) and a permanent or transient thermal bow. The bow could be
due to an angular coupling misalignment when it is located close to the coupling in between two
bearings, or to a rub in a seal (which causes a local unsymmetric and therefore the bow) when it is
located close to a seal, or could be distributed, due to a non-symmetric heating or cooling of the
central body of the rotor (which in a generator can be caused by a wire short circuit or a cooling duct
obstruction, and in a turbine by a non uniform steam distribution), Other causes produce generally
also some changes in other components: a crack produces changes in 2x and 3x components, a
bearing misalignment produces also changes in the mean static component, a loosening part produces
higher harmonics and so on.

It is difficult to separate or distinguish between the different causes which produce only Ix
components, This is also shown in Bachschmid et al. (1996). But in order to test the effectiveness of
the proposed method, only 1x causes are considered.

Non-linear Qil Film Effects

Some non-linear effects in steady state operating conditions of oil film bearings are shown by
means of numerical results obtained by time step integration of the equation of motion of the finite
element model of a fairly simple rotor (show in Fig. 2) supported by two 2-lobe "lemon" shape oil
film bearings. The weight and the lengh of the shaft and the type and dimensions of the bearings are
typical for a H. P. steam turbine. In each time step the oil film forces are calculated by integrating the
Reynolds equations.
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Fig.2 The HP Steam Turbine Rotor FEM Model and Schematic of the "Lemon” Bearings

Two different unbalances (of 0.1 kg and 0.5 kg) have been applied to a node of the rotor and,
after some 20 to 50 complete revolutions of the shaft, the steady state situations shown in following
figures have been reached. In Fig. 3a and 4a the orbits of the journal centres at 2250 rpm in bearing 1
and bearing 2 due to the small unbalance, and Fig. 3b and 4b the corresponding orbits due to the high
unbalance, inside the loci of the different positions allowed by the bearing clearance, are represented.

The running speeds is close to the second critical speed of the shafi, therefore the high unbalance
orbit in bearing 1 is so large. :

ﬂ) b)

Fig. 3 Orbits of Shaft Journal In Bearing 1 at 2250 rpm: a) due to unbalance of 0.1 kg, b) due to unbalance of
0.5 kg

b)

Fig. 4 Orbits of shaft Journal in Bearing 2 at 2250 rpm: a) due to unbalance of 0.1 kg, b} due to unbalance of
0.5kg

With a linear behaviour, we would find the high unbalance orbit with the same shape of the small
unbalance orbit, but enlarged 5 times. It is evident from the figures that the behaviour is different, the
size and the shape of the orbits are quite different, and in the Fourier analysis of the orbits we would
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find differences in amplitude of the Ix revolution component, and also higher harmonics. Similar
results are found for bearing 2 in which the journal vibration amplitude is much smaller, and in which
therefore also the non-linear effect should be negligible. In the same bearing 2 the orbits at a different
rotating speed (2000 rpm) are represented in Fig. 5a (for the small unbalance) and in Fig. 5b (for the
large unbalance), in the different scales: the shape of the orbits, and consequently the spectral
components, are slightly different in the two situations as a result of the non-linear behaviour.
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Fig.5 Orbits of the Shaft Journal In Bearing 2 at 2000 rpm: a} due to unbalance of 0.1 kg, b) due to unbalance
of 0.5 kg

If we would use these orbits as measured quantities for identifying the exciting forces on the rotor
with a lincarized model, we would have considerable errors in determining the type of exciting force
(since also 2x rev. components are presented), its location and its amount, because the linear model is
not able 1o reproduce adequately the real non-lincar behaviour.

A more complete analysis of the non linear effects of oil film bearings in steady state operating
conditions is reported in Bachschmid and Dellupi (1997).

Foundation Effects

The supporting structure effects on the dynamical behaviour of the rotor are well known, and

many papers have been published on this topic, proposing also different methods for calculating the

- behaviour of the rotor coupled to the supporting structure by means of the oil film bearings. Since the

models of the supporting structures are often rather complicated and unreliable in the results, many

- efforts have been made for developing model updating techniques and model identification

- techniques (see e.g. recently Friswell et al. (1996) and Vania (1996)) by means of some experimental

- results, in order to obtain more reliable models which are sometimes so important for calculating the
true behaviour of the rotor on its supporting structure.

!

l The effects of the supporting structure dynamical behaviour on the rotor consist in shifting of
. some critical speeds, sometimes in nearly suppressing a critical speed, in generation the so - called
- "foundation critical speeds” and, in general, in significantly changing the amplitude and phase of the
frequency response curves. These effects will be shown by means of numerical results obtained with
the model of the reduced scale test rig (represented in Fig. 1).

In Figure 6a the unbalance response curves in vertical direction of the node where the unbalance
was applied is represented for the case of flexible foundation (continuous line) compared with the
case of rigid foundation (dashed line) and in Fig. 6b the same curves in horizontal direction are
represented. The total mass of the foundation is 136 kg and the rotating mass is 40 kg. The ratio of
the rotating mass may be relevant in determining the influence of the foundation on the dynamical
behaviour of the rotor: the test rig might be representative only for turbogroups on light foundations.
More massive foundations would have with the same excitation smaller vibration amplitudes.
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x 1’
1

Fig.6 Unbalance {0.001 kg at Test Rig's 1" disk) Response Curves at 1* Disk of the Test Rig Rotor on Rigid
Foundation {Dashed Line) and Flexible Foundation (Continuous Line), in Amplitude and Phase: a} in Horizontal
Direction, b) in Vertical Direction

The above diagrams show clearly that the dynamical behaviour of the supporting structure has a
greal importance in determining the response of the rotor, at least in the examined case. This
emphasizes the need of a reliable model of the supporting structure, if the complete model of the
system is used for the force identification procedure, or stresses the advantage of a method which
avoids completely the use of a model of the supporting structure. This last condition is fulfilled if the
proposed methodology is used: in this case however also the absolute vibrations of the bearing
housings have to be measured, in addition to the relative displacements of the shaft inside the
bearings which are measured by the proximity probes.

Description of the Identification Method

With two proximity probes in each bearing the orbits of the shaft inside the bearings can be
determined, The geometry of the bearings and its clearances are known. By solving the Reynolds
equations in different points of the orbit, the horizontal and vertical oil film forces can be calculated
in each point. Generally monitoring systems acquire 8 or 16 points of each orbit during one
revolution. These forces are, if steady state motion has been reached, 1x revolution periodic and can
be analyzed by Fourier series, obtaining the mean static force component and several harmonic
components. Using a harmonic balance concept (which is possible because of the rotor model
linearity} the first harmonic component (Ixrev. component) in the bearings should balance the xrev.
exciting forces and the 1xrev. inertia forces acting along the shaft due to the vibrations. Therefore we
can consider the unconstrained free-free rotor, as shown in Fig. 7, on which in correspondence of the
bearings the known Ixrev, oil film force components (indicates by F,) are applied and, in an
unknown position, the unknown exciting force (indicated by F)) is applied:

lFJ

“\ 7

w
F.

Fig.7 Schematic Diagram of "Forces" Method
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If the absolute vibrations of the shaft in correspondence of the bearings are known, a standard
force identification procedure based on least square fitting of the vibrational data (as proposed by
Bachschmid et al. (1996)) can be used for identifying the exciting forces moduli and phases and their
position along the shaft. A similar approach, but limited to a rigid supporting structure and with a
deterministic method instead of a least square approach is propesed by Krodkiewski et al. {1993).

The absolute vibrations of the shaft can be obtained by adding to the relative vibrations of the
shaft inside the bearings (which are measured by two proximity probes) the absolute vibrations of the
bearing, which can easily be measured by a couple of accelerometers fixed to each bearing housing.

Many different exciting causes can be represented by a system of equivalent forces or couples:
besides the unbalance, also the concentrated or distributed bow can be represented by two equal and
opposite couples which are applied to the extremity nodes of the bowed shaft portion, which can be
one element of the fe. model of the shaft in case of coupling misalignment (as proposed by
Bachschmid et al. (1995¢)) or several elements of the central body of the rotor in case of a thermal
bow (as shown by Bachschmid and Del Vescovo (1990)). Also a transverse crack can be modcled by
means of an equivalent system of forces and couples: with this model ¢.g. the location and the depth
of a crack have been identified by applying the least square fitting procedure to Ixrev. and 2xrev.
deflection values measured in 4 different sections along the rotor during slow rotation on a lathe (as
reported by Lapini et al. (1993)).

The main differences with respect to the procedure which uses a complete linear model of the
system ( rotor + oil film + supporting structure} is that the forces are applied to an unconstrained free-
free rotor, which exhibits high vibration amplitudes (also at bearing locations) if the external force
balance of exciting force and bearing forces is not exactly fulfilled. The procedure might therefore be
more sensitive to force identification errors than the least square fitting procedure applied to a
constrained rotor, and this might result in both advantages (higher precision) and disadvantages
(possible instability); but these effects have not been recognized in the numerical simulations.

Mathematical Formulation of the Method

[n each time instant the relative position of the shaft journal with respect to the bearing is
measured and the corresponding velocity can be calculated in order to evaluate the oil film forces F,
with a suitable model of the oil film. These forces are periodic (in steady-state conditions), and can
be represented by a Fourier series:

Fe=Fu+F.e™+..+F, g™ (1)

where Fq is the mean static component and £,, the 1" harmonic component, All forces are split in
horizontal and vertical complex components.

Also the vibrations are periodic: the first harmonic component of the absolute vibrations of the
shaft in correspondence of the bearings X, is given by:

't'c - Xtr 2 ’\;b (2)

where X,, is the relative vibration of the shaft journals (with respect to the bearing), measured by the
proximity probes, and X,, is the absolute vibration of the. bearing housing, measured by the
accelerometers. These vibrations are split in horizontal and vertical complex components.

In the frequency domain referring to the 1* harmonic components following force balance
equations holds:

(UM + QR + K)X = F, + F, (3)

where M, R and K are the mass internal damping and stiffness matrices respectively of the shaft
alone, X is the vector of the displacements of all nodes (four complex components in each node), and
F, are the unknown exciting forces.

F=Q'U+B (4)
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L/ represents the unbalance vector (in case of concentrated unbalance only two elements are non zero)
and B the bow vector (composed by two moments in each one of the extremity nodes of the
interested shaft portion).

The dynamic rotor matrix can be inveried:
a=(-M + QR + K} (5)

and the o matrix can be partitioned separaling the "internal” displacements .X; of the nodes of the rotor
from the "external” displacement of the shaft journals X

ayF, + o, F, = X; (6)
aﬂ'Fi + aerFr =X¢

The second set of equations of (6) can be used for determining the unknown F; vector. The
elements of F, are generally less than twice the number of the bearings multiplied by the number of
different rotating speeds so that a least square approach can be used for determining F;:

((Xt - aerFe) o ariFﬁj' (X -a. ;) -CI'E.,FJ = min N
The sum is extended to all the considered different rotating speeds.

A residual may be defined by the ratio of left hand side of Eq. (7), divided by the sum of squared
values of the known term (X, - a,F,). The residual is calculated for each possible position(s) or
node(s) of application of the exciting cause, calculating subsequently the effect of different causes (U/
or B). The lower the residual is, the higher is the accordance of measured vibrations with the
calculated ones. The lowest oblained minimum identifies the exciting cause. The most probable
location of the exciting cause is there where the residual reaches its minimum: the corresponding
value of F; furnishes its modulus and phase.

Validation of the Method by Means of Numerical Results

The described identification method was applied to test rig rotor model, simulating numerically
its behaviour. One unbalance (or 2 different unbalances) or one bow have been applied to the rotor,
and the corresponding frequency response curves ate the 4 bearings were obtained. The relative
displacements and velocities of the shaft journal with respect to the bearing allow to calculate the
bearing forces, which were then used together with the absolute vibrations of the shaft in the
identification procedure. Always the same |2 equally spaced running speeds in the range of 500 -
6000 rpm have been considered.

a) by

Fig.8 Unbalance (0.001 kg) on Test Rig's 1* Disk: a) Frequency Response at Bearing 1 (Journal's Vertical
Displacement); b) Residual and Identified Unbalance Amount
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Figure 8a shows the calculated frequency response curve of bearing | due to an unbalanced 1%
disk, and in Figs. 8b the value of the residual versus the portion along the shaft, and the

corresponding identified unbalance amount and phase are represented. The position, amount and
phase are identified with excellent accuracy.

In Figure 9a the calculated frequency response curves in the same bearing due to 2 different
unbalances placed on disks 1 and 3 (on the 2 different shafis), and in Fig. 9b the residual showing 2
different minima (the lower near the first unbalance location) are represented. In Fig. 9¢ the residuals
corresponding 1o the second unbalance in its different positions along the shaft, maintaining for the
first unbalance the position of the previous absolute minimum (shown in Fig. 9b), and the value of
the two identified unbalances are represented. Again the exciting forces are accurately identified.

FoogEpostEaR | gt

Fig.9 Two Different Unbalances Placed on Disk 1 and 3 (0.001 kg each one): a) Frequency Response Curve at
Bearing 1 (Journal's Vertical Displacement), b) Residuals With one Unbalance and Identified Unbalance
Amount, c) Residuals With Two Unbalances and Identified Amounts.

Further in Fig. 10a the frequency response curve due to 2 unbalances placed on disks 1 and 2 (on
the same shaft) and in Fig. 10b the corresponding residual are represented. In this case the 2 different
unbalances cannot be identified because their positions are too close together.
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a) b)

Fig. 10 Two Unbalances Placed on Disk 1 (0.001 kg £ 0°) and 2 (0.002 kg - 180°): a) Frequency Response
Curve at Bearing 1 (Journal's Vertical Displacement), b) Residuals With one Unbalance and Identified Unbalance
Amount

As already said, different exciting causes can be modeled by a suitable system of forces: a
concentrated unbalance is obviously represented by a rotating force, a concentrated bow (due to a
coupling angular misalignment or to a rubbing in a seal) and a distributed bow (a thermal bow) can
be represented by a system of equal and opposite couples (rotating with the shaft), which force the
rotor to have a similar deformation shape. The problem is to see if, with the vibrations measured only
in correspondence of the bearings, it is possible to distinguish between these different forcing
systems. This problem has been faced in the paper of Bachschmid et al. (1995a) using simulated data
and the complete linear model of the system: the results show a fairly good separation between
different causes, when difTerent rotating speeds are considered, although some exciting causes
produce similar deformation shapes. A concentrated unbalance applied at the rotor span middle point.
and a distributed bow e.g. produce similar deformation shapes (and similar vibrations in the bearings)
in the higher speed range. and the separation of the two different causes is possible only considering
tlyﬁ low speed range in which the unbalance induced vibrations are much lower than the bow induced
vibrations.

The identification of the cause of a bow is made by means of the location of the bow: if the bowi
is concentrated and located in correspondence of the coupling, the cause is probably a coupling
misalignment, if it is located in correspondence of a (labyrinth) seal, the cause is probably a rub, if
the bow is distributed along the central body of a generator or a steam turbine and is related to &
change in operating conditions, a thermal bow may be supposed.

L
-y

s) b)
Fig. 11 Coupling Misalignment: a) Frequency Response at Bearing 1 (Journal's Vertical Displacement);
b) Residuals Due to Unbalance and Concentrated Bow at Coupling Location
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A comparison with the residuals obtained considering in each case all the different lxrev.
exciting causes is made in the following. Fig. 11a represents the frequency response curve generated
by a misalignment coupling, and Fig. 11b represents the residual corresponding to an unbalance
compared with the residual corresponding to the concentrated bow due to a coupling misalignment,
in the position of the coupling between the two shafts. The lower minimum, close to zero, of the
residual indicates that the exciting cause is the coupling misalignment, and also its values is
accurately identified,

Finally Fig. 12a shows the frequency response curve due to a thermal bow in the central part of
the second rotor {in between the two disks), and Fig. 12b the corresponding residuals (obtained
weeping the rotor f.e. model with two couples, equal and opposite, spaced by two nodes, and plotting
the corresponding residuals in correspondence of the middle point abscissa) compared with those
generated by an unbalance: again the true exciting cause has been identified. Therefore the method
seems to be suitable for identifying different Ixrev. exciting causes. It must be reminded that
experimental data are affected by measuring errors, and rotor models and bearing models by
modeling errors. An error sensitivity study shows that the identification method seems to be
sufficiently robust with respect to all these different errors, so that its application to experimental
results from power plants seems to be promising. This needs obviously accurate experimental
validation, which will be performed by means of the test rig results, and by experimental results
obtained on full size power plant machines.

a) b)

Fig.12 Thermal Bow (Simulated by Two 1 Nm Bending Couples): a) Frequency Response at Bearing 1
{Journal's Vertical Displacement), b) Residual due to Unbalance and to Different Bowed parts of the Rotor, and
Identified Values of Bending Moments

Conclusions

A method for identifying the exciting cause of the vibrations in rotor systems is presented, which,
starting from relative and absolute shaft journal vibration measurements in the bearings and utilizing
a linear f.e. model of the shaft and a non linear model of the oil film (and avoiding to represent with
any model the supporting structure), allows to determine the type of exciting cause, its location and
its amount and phase,

The method has been tested with numerical results, and seems to be able to distinguish between
different exciting causes which produce similar effects, such as unbalance, bow, rub and coupling
misalignments which all produce in certain conditions only Ixrev. vibration components.
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The method will be tested also with experimental data.
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Abstract

We consider here a class of uncerfain systems consisting of a nominally linear part and an
uncertain/nonlinear/time-varying part which can be regarded as a state-dependent/time-varying "disturbance
input”. Using only a measured output, we present simple estimators which can asymptotically estimate to any
desired accuracy the system state and the disturbance input,
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Introduction

We consider here a class of uncertain systems consisting of a nominally linear part and an
uncertain/nonlinear/time-varying part which can be regarded as a state-dependent/time-varying
“disturbance input”". Using only a given measured output, we wish to asymptotically estimate the
system state and the disturbance input. This problem is of practical significance because the model of
any physical system contains uncertain terms due to uncertain inputs, parameters and nonlinearities.

The problem of designing an observer to estimate only the state of a system subject to unknown
inputs has received considerable attention in the literature. In this existing literature, an observer
design which assumes no a priori knowledge of the unknown input is called an unknown input
observer (UlO). Basile et al (1969) and Guidorzi and Marro (1971) first investigated some structural
aspects of the UlO using geometric concepts. Wang et al (1975) developed a trial and error procedure
for constructing a reduced-order observer whose dynamics is completely decoupled from the
unknown input. Bhattacharyya (1978) utilized geometric theory to obtain structural conditions which
guarantee the existence of a reduced-order UIO. Kudva et al (1980) developed the now standard rank
conditions for the existence of a reduced-order UIO. Several systematic procedures for designing
reduced-order UlOs were proposed by dividing the state vector into two parts via a linear
transformation; one part is directly driven by the unknown input and has to be measured completely,
and the other part is estimated by the reduced-order UIQ, which is decoupled from the disturbance.
These procedures include the inversion algorithm of Kobayashi and Nakamizo (1982), the matrix
generalized inverse method of Miller and Mukundan (1982), the matrix algebra method of Watanabe
and Himmelblau (1982), the singular value decomposition techniques of Fairman et al (1984) and
Park and Stein (1988), and the algebraic approaches of Breinl and Leitmann (1987), Guan and Saif
(1991) and Hou and Miiller (1992). Kureck (1982) considered a system with unknown inputs directly
coupled to the output and proposed a full-order UlO. Yang and Wilde (1988) and Darouach et al
(1994) developed alternative design procedures for full-order UIOs based on straightforward matrix
calculations,

Compared with state estimation, very little research has been carried out on estimating unknown
inputs. A common approach models the unknown input as the output of a linear system and
incorporates the disturbance dynamics with the plant dynamics (Hostetter and Meditch, 1973;
Johnson, 1976; Gourishankar et al, 1977; Miiller, 1990). This approach is limited to specific types of
unknown inputs. Park and Stein (1988) estimate unknown inputs by differentiating the output
measurement. Their state and inpui observer is a combination of a reduced-order UIO and an
algebraic equation relating the unknown input to the measured output and its derivative. Chen and
Tomizuka (1988) and Chen (1990) considered a disturbance estimation problem for scalar systems,
Tu and Stein (1995) proposed a model error compensator based on the output estimation error to
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estimate the disturbance for an SISO system and incorporate it with an extended Kalman filter to
estimate the state subject to the same disturbance. This approach was then extended to MIMO linear
systems in Tu and Stein (1996).

Corless and Tu (in review) also consider the state estimation problem and provide equivalent
characterizations of the UIO existence conditions of Kudva et al (1980). These characterizations yield
insight into the design of UIO's and disturbance estimators which require differentiation of the
output, e.g., the work of Park and Stein (1988). Using these equivalent characterizations, they then
obtain an equivalent Lyapunov characterization of the UIQ existence conditions. Provided the
uncertain term and its rate of change satisfy some additional boundedness conditions, this Lyapunov
characterization then permits the construction of a combined state/disturbance estimator. This
estimator does not require differentiation of the measured output. Although exact asymptotic
estimation is not achieved, one can asymptotically estimate the state and disturbance to any desired
degree of accuracy.

In this pap~r, we consider the state/disturbance estimation problem for a more restrictive class of
uncertain systems than that considered in Corless and Tu (in review). Here the number of measured
outputs is the same as the number of "disturbance inputs". Because of the simpler structure of the
systems under consideration, a very simple state/uncertainty estimator can be constructed. This
estimator involves a single gain parameter y. One can asymptotically estimate the state and
disturbance 1o any desired degree of accuracy by choosing v sufficiently large.

Problem Statement and Assumptions

We consider here uncertain systems described by

% = Ax+ Bf (1,%) (1a)

where x(1) € Rf is the system state and y(1) € R™ is the measured output at time { € R. The
continuous function f, with f{t.x)eR™, models all uncertain/nonlinear/time-varying terms in the
system description; we will regard this as an unknown state-dependent/time-varying disturbance
input. The matrices 4, B and C are known, constant, and of appropriate dimensions. Roughly
speaking, we wish to construct an estimator which, using only the known system information and the
measured output y, asymptotically estimates both the state x and the disturbance input £ To achieve
this goal, we first introduce two assumptions.

Assumption 1 The matrix C B is symmetric and positive definite.

For SISO (scalar input scalar output) systems, this assumption is equivalent to the requirement
that the transfer function given by

G(s) =C(sI-A)-1 B
has relative degree one and a positive "high frequency gain”.

Assumption 2 For every complex number A with non-negative real part,

A-Al B
rank[ c 0]=n+m (2)

Remark 1 When the above rank condition fails for any complex number A, there is a pair of
vectors xg, v with xp =0 such that

(A-Alxg+ Bv=20

Cxp=0
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As a consequence of this, the solution of system (1) with initial condition x(@}) = xp and f{t.x} =
e’y satisfies

x(1) = e*xp

) =0
Hence, the initial state and input, x and &y, are indistinguishable from zero initial state and
input. Clearly, if the real part of A is nonnegative, this is not desirable from the point of view of the

above estimation desires. If A has real part -a < (), then one cannot expect to achieve asymptotic
estimation at an exponential rate greater than a.

Example 1 As an illustrative example, consider

x,=f(tx)

y=ax; +x?

where a > ). Here

s A I e O

Since C B = [, assumption | holds. It can readily be shown that rank condition (2) holds except
for A = -a < 0. Hence assumption 2 holds.

Some Preliminary Results

Before presenting estimators, we present some results which provide alternative characterizations
of the first two assumptions. These results are used in demonstrating the properties of the proposed
estimators and provide further insight into assumptions | and 2.

Assumption 1 and a Canonical Structure

Our first result, lemma |, states that assumption 1 is equivalent 1o the existence of a state
transformation

£
=7 ""}
B

so that the corresponding transformed system has the following structure:

'&!:AH‘;! + A8+ f(1x)

Er=Ay&+ A, (3)
y=C¢;

where C is symmetric and positive definite.
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Lemma 1 Suppose B and C are n x m and m x n matrices, respectively. Then the following
statements are equivalent.

(a) There is a nonsingular matrix 7 such that

! B=["5']. cr=[c, 0] (4)
where C is symmetric and positive definite.

(b) The matrix C B is symmetric and positive definite.
Proof:

(a) = (b). If (a) holds, then

CB=CTT-1B=C;
Since C; is symmetric and positive definite, the same holds for CB.

(b) => (a). We show that R(B), the range of B, and N(C) , the null space of C, are complementary,
i.e., every vector in R7 can be written as the unique sum of two vectors, one from each of these two
spaces. First, we show that these two spaces only intersect at zero. Suppose x is common to R(B) and
N(C). Then x = Bu and CBu = 0. Since CB is positive definite, we must have u = 0 and, hence x = 0.

Since CB is positive definite, it is invertible and rank CB = m. From this it follows that

rank B =rank C =m

Hence the dimension do R(B) is m and the dimension of N(C) is n - m. Since the subspaces R(B)
and N(C) only intersect at zero and the sum of their dimensions equals the dimension of R”, these
two spaces are complementary.

Hence if one chooses a matrix 72 such that the columns of 72 form a basis for the null space of
C. then 77 is n x (n - m) and the matrix

T:=[B 7]

is invertible.

From the definitions of the transformations, it follows that 7=/ B and CT have the structure as
indicate in (4) where C; = CB. Also, C) is symmetric and positive definite.

Example 2 Recall example 1 and let &7 ;= ax; + x2 and & -= x;. Then, a transformed system
with the canonical structure is given by

&=at,~a’&y+ f(1,x)

&,=6~at,
y=¢,

Assumption 2 and a Stability Condition

Suppose system (1) satisfies assumption 1 and recall the transformed system (3). In this section,
we show that assumption 2 is equivalent to asymptotic stability of the subsystem
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&2=4p8;

First we have the following result.

Lemma 2 Suppose 4, B, C are n x n, n x m and m x n matrices, respectively, and there exist
nonsingular matrices T and C; such that

A i _ I
r‘A:r=[ n ”]_ T"B=[ ~], cr=[c, o 5
Vo 0 15 ) )

Then, a complex number A is an eigenvalue of 427 if and only if

| rank[";:ﬂ g] <n+m (6)

Proof:

For any complex number A, we have

T'AT-A1 T'B|_|T' 0|[4-4 B]|[T 0
cT 0 o 1|l ¢ oflo 1

Hence,
_ 1 -1 Ay-M Ay I
rank| 4 ‘,U Bl o ramk|T AT-A T"B| _ Ly Ay Ap-Al 0

It now follows that

N [0 0 I N
rank A-A B| _ rank| As; A,y —-Al 0| = rank Ay Agr=Al +m
c o0 . Apr® O G 0

!

Since ) is invertible, we have

Ay Ay -All [0 4,,-A1
rank[ c, 0 = rank ¢ 0

rank(AH —/'U)+m

Thus, inequality (6) holds if

rank(A;;-ﬂ)<n—m @)

Since A2 is an (n - m) x (n - m) matrix, the complex number 1 is an eigenvalue of 47> iff rank
- condition (7) holds.

We have now the following corollary.
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Corollary 1 Suppose 4. B, C are n x n, n x m, and m x n matrices, respectively, and there exist
nonsingular matrices 7 and C such that (5) holds. Then, 422 is Hurwitz if rank condition (2} helds
for every complex number i with non-negative real part, i.c., assumption 2 holds.

Lyapunov-type Consequences of Assumptions 1 and 2

In this section, we show that assumptions 1 and 2 are equivalent to a Lyapunov-type condition,
condition [. Satisfaction of this condition yields a matrix P which is utilized in a Lyapunov analysis
of the properties of the proposed estimators.

Condition 1 There exist a positive definite symmetric matrix P and a positive scalar p such that
PA+ATP- 1 CTC <0 (8a)

B'pP=C (8b)

We have now the main result of this section.

Lemma 3 Consider system (1) and assume B has full column rank. Then, condition 1 holds if
assumptions 1 and 2 hold.

PROOF: Assumptions | and 2 imply condition 1. From lemma 1 it follows that, if assumption |
holds then, there exists a transformation matrix T so that the transformed matrices

A:=TaT, B:=7'B, C:=CT (9

have the structure given in (5} where and C is positive definite. If we let
p=Flpy! (10)
where P is positive definite symmetric, then

p=1"PT Wi

-

and requirements (8) on P are equivalent to the following requirements on P
A;t+/:trf’-;f.'rff'<0 (12a)

BTP=C (12b)
We now show that asymptotic stability of the matrix A7) implies the existence of a positive
definite matrix P and a positive scalar p satisfying (12) and, hence, using corollary 1, assumptions

1-2 imply condition 1. Since 472 is Hurwitz, there is a positive definite symmetric matrix P2 such
that

=0y i=Prydyy+ A3 Pyy < 0

Letting
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n C’ 0
P{ 0 Pz:] :

it should be clear that P is positive definite symmetric. If we let

with

~Qyy:=Ci Ay + AL Cy - pCf
~0y3:=CA;; + A, Py,

Since J27 > 0, we can use a Schur complement result and obtain that Q:-D (hence condition
(12a) holds) if

Oy > Qf}Qf)f Q};

Letting

0y :=Cy Ay + A[C, +(Cr Ay + AL Py ) O3 (Al + Ppy Ay )

the above requirement is equivalent to

PC:! & éu

or,

B> Apg (C Oy )

where, for a matrix M with real eigenvalues, Ap,;,(M) denotes the largcst mgenvaluc of M. Fmally, it
can readily be seen that, as a consequence of the structure of B C and P one has BT P= C'
i.e., condition (12b) holds,

Condition | implies assumptions | and .. We first show that condition 1 implies that assurnption
1 holds. Since P is positive definite and B has full column rank, the matrix BTPB is positive definite
symmetric. It follows from (8b) that CB = BTPB. Thus CB is positive definite and symmetric.

It now follows from lemma | that there exists a transformation matrix T so that the transformed
matrices defined in (9) have the structure given in (5) where Cj is positive definite and symmetric.
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We now show that condition | implies that 427 is Hurwitz and, hence, using corollary 1, condition |
implies that assumption 2 holds.

Introducing the matrix P as defined by (11), P is positive definite symmetric and {as we have
already shown) condition | implies that conditions (12) hold. Let

P Pp D
=P
|:P2‘! Py '

where P2y isan (n - m) x (n- m) and m is the number of columns of 8. Equality (12b) implies that
Pra=0

The corresponding "2 - 2" block of inequality {12a) implies that

Py Ay + APy <0 ’ (13)

Since P is symmetric and positive definile, this last inequality implies that 47 is a Hurwitz
malrix.

A State/Disturbance Estimator

In this section we present a simple estimator for simultancously estimating the state x and the
uncertain term f of system (1). We first need some assumptions on f.

Assumptions on Uncertain Term

Assumption 3 There exist a known function fp and known non-negative constants 8y and x}
such that

£t x)=fot. 20| < By 4+, x-%

Jorallt e Randx, X e RN

The function fp can be regarded as "nominal” for an initial estimate of £; it could be zero.

Assumption 4 There exist known non-negative constants £22, k2, 22 such that along any
solution x(} of system (1),

4 Fog0-Foy )i
Hdr(r,x(r)) d(r,x) ék(f,x)x

< By iy |x(0)=5 | +x5, | 20)-3]

forall ¢, X, X.

As a specific example of a term f satisfying the above two assumptions, consider an unknown,
bounded, disturbance input w which has a bounded derivative, i.c.,
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fax)=wt), |wo)sp,. |wn)|ss;

Here, assumptions 3 and 4 are assured with fp = 0. Next consider a term f due to known,
bounded, time-varying parameters which have bounded derivatives, i.e.,

fox)=F)s,  |F)|sk.  |F)|sk

Considering f;(1,X)= (1 )X, one can readily show that assumptions 3 and 4 are assured with
Br=pF2=0, ky; = kp and k3 = kj. Finally f could be a combination of the above two types of
terms, i.e.,

f(tx)=F(t)x,+w1)

State/Disturbance Estimator
The proposed state/disturbance estimators are described by

i= AR+ Bf, #(0)=3%,
f=1(t.3)-y(Ci-y)
where y is a positive scalar, the initial estimate X, of x(0) is arbitrary, and X(7), f' (1), are the
estimates of x(%), f{1,x(1)) respectively.

The next result, which is the main result of this paper, states that, by choosing y sufficiently large,
one can asymptotically estimate to any desired degree of accuracy the state and the uncertain term f
of system (1),

(14)

Theorem 1 Consider system (1) subject to assumptions 1-2, estimator (14) and consider any &/,
>0

(a) If assumption 3 holds then, there is a y; 20 such that for all > y; and all X,, we have
lim sup HJ?(!)—:(!)I <g
==

(b) If assumptions 3 and 4 hold then, there is a y > 0 such that for all y > 7 and all X,, we have

timsup | 7(1)- £ .x(0) | < &

Proof:
We first demonstrate (a). To this end, we introduce the state estimation error:
X:=x-x

Utilizing descriptions (1) and (14) of the plant and estimator, respectively, the evolution of the
estimation error is described by
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X=(A-yBC)T+Bfy(t.x+3%)~ f(1.x)| (15)
As a candidate Lyapunov function for the above error system, we consider
V(Z)=%TP%

where P along with some positive scalar # > 0 assure condition 1. Thus C = BTP and along any
solution of the error system we have

),

- X(1))

where
L(1,%) := 2T PAX - 2/x T PBBT PX + 2xT PB{ fo(t,x(t)+ % ) f (,x(t))]

< ZT[Pa+ATP|7-2¢| BTF| +2| BT[]+ 4]
= -FTQR—(2y - w)| BT PE [ +2| BT P [[ic; |3+ 5]

where we have used assumption 3 and let
-Q:=PA+A"P-CTC<0
For any two positive scalars 4 and ), we have the following inequalities:
B - J —
2| BT PR ||| < pi'ni| BT PR 0|7
2
26, B P% | < wy'g}| BT PR 4
hence
L(,%)<-XT[Q- p |5 + 4 —[ 2y - p-pi'c] - 7' B ]|| BT P% |[J
If p7 is chosen so that
Hy < Amin(Q) (16)

then Q - uyf > 0 and

ai=A, [P" (Q—y;!)]/ 250

If v is chosen to satisfy

2y 2 p+py'nd + 7' B (17)
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then
L(I,FEJS—ZQV(SE)+;.¢2

From this one may deduce that

|%(t)| < r+r.-|| X(1y) [|e_““_"‘”

for all 1 21 where

c"=(’?'max(P)/’lmbr(P))§' r:=c(,u; /.26!)%

Considering any £3 > 0 and choosing any x> so that

duy/ 20)% < ¢, (18)

yields
|2(t)] < ;4| Z(1,) €07 forall 124, (19)
Choosing £3 < £/, we obtain the desired result.
We now demonstrate part (b). We first demonstrate that, under assumption 4, and any &4 > ()
there exists a y3 > 0 such that whenever y 2 y3,

limsup | %)~ k(1) < 2, (20)

f=an

To this end, we let z:= x'L, and differentiate the state estimation error Eq. (15) to obtain

i=(A-yBC)z + Bg @1

where

B
= g lhtha)=g(t%)

This system has the same structure as that of the state estimation error equation (15). Since
|¥(t)=x(t)|| is bounded, assumption 4 plays the role of assumption 3. Hence, using the same
analysis as that used in the analysis of the estimation error dynamics, one can choose y3 20 such that

for all y 2 y3, one has

|¥0)] < g+e|5ta)|e = foratt 1214, (22)
where @ > 0; hence (20) holds.
Consider now the state estimation error Eq. (15) and rewrite it as
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3:’"=A::'+B[f—m,x)]
Since the matrix B has full column rank, it has a left inverse BL; thus BLB = / and
f-f(t.x)=BL¥-BL A%

From this we obtain

|7-s0<] 8 ||+ 2 ali=]

and hence
h’r:lsup || f‘(r)—f(r,x(l))” <| 8" e, +| B 4|z
o0
By assuring that

u Bt ns; +|| B4 ”33 S
we obtain the desired result.

Application to a Mechanical System

Consider a mechanical system consisting of two small bodies, each of mass m > (), connected via
a linear spring of spring constant k£ > ¢ and a dashpot of damping coefficient ¢ > (; see figure 1. The
system is constrained to move along an inertially fixed horizontal line and its configuration can be
completely described by the inertial displacements g, g2 of the two bodies. The only available
measurements are g, and ¢, . Suppose the system is subject to an unknown force f{t) which acts on
the first mass and we wish to estimate this force along with the position and velocity of the second
mass. If fand its derivative 7 are bounded, we will show that we can apply the results of this paper
to achieve the above estimation desires.

Applying Newton's second law to each mass yields

mg;+c(qr=qy)+k(q;—q2)=f
mgs~c(q; -4 )-ki(q;—q;)=0

T ]

k
— A
m m 1
N T ST EEETES

Fig. 1 A Mechanical System
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If we introduce the states x;=g¢;, X;=¢,, X;=¢;, X;,=¢, and the measured output

y=aq; +q,;, where a is any positive number, this system has a state space description of the form
(1} where

0 0 1 0 0
a 4 9 .7 0
dalol X o | B=(1|, C=[a 0 1 0]
m m m m m
£k & £ 0
m m m m

Since CB = //m, assumption | holds. The rank condition (2) of assumption 2 fails when 1 = -&
or when A is a root of the polynomial mA2 + ¢4 + k. Since this polynomial has all roots with negative
real parts, assumption 2 holds. Hence, using only the measurement y and a simple estimator of the
form (14), one can estimate, to any desired of accuracy, the disturbance f and the remai ning states.

Numerical simulation results. For numerical simulation purposes, we considered

m=2 k=1 c¢=3 a=1I fy=0

In each simulation, the initial states of svstem and estimator were zero. The following two
disturbances were considered,

() fit.x) = sin(10m) - sinf )

(2) fit.x) = sin((sin(0.25m} + 1)2 1)

For each disturbance, two values of the gain parameter were chosen. The results are contained in
Figs. 2-5.

_:Disturbence |  —: Estimate with gamme=(0 -.-: Estimate with gamma=100
1 - v -

” : ﬂ |

osf A

D4}

0.2

Iy
Pty

ok

02

e

0.4

Disturbance | and its estimates

0.6+

2]

Time (sec)

Fig.2 Estimation of Disturbance 1
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-~ Batimate with gamanes=100

— Estimage wilh gummme |0

—a

=10+

Fig. 3 State Estimation With Disturbance 1

Time ()

Fig. 4 &umﬂummzmy-u

Fig. 8 Estimation of Disturbance 2 with ¥ =200
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Abstract

In the automotive indusitry enhanced controf systems are more and more developed by using hardware or
software in the loop techniques. For such applications an enhanced nonlinear vehicle model withreal time
capacity is necessary. The paper presents a multi-purpose vehicle model where real time application was made
possible not by simplifying the model but by using a special model technique, by adopting the generation of the
equations of motion to the specific problems in vehicle dynamics, and by using a modified implicit Euler
Jormalism for the mumerical solution.

Keywards: Vehicle Dynamics, Real-time Simulation.

Introduction

The result of more then one hundred years of automotive engineering is a "high tech” product. To
improve ride comfort and ride safety enhanced and "intelligent” spring- and damping elements with
nonlinear and dynamic characteristics such as hydraulic bearings are used. In addition more and more
active and semi-active systems were brought into action.

Thus, demands on vehicle modelling and vehicle simulation increased enormousty.

Simple models separating longitudinal, lateral and vertical motions are no longer suitable for
developping further enhancements. Due to severe nonlinearities in axle kinematics and force
characteristics linearized models are too simple.

Models representing vehicle dynamics in good conformity te field test must satisfy the following
demands:

® Nonlinear and threedimensional motion of the vehicle body:

e Nonlinear and if necessary even flexible wheel and axle kinematics;
e Detailed models of the steering system and drive train;

e Nonlinear and partly dynamic force element description, and

® Dynamic tire characteristics.
If the model should operate in driving simulator or in a hardware-in-the-loop test bench at least a

* Minimazed computer run time
is essential, (Rill, 1986).

In general computer codes derived by multi-purpose-algorithms (some are described in
Schiehlen, 1990}, are not adopted to specific problems in vehicle dynamics. The result is a computer
code where model quality and run time performance are not optimized.

Increasing computer power in order to achieve real time application is not economic. Reducing
model quality is an even poorer idea.

By tricky modeling techniques, by neglecting complicated and non relevant terms during
mathematical description, and by using a modified Euler formalism for integrating the equations of
motion real time applications with sophisticated vehicle models are possible even on small
computers, (Rill, 1994).

On developping new control strategies or investigating the influence of certain design parameter
to vehicle dynamics one benifits from a minimized computer run time too.

Presented at the Ninth Workshop on Dynamics and Control - DYNCO, Rio de Janeiro, RJ - August 11-14, 1996
Technical Editors: Agenor de Toledo Fleury and Hans Ingo Weber,
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Vehicle Model

Structure

The vehicle is modeled by rigid bodies. In order to approximate the dynamic effect of a torsion
flexible frame the vehicle body is devided into a front body and a rear body, Fig. 1.

rear bodg____

front body inertial frame

_ wheel and wheel body

i O rear axle carrier
o Y
-

reference frame

wheel and wheel bady
wheel and wheel body

s front axle carrier

wheel and wheel body

Fig.1 Model Structure
Inertial frame 0 and reference frame B are fixed to road and respectively to front body.

At present the model is restricted to two axles. Every axle consists of an axle carrier, two wheel
bodies, and two wheels. On independent axle suspension systems the axle carrier is omitted. Front
wheel, rear wheel or all wheel steering is possible. Rigid rear axles may have single or double tired
wheels.

The load is connected to the rear body. For sophisticated comfort analysis the engine suspension
is modeled too.
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A dynamic engine torque, nonlinear clutch characteristics, gear box, lockable differentials, and

Fig.2 Drive Train

flexible shafts are the main components of the drive train, Fig. 2.

Modeling of braking torque includes stick slip effects.

front axle differential
X
) CGi _I'I—l €G2
! W MWW
k-
£ |9 Qe 0g2 Oro
iv
engine
9]
CAy i & clutch
Qg
CMS
Qay
central
differential gear box
iG
I
QaH 4
CAH flexible drive shaft
iH
3 |9rs Qg3 Ogy Ry
P EMASL AN, o
b3 —
@ €G3 _LI_T CG4
rear axle differential

front wheel right

rear wheel right
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The model for steering system is shown in Fig. 3. The steering model includes power steering.

wheel and wheel body left
wheel and wheel body right

steering wheel

PR

Fig.3 Steering System

Different kinds of steering linkages are possible. The nonlinear steering kinematics is solved
online.

The kinematics of wheel/axle suspension is calculated fully nonlinear. Pure kinematic or
enhanced models with elastic bearings are possible, Fig. 4.

Fig.4 Axle Kinematics

The suspension system may consist of conventional spring and damping elements, air springs,
dynamic elements, or active and/or semi-active force elements.

Modeling the top mount makes it possible to include dry friction into the damping characteristics,
Fig. 5.

Tire forces and torques are calculated by using a semi-physical approach. The “easy to use
model” TMEASY includes contact geometry for arbitrary road profiles and a first order dynamic
description of the longitudinal and lateral forces, Fig. 6.
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_ Single obstacles or random road profiles are provided with the model. The coefficient of friction
is part of the road model, thus p-split situations can easily be simulated.

FWS =g !F____A =

Fig. 5 Damper with Top Mount

Fig. 8 Tire Forces and Torques

Model Variations

The model is not restricted to passenger cars. [t can be easily adopted to different vehicle types,
Fig. 7.

The passenger car model is characterized by a rigid car body and by independent axle suspension
systems. In extension to the model described in Rill, 1994, it may have an elastically suspended
engine.

Instead of an elastically mounted engine the truck model, c.f. Rill, 1986, has an elastically

suspended driver's cab. Due to the flexible frame the rear body can perform a rotation around a
longitudinal axis relative to the front body.

A rigid body, an independent front axle suspension, and a double tired rigid rear axle are typical
features of modern coaches, (Reischl, 1995).

At agricultural tractors the rear axle is rigidly connected to the body. In most cases the front axle
can only perform a rotation around a longitudinal axis relative to the body.
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Fig. 7 Model Variations

Enhanced tractor layouts are equipped with a suspended driver's cab, an elastically suspended
engine. In addition some tractors even have a suspended front axle, (Rill, Salg and Wilks, 1992).

A model extension to tank vehicles is described in Rill, 1995.

Kinematics

Reference Frame

The spatial motions of the vehicle are described by the momentary position and orientation of
reference frame B with respect to the road-fixed inertial frame 0.

The position of frame B is given by the position vector

X

Hopo=|Y¥ (N
4

Components of vector rop are denoted in the inertial frame 0. In (1) this is indicated by subscript
0 separated by a comma.,

The orientation of the frame axis are described by a rotation matrix. Three elementary rotations
are put together. The sequence

App= A, Ay A,
vaw pitch roll

results in
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Agp =

A

cos fecosy

cos fsiny

—sinfd

—LCcosa siny

+sinx sinficosy +cosasinfcosy

COS@ECOsy

+sina sinflsiny
sina cos f§

sine siny

—sinacosy
+ cos a sinfsiny
cosacosfi

198

3)

L .

Hence, the motion of the vehicle body is denoted by 6 generalized coordinates x, y, z, and o, B, v.
The velocity of the reference frame with respect to the inertial frame is given by

x
Vono =lono=|¥ 4)
b4

The velocity denoted in the inertial frame can be transformed to the reference frame
T i
Vos.s=AosTon0 (3)
In doing so the orthogonality of the rotation matrix
-1 T
Agg=Ayp = Ayp (6}

was already taken into consideration.

The angular velocity of the reference frame with respect to the inertial frame may be expressed
directly in reference frame B

/ 0 -sinf a
wopp=|0 cosa sinacosf ﬁ (7
00 -sina cosacosfB||y
Ky

The 6 components of vg B B and ®g B B Will now be chosen as generalized speeds.

First order kinematical differential equations connect generalized speeds with derivatives of
generalized coordinates. From (5) and (7) one gets

FJ_: Vo Bx
Y [=4on| Vosy ®)
L VoB:

and
[ @Ry
B|=K5'|@osy ©)
LY Dop;

Where the solution of (9) is given by
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¥y =(GJO& cosa+ moayst'na)/ cos 3,
B=—w03,sina+m”y cosa, (10)

aswyg +ycosa.

Singularities occur for cosf} — 0, respectively f — +£90°. In normal driving conditions only the
yaw angle y reaches large values. Roll and pitch angles a, B are bounded.

The momentary state of the vehicle body, respectively the state of reference frame B is fully
characterized by 6 generalized coordinates x, y, z, a, B, ¥ and 6 generalized speeds voBx, VOBy:
V0Bz: ®0Bx. ®0By. ®0Bz-

Relative Kinematics

The equations of motion are generated in the body-fixed reference frame B. The position and the
orientation of frame B towards the inertial frame 0 is given by the position vector rgp 0. (1) and the
rotation matrix Agp, (3).

Hence, position and orientation of body { towards the inertial can be expressed as

Ag; = App ABi (11)
and

r0i,0 = r0B,0 * A0B rBi,B (12)

The angular velocities wgp ¢ and wRgj B can be derived from the rotation matrizes Agp and Ag;,
Rill, 1994. Hence, the angular velocity of body i with respect to the inertial frame is given by

@i, 0 = @)B,0 + AOB @B; B (13)

The velocity of body i with respect to the reference frame follows from (12}

Tor0="oB.0 + @opo x(*“ﬂsfm.s)*‘ Ayp Fai g (14)

Transforming (13) and {14) to the reference frame one gets

= fiy
Wy 5= Ay Wpjp=Wgp+@pi g (15)
and
_ AT = T . 16)
@i 5= AgnToi0= AgpTopo + Pon.p X i p +ai.n (
‘nﬂ_’
VoB.B

Finally, the accelerations of body i towards the inertial frame 0 but denoted in reference frame B
read as

@wq; B=®0B B+@ B p+@0B B XD; B (n
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and

9;. 8=Vop.8+ @95 X"8iB+ T8 B+P0p B x("m.ﬂ +"Bi,s) (18)

If the state of reference frame B towards the inertial frame 0, given by AgB, r0B,0, ®0B,B,
vQB,B. and the derivatives Vyp »,@,p g are once determined only the relative quantities

Ap;i.rgi g @pgi p.Fgi B @ pi B i B (19)

are needed to calculate position, orientation, velocity, angular velocity and accelerations of each body
towards the inertial frame.

In vehicle dynamics some complicated terms in @y, 5 and Fg, p can be neglected without
loosing accurancy, Rill, 1994,

Dynamics

Jourdain's Principle

The equations of motion for the vehicle including steering system and drive train are generated
using Jourdain's Principle. Given k rigid bodies it reads

k

Z(‘S"gﬁ,sﬁ.zﬂ +60f; 5 Mfﬂ)=o (20)

i=/

Separating the forces and torques applied to body i into constraint forces and torques F,ZB Mfﬂ

and remaining terms Fy, M; g the linear and angular momentum can be expressed as

m;ap; g=F g+ FF
5= o i= I(1)k 1)
Tsip@prp=Mipg+ Mfp-wy g xT5;i gwpi g

Where m; denotes the mass of body i, and Tg; B is the tensor of inertia with respect to the center
of gravity. The equations are denoted in reference frame B.

The virtual velocities dvp; g and the virtual angular velocities mj B are arbitrary infinitesimal
velocities of the system compatible to the constraints.

The generalized coordinates and the generalized speeds necessary to define the state of the system
are summarized in the vectors y and z. Then the virtual velocities and the virtual angular velocities
can be expressed as

Hyigly.z)
o B =T-
i ,
J=1()n; (22)
dargip(y.z)
Swrg; g =———,

é;
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where ny denotes the number of the generalized speeds.
Using (21) and (22), Eq. (20) reads as

i={ P
ol i
‘;Ls {Ts;,s b fg+Tgpaly+ i
% 4

@018 % T5i.p®0i. 5~ MEB]J &, =0

Acceleration terms not depending from derivatives of generalized speeds are collected in
remaining accelerations

o ly.2)
afl p=wop g xVon +%yﬁ
2 d () (24)
oi.8\¥.2) .
“fﬂ-.s:mns.s X g +—"5—y_;-
¥;
Due to ﬁzp # 0 one gets from (23) the equations of motion
M(y)i=Qy.2) (25)
with the mass matrix
k
Hy; Hpi Bw}; Ew
Mg =Z{ 01,8 i 0iB  “00in T m.s} (26)
oy &y &, ép &,

and the vector of the generalized forces and torques

k

M.

Qp =Z{ &h [Ffﬂ 5 “fﬁ',s]

=158 @7

dwl;

sl [M? sy pal s ww sy
& iR SiBY0i R .8 Si. B%Y0i B
P

Two sets of first order differential equations, the kinematical differential equations
K(y)y=z (28)

defining generalized speeds, and (25), fully characterize the dynamics of a multi body system.
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Structure of the equations of motion

The position vector of the vehicle is split into subvectors

Yvai YHAl
= o | yH= : .yL=[5]. yAzla;] (29)
Wy, Y Hd,,

The angles «, B, v and the coordinates x, y, z describe the position and orientation of the body
fixed reference frame towards the inertial frame, The subsystems front and rear axle may Lave npy
respectively nprq degrees of freedom. The steering motion is described by the steering gear input
angle &, and the torsional deformation of the frame by the angle a>.

The equations of motion can now be written down in the form

Ko 0 0 0 0| yg 25
0 E 0 0 0| w zy

0 0 E 0 0 ||yygl|=|zn (30}
0 0 0 E G|:¥ Zr
0 0 0 0 E||Ya Z4
K ¥y z

and

Mgg My Mby ME ML ] [0
M(;l-" MVV 0 Mﬁ 0 Iy QV
MGH 0 MHH MEL MZ;A ZH = QH (31)
MGL MVL MHL MLL f zy, QL
Moy 0 My, 0 My|2al %4

M z

where the partition used for the position vector y holds also for the speed vector z and the vector Q of
the generalized forces and torques.

For the motion of the reference frame non-trivial generalized speeds were defined. In (30) this is
expressed by Kgqyg=25. For the remaining coordinates trivial generalized speeds are used
Yr=z2v. Yy =g . YL =21, Y4=24.

Corresponding with the model structure the motions of the front and rear axle are kinematically
uncoupled. In (31) this was already taken into consideration.

Numerical Solution

Implicit Euler Formula
If the implicit Euler formula is applied to (30), (31) it results in
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Kk+1 (yh-f _yk):hzk il

32
MI:H(ZJ:H_Z&):;,QJ«H_ 1

where A is the step size. The superscripts & and k+/ denote quantities at time ¢ and t+h.

A fully implicit solution is stable even for very large step sizes. But, in order to get a sufficient
scanning of the road profile the step size must be limited anyway h<h,,., -

As the solution of (32) is very time consuming it is not a proper formula for real time
applications.

For the integration of vehicle dynamics equations it is possible to derive from (32) a partial
implicit Euler formula. This formula is characterized by minimized computer run time and sufficient
stability conditions, Good experiences in the application of a partial implicit Euler formula were also
reported in Hahn, 1991.

Partial Implicit Euler Formula

The equations of motion are written down in the body fixed reference frame. Due to the use of
non-trivial generalized speeds the elements of the mass matrix are nearly constant

MY+l Mk xconst (33)

With the exception of submatrix K¢;¢; all elements of the kinematical matrix X are constant. The
elements of submatrix KGgG are depending from «, B, y. These angles describe the orientation of the
body fixed reference frame towards the inertial frame. Due 10 the inertia of the vehicle they will

change from step to step only a litle if the step size is not too large
aktl — gk <o f, fhtl — Bk << | yhtl —yk << ||

Thus, in good approximation it holds
Kh+la Kk | (34)
Then the first equation in (32) is simplified to

yk+f=yk+h(xk)“’zk+; (35)

The generalized forces and torques are depending from generalized coordinates and generalized
speeds, Q = Q(y,z). The implicit expression

QK+ =Q(yk+f_zk+!) (36)

is now approximated by

O+ =0k (37)

Ob*1 = Oy (vh. v +heb by v ¥4 22 2. 2h oK)

+%(}’§”—(yf»+hzfr))+%(zé”—z§) '

(38)
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o ”QL(YE VB VE Rl vk 2 2k .zﬁ,.zi,zj)

+%(yiu (v} +hek) )+ f‘% (5124 ,

O w0, (vE vb vy vh vy + bty 2k 2h 2y 25 2K
éQA( kol _( Lk o pok YY), P24 !
B —(yk +hz )+— Zhtiazk
.4 Y4 (J"A A) 2, ( p] A)
where only significant terms were taken into consideration.

With (30) and (34) the first equation in (32) is approximated by

P - v =HKlg)
y,’i” ‘J’lﬁ =hz,’5+‘
y}‘f” _y% = hz};‘
yitl gk = bl
yﬁu “J’ﬁ =hz§”

and with (33), (37) to (41) the second equation in (32) results in

M(zu; —zk )=;,[Qk +%(2k+f _Zk)+h_‘§(zk+f _zk)J

Introducing

M*’E=M~h£—h3é2
& &

one geis

MIE (zh.‘ _z:r)= hQ*

Following the approximations in (37) to (41) the partial derivatives are given by

(39

(40)

(41

(42)

(43)

(44)

45)

204
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(0 0 0 0 i
0 @K— 0 0 0
248
o |0 0 Xy 0
— = 2y (46)
& 2%
o 0 ) | EmEa o)
23
0 0 0 7] @
L & 4
and
(0 0 0 0 g
0 & 0 0
Py
g 0 0 Xu 0
E: &y (47
0 0 1] & 0
&y
1] [ 0] 0 &
| Fa |
Getting the new speeds
Y =[25+1_z§+f|2§{+.*'zr:_zﬁu] (48)

from (45) the new position subvectors y&+/, yf+!, yhr! yh+/! yA+1 follow from (42).
Applications

Driving Simulator
In a driving simulator real time capacity is essential,

The vehicle model is implemented on the Mercedes Benz Driving Simulator. It is used to develop
enhanced suspension systems for coaches. The control strategy and the design parameters for a fully
active and a semi-active suspension system are investigated, tested, and optimized.

In a very early design stage not only objective criterias such as wheel loads and body
accelerations but also the subjective perceptions are available.

Different kinds of coach layouts can be studied. Environmental impacts, such as road roughness,
slippy road, and wind gusts, can be taken into consideration.

By the complexity of the model it is granted that the results are in good conformity to real vehicle
behaviour.

Just for a final test a prototype will be needed. Thus developping time and costs are reduced.

Hardware-in-the-Loop

The model was modified by the company TESIS to meet all requirements given by the German
automotive company AUDL. For instance, a module describing the elastokinematics of modern axles
was supplemented, and an interface to ADAMS kinematical calculations was provided.
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AUDI wants a hardware-in-the-loop test bench to improve develop, and adopt modemn slip
control systems to new cars.

Field tests suffer from a lack of repeatability and are expensive and time consuming. Low friction
tests are particularly difficult and limited to a few weeks in winter.

In a hardware-in-the-loop test road and vehicle are replaced by real time simulation, while the
real electronic control unit and the real hydraulic systems are the same as in the vehicle.

Due to a very small step size which was needed to communicate with the hardware a multi
processor system from dSPACE was used to achieve real time capacity.
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Abstract

The objective of this paper is to present an identification procedure which is based on the use of a stochastic
linearization method with random coefficients, The model is then defined as a multidimensional linear second-
order dynamical system with random coefficients. An optimization procedure is developed to identify the
parameters of the probability law of the random coefficients. The identification procedure is described step by
step. Finally, an example is presented and shows the interest of the method proposed.

Keywords: System Identification, Stochastic Linearization, Identification Algorithm.

Introduction

For linear multidimensional second-order dynamical systems (m.s-0.d.s.) with time independent
coefficients (constant coefficients), modal identification procedures are known and well developed.
In this paper, we are interested in the identification of weakly nonlinear m.s-o0.d.s. with constant
coefficients, using a linear model and a stationary random input. The main idea is to use an infinite
family of linear models to represent the nonlinear dynamical system i.e., a linear m.s-o.d.s. with
random coefficients. This means that the weakly nonlinear m.s-o.d.s. is identified by a linear m.s-
o.d.s. with uncertainties. Consequently, such an identification yields a linear model whose operator-
valued frequency response function is a random stochastic process indexed by the frequency. The
eigenfrequencies and associated eigenmodes are then deduced from the linearized representation
which is identified (consequently, the eigenfrequencies are random variables).

Using broad-band stationary random excitation and constant coefficients of the model yields the
classical Stochastic Linearization Method with Constant Coefficients (SLMCC). The SLMCC was
introduced by Caughey in 1963 within the context of prediction methods. Many developments have
been proposed in this area since this date and an excellent synopsis was made by Roberts and Spanos
in 1990. An identification procedure based on SLMCC can be summarized as shown in Fig. 1 and
will be refered in this paper as Method 1.

EXPERIMENTS IDENTIFICATION
Broad-band stationary
random excitation

Unknown Unkmown
w |Nnnlhnr _.| Linear Model for
m.s-0.d. s m m. 50, d.5 | identification

M

[Omvterg]
[ |

moments ( ongst ﬂllplllw)

Fig. 1 Method 1 - identification Procedure Based on a Stochastic Linearization Method With Constant
Coefficlents (SLMCC)
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In this field of identification procedures, it should be noted that difficulties arise due to the
presence of the mass matrix which is unknown and which must be identified. Fillatre (1992)
developed a method for identifying such an equivalent linear model in which mass, damping and
stiffness matrices are constant and unknown. His approach is based on an extension of Kozin's works
(1987, 1988) and can be considered as a method based on the SLMCC. Generally speaking, it is
known that the SLMCC yields a very good approximation of the second-order (s-0.) statistical
moments of the stationary response of second-order dynamical systems. Consequently, an
identification method based on such a procedure yields an equivalent linear dynamical system which
can restitute the second-order moments. Unfortunately, in some cases, although the second-order
moments are correctly estimated, the matrix-valued spectral density function (s.d.f.) of the response
may be erroneous. This difficulty was first shown by Miles for a one-dimensional nonlinear
dynamical system Miles (1989). For such nonlincar dynamical systems, methods were proposed to
calculate the power spectral density function of the stationary response without using Monte Carlo
numerical simulation (Miles (1989), Bouc (1994) and Soize (1991, 1994a). The matrix-valued
spectral density function can generally not be calculated explicitly for multidimensional nonlinear
dynamical systems, except for particular cases related to linear dynamical systems with random
parametric excitations (see for instance Soize (1994b). Recently, Bellizzi and Bouc (1995b) proposed
an interesting method for multidimensional systems in the context of prediction methods.

The Stochastic Linearization Method with Random Coefficients (SLMRC) Soize (1991, 1994a)
is adapted to identification procedures and allows the identification to be improved with respect to
the classical SLMCC. This fact was recently proved by Soize (1995) for one-degree-of-freedom
nonlinear second-order dynamical systems. This method, based on a linear dynamical model with
random coefficients, has just been extended by Le Fur (1995) for the identification of weakly
nonlinear multidimensional second-order dynamical systems and the details of the method can be
found in Soize and Le Fur (1997). An identification procedure based on SLMRC can be summarized
as shown in Fig. 2 and will be refered in this paper as Method 2. It should be noted that Method 2
uses Method 1. The purpose of this paper is to summarize a new approach developed by Soize and Le
Fur (1997) for identifying weakly nonlinear multidimensional second-order dynamical systems based
on the identification of a linear model with random coefficients.

EXPERIMENTS % - IDENTIFICATION
arrow-band stationary
Unnknmi y random excitation ‘ i ll"l‘\:lﬁodel for
System
Taput
Unknown random coefficients Linear

S":”J&"ﬁ. [Mean valud +[Random Fluct][™™| m- s-0. d. .

Identification of the probability distribution
| S of the random fluct. to minimize the
distance between the matriz-valued 5, d. I
oloutputm and output

Flg.2 Method 2 - Identification Procedure Based on a Stochastic Linearization Method With Random
Coefficients (SLMRC)

Construction of the Model with Random Coefficients

We consider a weakly nonlinear dynamical system of dimension » = 1 subjected to an external
random excitation. This dynamical system is written as the following stochastic differential equation
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[M]X(e) + [C]X(e) + [K] X(0) + ef (X 1)) = ¥(e) M

in which matrices [M], [C] and [K] are positive definite; function f from R7 into R” is odd,

continuous and nonlinear; excitation force F is a Gaussian, second-order, centered, stationary, mean-

square continuous stochastic process indexed by R with values in R7. The matrix-valued spectral
density function of process F is written as

[Se(@)]=o=)[5] )
where [B] is a positive matrix and s is a positive-valued function defined on R having the required

properties such that process F is physically realizable and approaches an ideal normalized narrow-
band noise.

Within the context of an identification problem, it is assumed that stochastic differential equation
(1) has a unique stationary, second-order, centered stochastic solution X having a matrix-valued
spectral density function [Sx]. Furthermore, function [Sx] is assumed to be square integrable on R.

Applying the identification procedure developed by Fillatre (1992) (based on a stochastic
linearization method with constant coefficients) yields the following linear stochastic differential
equation on R”?

[M ) X(0) +[C. ] X(e) + K ] X(e) = ¥(1) 3)
in which F is the stochastic process used in Eq. (1) and matrices [ﬁc].[gc] and [gc] result from
the identification procedure and are positive definite.

We introduce the eigenmodes ¢ €R" and the associated eigenfrequencies @ of the
conservative problem associated with Eq. (3), which are the solutions of the generalized eigenvalue
problem ‘IEC]Q=Q2 [Mc]E- Let [Q] be the (n x n) real matrix of the eigenmodes such that
[2] ¥i3 ~ Ek j.

We introduce modal coordinates Q such that X =[Q]Q. Substituting this change of coordinates
in Eq. (3) yields

[A,]Q(0)+[c | @)+, |0)=[2] ¥(1) @

where (M, |=[2]" [1][2].[c, |- (2] [c.][@] nd [, ]-[u, |[2°]-[2])" [£.][2] are
x n) real positive-definite matrices, Matrices and [ M, ][5 g] and [!_?2] are diagonal and [Q g] isa
dense matrix in the general case.

We associate with Eq. (4) the following stochastic differential equation with random coefficients

A ] ¥+ [c ] ¥ + [£ |11+ 4D () = [2] ¥ () )
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where [A] is a random variable with values in the (n x n) real diagonal matrices. We introduce the
vector A=(A4,,...4,) of its diagonal entries A; =[A],. It is assumed that {A,,....A4,]} are
independent real-valued random variables. The probability law P, (dﬁ.) of the real-valued random
variable A, is defined by a probability density function p, (1) on R with respect to dA :

Py (dA)=p 4, (4)dA (6)
in which forall AeR,

pa(A)=ay (1+2)W, (2) 7

Real function 2+ W, () defined on R is such that
= _am!
Wa, (A}=I[gﬁ‘l_m[(‘l)(‘l—itf)Je .34‘{/1 a ) i

Equations (6)-(8) define a parametric family of probabilities where the unknown parameters
ay Ba and A verify the conditions @y >0.8, >0./+4)>0. Since Py (dA) is a
probability, Py (R)=1 and consequently, the three parameters « 4, f 4, and i[,-” are dependent.
Calculating a 4, as a function of 5, and A{,-f] yields

zﬂfl;
CIA'. =
J‘I'A(',J) +£J_’£—
2

A

9)

Because of the independence of random variables {4,,...,4,}, the probability law of the R -

valued random variable A is written as

Py=®, P, (10)

It can be proved (Soize and Le Fur, 1997) that Eq. (5) has a unique second-order, centered,
stationary solution Y which has a square integrable matrix-valued spectral density function given by
the relation

[sv(e)]= _L (s, (@: 2)] a(a) an

in which P, is given by Eqgs. (6)-(10) and matrix [s‘.A (o: 1)] is such that

[sv, (@:0)]=[Hal@:1)][@]" [se(@)][@]Hale: )] (12)
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[Ha(0: :L)]=[-¢:.;:’[_Mx]+.'.m[(_rg]+[gg]([,f]af[i])]-I (13)

Identification Procedure

The identification procedure consists in calculating the parameters of probability law P4 in order
to minimize the "distance” between the matrix-valued spectral density function of the model
responses and measured (experimental) responses.

Let Q be the R? -valued stationary stochastic process such that Qz[Q]_I X in which X is the
measured stationary stochastic process (experimental responses) and [®] are the estimated
eigenmodes introduced in Section 2 . We then deduce that for all real @, the matrix-valued spectral
density function [SQ(cu)] of process @ can be written as

[Sel@)]=[2] [sx(e)][2] " (14)

Ai=1/ By . i€ll...n} (15)

Let £=(&/....,&p) be the vector in R2% such that & =(A,A(!)) and g,-=[A,-,.J.§”) . Let D be the
domain of £ which is such that

D={(A,MU)ER1’"

A,->o.1+z(,.‘)>0,We{f,.,..n}} (16)

In order to indicate the dependence of P, and [Sy] in &, we rewrite these quantities as Pj and
[s‘i] respectively. Since the measured and the model matrix-valued spectral density functions are

square integrable, the following cost function can be used,

0= fiel L[ -3 [[sfell [sel], oo an

The identification procedure is defined as the following optimization problem: find £g in D such

H(Eo)= min H(E) (18)
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It should be noted that diagonal terms [s% | depend on all the components of £ due to the fact
that matrix [C, | used in the calculation of [H,. (@:1)] is not diagonal. In order to replace problem
(18) by n independent optimization problems in R2, elements F% (ﬂ,)]" are approximated by
[S Y (e )]” obtained by neglecting the extra-diagonal part in matrix (C s] . It should be noted that this
approximation (introduced only to simplify the optimization problem) is not used in the final
calculation of matrix [gé(m)] (See next section). Then, from Eqs. (2), (6)-(9) and (11)-(13), we
deduce that for all i in {1, ..., n}

Nee-*? dx
» ) 2eqs(e) g (u- A5+ 2 ).'
[ v(w)]a :+,1(Ir)+ A7 72 ((!+A.:+1§”)[x i [M‘]“) +m’[C I’
(19)
in which e,-,-=[[g]r[B][Q]}_‘. For each i in {1,..n}, we define the functional on

]0,+no[x]-—i.+ 00 [ c R? such that

Jie/)= L{[SQ(G’]L_[S‘?(“’)L }2 das (20)

Consequently, the optimization problem on a subset of R2 defined by Eq. (18), is replaced by
the n following optimization problems on a subset of R2
J, = min
f{E’"o) §€)0.eef x]-1.4]

It should be noted that each constraint optimization problem defined by Eq. (21) is not standard
because J; is not a convex function. Consequently the following method has been used:

Ji(&;). i€{l....n} (21)

Stepl: Determine a bounded subdomain C,-z[An.A,,] I:l(” [}] included in unbounded

domain ]0.+ co{x]— 1L+ m[ such that C; contains the solution (see [15]), in order to limit the space
of the research for a solution.

Step 2: Use a global optimization algorithm on C; based on an adaptive random search ( Walter
and Pronzato, 1994) which allows a first approximation £; , of the solution of (21) to be constructed.

Step 3: Finally, use a local optimization method on C; based on the Gauss-Newton algorithm and
initialized with &; 5, giving solution &; ¢ of problem (21).

Calculation of the Model Matrix-valued Spectral Density Function
Matrix-valued spectral densityfunction [s\.(m]] can be calculated for £ = Eg where Eg results

from the identification procedure (See previous section). Knowing [S\'(‘”)] which is the identified

model of measured matrix [SQ(m)] expressed in terms of modal coordinates,we deduce the
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identified model [Sz (m]] of the measured matrix [Sx[m)] relative to the physical coordinates. We
have the relation [Sz(m)]=[gls\,-(m)][Q]T.Since matrix [Qs] is dense, the direct calculation of
the model matrix-valued spectral density functiondefined by Eq. (11) requires calculating a n-uple
integral on R” for each @.This calculation can only be carried out by numerical integration.
Consequently, it cannot be made for large values of n (for instance when n is 10 or 20 (or more)).We
therefore propose a construction of an approximation in Soize and Le Fur, (1997),which allows to
calculate only simple integrals on R.

Example

For this example, an "experimental data base" is constructed using a Monte Carlo numerical

simulation in the time domain of the second-order nonlinear dynamical system defined by Eq. (1)

& =1875, where the frequency band of narrow-band process F is [14 Hz, 28 Hz] and where [K];; are
the diagonal terms of matrix [K] appearingin Eq. (1). Matrices [M], [C] and [K] were generated by
the formulas [ M]=[8]""[M][8]™.[C]=[5] T[C][S]”" and [K]=[S] T [£][S]”’ where

0208513 0333334 0301512 0447214 0447214
0208513 -0333334 0301512 —0447214 0447214
[S]=|0625543 0577350 0522233 0447214 00
0625543 0577350 -0.522233 0447214 00
0361158 -0.33333¢ -0522233 0447214 0774597

and where [M)] is the identity matrix (generalized masses equal to 1), [K] = [M] [Q]2 in which [Q] is
the diagonal matrix whose diagonal is 2n x [18.0, 20.0, 20.4, 22.0 , 23.0] and finally, [C] is a
diagonal matrix whose diagonal is [4.5, 5.0, 5.13, 5.5, 5.8]. Digital signal processing on the time-
simulated sample paths of the stationary response was applied to estimate the "measured" matrix-
valued spectral density function [Sx (®)] for @ in the frequency band of analysis.

It should be noted that some eigenfrequencies € of the underlying linear dynamical system
associated with the nonlinear dynamical system are close (20.0 Hz and 20.4 Hz). In presence of
nonlinearities, this kind of situation is generally recognized as a difficult problem within the context
of structural dynamic identification. The procedure presented in Section 3 is used to identify the
parameters &; of the model. Figure 3 is related to the comparisons between the matrix-valued spectral
density functions obtained by "experiments” and by identification of the model with constant !
coefficients. Figure 3 shows the comparison between [Sx ]" and [Sx ]” foriin {1,2,3,4,5}. These
results correspond to those obtained by Filldtre (1992). It should be noted that this first identification
already yields a good identification (taking into account the intrinsic difficulties of the example
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considered), but as mentioned in the first section, this kind of results can be improved using a more

advanced model for identification (see below).

X 10" Qoeﬂ (1.1] X 10_‘ co."(ziz’

% 15 20 25 30

experiments
....... identification with stochastic linearization
method with constant parameters

Fig.3 Power Spectral Density Functions Sy |, and [Sx ],
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Figure 4 is related to the comparisons between the matrix-valued spectral density functions
obtained by "experiments” and by identification of the model with random coefficients for which the
procedure was described in previous sections. Figure 4 shows the comparison between [Sx ]n‘ and
[Sz], for i in {1,2,34.5). It can be seen that the results obtained are much better than above.
Complete results concerning this example are given in Soize and Le Fur (1997).
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Fig.4 Power Spectral Density Functions [S % ] , and [Sz ] e
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Conclusion

This work started from previous research on modal identification of weakly nonlinear
multidimensional second-order dynamical systems (based on the use of the equivalent stochastic
linearization with constant coefficients). In some cases, this method has difficulty identifying the
matrix-valued spectral density function of the stationary responses. In the present work, we have used
the previous work to identify the mean part of the model. In order to improve the identification of
spectral quantities, we developed a method based on stochastic linearization with random
cocfficients. This new identification procedure seems to be very efficient and can be implemented
easily. The results show that this method yields better results than the previous one. Nevertheless, this
method could be improved by introducing some statistical dependence between the components of
the random coefficients expressed in the modal coordinates (or possibly by introducing extra-
diagonal terms) in oder to model energetic exchanges between eigenmodes due to the weak
nonlinearities. It should be noted that in this last case, the optimization problem introduced in the
method could not be split into several optimization problems with a smaller size. This being the case,
the efficiency of such a procedure would have to be studied with great care.
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Abstract

A method for tracking control of mechanical systems using artificial neural networks is proposed. The proposed
control law consists of a proportional and derivative control action, and a two-layer feedforward neural
network used for on-line approximation of the nonlinear part of the system dynamics. Tuning of the neural
network's weights is formulated in terms of a constrained optimization problem and solved on-line using a
projection method. It is shown that the proposed control law yields closed-loop tracking error that tends
asympiotically io zero while the control effort is minimized. The resuiting algorithm has a simple structure and
requires a very modest computation effort. The problem of tracking control for a two-degree of freedom planar
manipulator is used to demonstrate the proposed method.

Keywords: Control, Mechanical Systems, Neural Networks.

Introduction

Feedback linearization is a basis for many approaches to trajectory tracking control of mechanical
systems such as robots [Lewis et al. (1993); Spong and Vidyasagar (1989)]. Control laws designed
by these methods consist of a two parts: a part that cancels the nonlinear terms in the plant dynamics
rendering the nominal closed-loop system linear, and a part designed to satisfy stability and
performance requirements. Exact feedback linearization assumes exact knowledge of the system
model that is, in most cases, not available. To alleviate this shortcoming two classes of control design
approaches were proposed. The robust control design approach that includes variable structure
systems [Decarlo et al. (1988); Utkin (1978)], passivity based controllers [Lewis et al. (1993); Slotine
and Li (1991)], Lyapunov-based control design [Chernousko (1996); Chernousko (1993); Corless
(1993)]; and the adaptive control approach [Slotine and Li (1988)).

Neural networks controllers are viewed as belonging to the class of adaptive controllers. In neural
network-based control laws, the role of the neural network is to generate a command that
compensates for the uncertainties in the nonlinear dynamic model. The neural network operates in
conjunction with a relatively simple controller, e.g. proportional+derivative, that is designed to
ensure convergence of the tracking error, The idea is to exploit the nonlinecar mapping ability of the
neural network [Narendra and Parthasarathy (1991); Narendra and Parthasarathy (1990)] and the
property of neural network as universal approximator [Cybenko (1989)], in order to identify the
parameters needed for the computation of the feedback control law. Many existing neural networks-
based controllers for mechanical systems suffer from important shortcomings as follows. From
control design point of view the shortcomings include the fact that closed-loop performance is not
guaranteed, and that the magnitude of the control effort is not part of the design. The shortcomings of
the neural network algorithms include the fact that there is no systematic approach to initialization of
the neural network's weights, that the neural network's weights are adjusted off-fine, and the high
complexity of the network configuration. Recent studies addressed some of these issues, see for
example Lewis et al. (1995, 1996), and Sarangapani and Lewis (1990). However, the resulting neural
network-based control laws possess complex structures and computationally intensive learning
algorithms. Moreover, the important issue of limiting the magnitude of the control effort is not
addressed in the derivation of the control law.

In this paper, a method for design of a neural network based approach to control mechanical
systems that alleviates some of the shortcomings of existing algorithms is presented. The
configuration of the proposed neural network and the tuning algorithm are relatively simple and
therefore can be performed on-line resulting in a genuine learning feedback control law. [t is shown
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that the tracking error of the closed-loop system converges to zero is presence of uncertainties.
Mareover the tracking is achieved while the control effort is minimized.

The paper is organized as follows. In Section "Problem Formulation", the problem of tracking
control of mechanical systems is formulated. Fundamentals of neural networks is presented in
Section "Neural Networks". The proposed control law is given in Section "Neural Network Based
Controller”. In Section "Example..." the performance of the proposed approach is demonstrated in a
simulation example of a two-degree of freedom system. Concluding remarks are given in Section
"Conclusions".

Problem Formulation

Dynamic Equations of Mechanical Systems

The equations of motion of an n-degrees of freedom mechanical system are given by:

M(q)g+Viq.q)+Gigl=u+u+ty (1)

I where g(t) € W e R is a vector of generalized coordinates, ¥ is a bounded region of the state space
representing the workspace of the system, # & R is a known reference input, ¥ € R is a vector of
generalized control forces, and rg € R represents the disturbances acting on the system.

The dynamic equations given in Eq. (1) have the following characteristics (see [Lewis et al.
(1993)]:

1. The mass matrix Mg} i1s symmetric and positive definite for all g.
2. M(g) is bounded from above and below as follows

0<Bl,a<q” M(qja<Bq"q  B1.f2>0 @)

3, The vector of Coriolis and centripetal terms V' (g,q ) satisfies the following inequality

7| al soaldl’ Yaew (3)
4. Itis always possible to find ¥ (g,g) such that ¥ (¢,¢)=V (q.G)¢ and

szép.'f-r'(w; )

is skew symmetric,

5. The gravity term G(g) is bounded as follows
|Geai|<grq) (5)

Control Design Approach

The objective 1s to design a control u such that the state z=[q q]r of the system in Eq. (1),

tracks the state of a model system z,, =g, :';,,]T, where g,,(t)€R" satisfies the equation
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Moy (Gm)dm ¥V (Gm Gm )+ GG )=V (6)

The goal is to achieve satisfactory tracking in presence of system's parameter uncertainties, and of
disturbances bounded as follows

[rals@ (N

The proposed control law is based on the inverse dynamics approach that consists of three parts

u=u;+u; —i (8)

The term uy is a linearizing control given by

up=M(qlg,+Vqg+G(q) (9)

The term w7, consists of a linear Proportional + Derivative (PD) control logic

uy = M(9)[Ka(G-dm)=Kp(a-an)] (10)

where K, K; € R*™" are positive definite symmetric matrices. Assuming perfect knowledge of
system's parameters and no disturbances, the closed-loop system is given by

é(1)+ Kae(t)+ Kqe(1)=0 (an

where eft) = gf1) - gm(t). Hence, in the ideal case, one can choose the PD controller parameters such
that z — zj, arbitrarily fast. However, in presence of model uncertainties and disturbances, the
linearizing controller u cannot eliminate completely the nonlinear terms. In this case, the closed-loop
system is described by nonlinear, forced equations as follows

éft)+ Kyélt)+ Kge(t)=xfe(t).é(t).t) (12)

Obviously, asymptotic stability of these equations cannot be guaranteed.

The approach taken in this study, is to design a control law of the form of Eq. (8) with the
linearizing uJ term being approximated by a neural network. The ultimate goal is to obtain a genuine
feedback control system in which all computations are performed on-line.

Neural Networks

Notation and Definitions

Form an engineering stand point, a neural network can be viewed as a computing machine
characterized by a parallel architecture, a similarity of neurons, and a set of adjustable weights. In this
paper we consider N-layer feedforward neural network structure, in which the input and intermediate
signals are always propagated forward, as shown in Fig. 1. A neural network is specified by its
structure and a learning rule for the adjustable weights. We consider neural networks composed of
neurons described by



H. Flashner et al.: Tracking of Mechanical Systems Using Artificial Neural Networks 220

n
yi=o(s)+u; 5= X wyx, (13)
j=1

where ofs) - R — R is a nonconstant, bounded, and monotone increasing function of class Ck called
an activation function. Typical selections for or) is a sigmoid given by

o(s)=1C (14)
I+e™®

For the network shown in Fig. 1, n; (i = 1, ..., N) denotes the number of neurons in layer i,
y?=xeRm™ is the input vector to the network (np is the number of inputs to the network),
y" € R" is the output of layer i, of € R™ is defined in equation (14), yN € R"V is the output of
the network, Wi e R%*n_; is the weight matrix between layer i and layer i - 1, and u/ € R is the
bias vector of layer i. The output of each layer is given by

yi=oi(Wiyi-l j+ui =], N (15)
1
1
W N
a N
X1 Y
wm!

e L SRR S

ni NN

Fig.1 A Feedforward Neural Network

Neural Network as Universal Approximator
Consider a two-layer neural network given by

yi=Wlg(Wix+ul }+ul? (16)

The following theorem states that a two-layer feedforward neural network (N.N), with a
- sufficient number of hidden units, with an activation function given in (14), and linear output units, is
- capable of approximating any continuous function f R” — R™M, to any desired accuracy.
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Theorem 1 [Cybenko (1989)] Let o be any continuous activation function. Then given any
continuous real valued function f{-), on a compact subset s — R” and & > 0, there exist vectors wy, ..,
wp, & and O and a parametrized function G(-, w, at, 8) : — R such that

lG(.t,w.a,O)-f(x)lcs forallxes (17)

N
G(x.w.a.6)=) a,0(wix+6)) (18)

i

This theorem can be interpreted as implying that a failure of a function mapping by a multi-layer
network, is a result of an inadequate choice of parameters, or of an insufficient number of hidden
nodes.

Neural Network Based Controller
A two-layer feedforward N.N of the form

r=Zo(Kx)+ry (19

is used to approximate the linearizing term uy in Eq. (9). Here r € R denotes the network's output,
x=[gm.q.q] € R is the input that belongs to a compact set, m- number of neurons in the hidden
layer (m > 3n), o (-) € R™M denotes vector of sigmoid functions, K € Rmx3n and Z e RMxM gre the
weights of the first and the second layers, respectively, and # is a bias vector.

The function to be approximated by the neural network is given by (see Eq. (9))

JS=M(q)qm +V(q.9)+G(q) (20

The approximation properties of the neural network is such that

| Zo(Kx)+ 70 = (M(q)im +V(q.9)+G(q))|, <& (21
Combining the neural network control with a PD controller, yields a closed-loop system given by
M(q)G+V(q.q9)+G(q)=r—KyB(e.e)+14 (22)

as shown in Fig. 2. Here Bfeé)=q(t)-qu(t)+A(q(t)-qnu(1))=é(t)+Ae  where
A=K7 K p €R™™ is a symmetric positive definite matrix, i.c. we assume that Ky and K, commute.
Note, that in most cases one chooses both K7 and K, to be diagonal matrices and then the mation on
the manifold B(e,é)=0 is decoupled between the degrees of freedom.
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Derivation of Control Law
Define a Lyapunov function

E=§BTMB (23)

Differentiation of (23) with respect to time yields

E=BT(r-v)-BT(K; - MA)B-BT (MA-V ) Ae (24)

where v is the reference to the model system (see Eq. (6)). To ensure stability Lyapunav stability
used and the negativity of E is ensured under the following conditions. Let @ and « be the
minimum and maximum eigenvalues of A, respectively. Then using Egs. (2)-(5), it can be shown that
the domain of attraction is given by

lare)|sws
D(z)= 2%
; i (M
u q(t) ||S w
Fig. 2 Closed-loop Configuration of the Proposed Control System
Moreover, let } denote the minimum eigenvalue of Ky, then if
B>@-Ama(M(q)) (26)

~and 14 = 0, the state converges asymptotically to the mainfold B = 0, if
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BT(r-v)s -|B||-d (27)
where d is determined from initial conditions

(M~ My )G +(V -V )+(G-Gn)|,., $d (28)

It can be shown that in order to guarantee convergence to the mainfold B = 0 in finite time, with
14 # 0, the following conditions need to be satisfied

ﬂ>E-Amerq))+§g. §>0 29)
BT(r-v) S | B|(d+8)-1-(Ana (M)} (BTB)} (30)
Tuning Algorithm

Using a neural network given in Eq. (19) with rg = 0, the objective is to develop an on-line
tuning (learning) algorithm for the weights of the two layers of the neural network, i.e. the elements
of matrices K and Z. This is in contrast to many existing neural network-based control approaches
that require off-line training.

Tuning of the First Layer

Let K = Ky denote the value of K at time instant k, and denote K} € R*", i =1, ..m denote the
rows of K. Then the matrix K is tuned as follows,
() Initialization step For k=0, let Kg = K", where K" is an initial value of X,

(ii) Tuning algorithm Let A, i = 1, ...m be a set of predetermined constants, and let £ > 1. Then
the tuning is performed according to

’ fx‘ Kix < d;
KLH':{ ' I u
K| otherwise

i=l..mk=1,. @1

Tuning of the Second Layer

Let Z = Zj denote the value of Z at time instant k. The algorithm for updating Z is derived by
solving the following constrained minimization problem is solved

i 2
mzmlq —Z*_‘;O'(Kk_‘ka_j)—KdBk IZ (32)
subject to
T 4 T L "
BT (ry=vi) S || By |(d+8)~n(Apax (M))2 (B By )3 (33)

To solve the problem defined in Eqs. (32) and (33) a discrete version of the gradient projection
algorithm is employed [Fletcher (1987)]. The resulting updating equations are as follows:
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(i) Fork=0,let Zgp=Z*, where Z* is an initial value of Z.

(ii) Denote the region in which (33) holds by S. Then the updating of Zp is performed
according to the following rule:

{'}J’L; ~T(Ziyper — Lot )y, i 12 €S
k+] =

= — B = :
Tk Vios ~ T2k Yot — Ln Viy +r3ﬁ#’% I(Zyyies — Ligst Jvi, otherwise

In addition to the advantage of being performed on-line, the algorithm has the following
advantages:

a. The weights of Z and K are bounded.

b. As can be seen from the objective function given in Eq. (32), the control effort is minimized.

¢. By employing the gradient projection algorithm to solve the constrained minimization
problem, the parameter drift problem that occurs in many other algorithms is eliminated. This
is due to the fact that the optimization method restricts the network weights to belong to a
convex set.

d. Finally, large transient etrors common to adaptive systems, are eliminated.

Example: Tracking Control of a Two Degrees of Freedom System

Consider a model of a two degree of freedom system with rotational joints shown in Fig. 3. For
this system we have

My (q)=(m; +my)a} +mya3 +2mya,a; cos @,
M,;(q)= My (q)=myaj +myaa; cos 8,
M3;(q)=myaj

; —mya;a; (28,8, + 82 )sin@

maa;a,6% sin,

G(q)=|:(mf +m; )ga;cos@+myga, cos(8;+8;)
mzea; cm(ﬁ, +9:‘|)

t4=| sin(t) cos(2e)]"
It is assumed that the model system is given by

Mo, (q)=m; af , My, (q) =my a]

Mp,(q9)= My, (q)=0



225 J. of the Braz. Soc. Mechanical Sciences - Vol. 19, June 1997

. _[o | m_gay cosb,
Vula.d)=[] G rq.)-[m. e 02]

The parameters used for the simulation are:

my=1 my=2 ay=2 az=1
ﬂ'l;l =] M:. =15 d". =3 ﬂi- =2

The simulation was performed for system with no inputs (#=v=0). The neural network used
here consisted of two layers with 30 nodes in the hidden layer and a sigmoid was used as an
activation function.

Simulation results are shown in Figs. 4-7. As can be observed, both plant outputs converge to the
prescribed trajectory while keeping the control effort bounded. It can be also seen that there exists a
residual trajectory inaccuracy which is due in the error in the approximation of the linearizing control
term, uj by the neural network. This error can be reduced by increasing the number of nodes at each
layer.

-

Fig.3 A Two Degrees of Freedom System

| joac]

Fig. 4 Simulation Study: Translent Behavior of 04(t)
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Fig.7 Simulation Study: Control Effort uz(t)




227 J. of the Braz. Soc. Mechanical Sciences - Vol. 19, June 1997
Conclusions

A neural network-based method for tracking control of mechanical system was developed. The
controller consists of a proportional and derivative control action, and a neural network employed to
approximate the linearizing term of the controller. Tuning the neural network weights is performed
by solving a constrained convex optimization problem whose solution is well understood. It is shown
that the control law causes the given system to follow a model trajectory without assuming
knowledge of the system's parameters, and in presence of disturbances. The resulting algorithm is
very simple and requires a modest computing effort. The algorithm has the advantage of adjusting the
weights on-line. The proposed approach avoids problems common to adaptive systems, such as
parameter drift and large errors during transient behavior. Finally, these tasks are achieve while
minimizing the control effort.
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Abstract

The dynamics of flexible systems, such as robot manipulators, mechanical chains or cables, is becoming
increasingly important in engineering. The main question arising from the numerical modeling of large
displacements of multibody systems is an appropriate treatment for the large rotations. In the present work an
alternative approach is proposed leading to a time-stepping numerical algorithm which achieve stable solutions
combined with high precision. In particular, in order to check the performance of the proposed approach, two
examples having preserved constants of the motion are presented.

Keywords: Flexible Mechanical Systems, Multibody System Dynamics.

Introduction

Recently there has been a great interest in the study of nonlinear dynamics of structures and its
applications to a wide variety of engineering problems: robotics, spacecraft dynamics and attitude
control, vehicle dynamics, large structures vibrations. Indeed, there is a growing literature (see, for
example, Borri et al.. 1991; Hughes, 1986: Vu-Quoc and Simo, 1988; and references therein),

The present article is concerned with the mechanical behavior of multibody flexible systems, The
name multibody stands as a general term that encompasses a wide range of systems such as:
mechanisms, automobiles and trucks, robots, trains, space structures, antennas, satellites, the human
body, and others. In a very broad sense, those systems are modeled as simply collection of bodies
with a given connection configuration. The bodies of the system may be either rigid or flexible (often
modeled as rods, plates or shells); and they may form closed or apen loops. They are linked by means
of connections like spherical or pin joints.

The -importance of structural flexibility in multibody systems, as in the case of space
manipulators, has been recognized by many rescarches. As a result, the subjects of modeling
elasticity and formulating the governing equations for dynamic simulation of these systems have
been investigated extensively over the past years. Until recently, however, in order to encompass the
flexibility in the modeling of multibody systems the assumption of small strains was adopted. This
hypothesis leads to unrealistic approaches (Sharf, 1995, 1996) with serious drawbacks, like, for
instance, the lack of geometric stiffening within rotational problems. That situation motivated several
researches to develop new methodologies for dynamic analysis of flexible-body systems by
accounting for large displacements and finite rotations. For example, Vu-Quoc and Simo (1988),
Geradian and Cardona (1989) and Downer et al. (1992) proposed a formulation based on the fully
non-linear or geometrically exact theory for rods. Those theories are known as consistent as they do
not have any kind of kinematical simplification within the context of one dimensional continuum.

In particular, the approach to the rotational degrees of freedom plays a crucial role in the
modeling and numerical approximation using finite element method of rods and shells, which are
often used as links in multibody systems (see Vu-Quoc and Simo, 1988; Rochinha, 1990; and Le
Tallec et al., 1992). Thus, in order to better establish and assess the performance of some specific
approach, the dynamics of a single rigid body is often used as prototype problem. From a numerical
standpoint it represents a significant test due to its high degree of nonlinearity.

Presented at the Ninth Workshop on Dynamics and Control - DYNCC, Rio de Janeiro, RJ - August 11-14, 1986,
Technical Editors. Agenor de Toledo Fleury and Hans Ingo Weber.
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The dynamic response associated with the rotational degrees of freedom leads to an evolution
problem in the rotation group, which can be parametrized in several different ways (Hughes, 1986).
In the present work, a variational formulation, closely related to that proposed by the Le Tallec et al,
(1992), based on the use of directors (Antman and Kenney, 1981) is presented. The use of lagrange
multipliers avoids some difficulties in obtaining the tangent operators inherents to numerical
procedures and leads to a symmetrical operator as well.

The objective of the present work is to develop a class of numerical algorithms dedicated to the
simulation of the rotational nonlinear dynamics of multibody systems involving elastic or rigid links,
The elastic links are often modelled by means of a geometric exact one-dimensional rod's theory
discussed in Le Tallec et al. (1992). In this theory, the kinematics of the cross section is described
using the same framework adopted for the rotational motion of a rigid body. So, the nonlinear
dynamics of rigid bodies is a key point in the modeling and simulation of multibody systems. A
special attention is devoted to the conservation of fundamental quantities associated to the motion,
such, for instance, the total energy or the angular momentum. From the numerical standpoint, the
conservation of energy by the integration algorithm is a manifestation of unconditional stability
(Simo and Wong, 1994).

It is also worthwhile to stress the importance of an accurated description of the nonlinear
dynamics in the control synthesis of multibody systems. Very often, the resulting problems are not
amenable to methods of linear control theory, and they are not transformable into linear control
problems in any meaningful way. Hence, these are nonlinear control problems that require
fundamentally nonlinear approaches. In particular, in the presence of conserved quantities, due to
symmetry properties of the motion, a nonholonomic nonlinear control problem may arise
(Kolmanovsky and McClamroch, 1995). Thus, in order to better understand the behavior of a
controled multibody system, a reliable numerical integrator, which inherits the same features of the
original problem plays a crucial role.

Mechanical Modeling

In the present section two nonlinear models are presented. The first deals with rigid links and the
other with flexible links of a multibody system. The main idea is to emphasize that both models share
some common features in regard to the rotational degrees of freedom.

Let § be the reference placement of a solid body, with particles labeled by X. So, the motion of
the body is described by the mapping:

¢:1x[0T] - R3

Xt) »x (1)

where ¢ denotes the time, T represents the total time of observation and %3 is the ordinary 3D-
Euclidean space. Throughout this paper, bold letters are used to designate vectors.

In the case of rigid bodies, the position of each particle can be rewritten in the following form:

3
X(t)=r(t)+ Y X;&(1) @
i=l
|
where r defines the position of the center of mass and dj are vector fields called directors (see
Antman and Kenney, 1981), forming at each instant ¢ an orthonormal basis attached to the body
Within the rigid body literature, the basis {d;} is known as the body frame.
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In (2), r takes into account the translation of the body and the comparison among the directors
and a fixed basis gives the rotation of the body. Thus, the configuration of the body is defined by 6
parameters forming the pair

(r.ch) € RIx K={R®/ch.dy=5;} 3)

where 8jj represents the delta of kronecker. Consequently, one refers to R3 x K as the abstract
configuration manifold of the rigid body.

Remark: Indeed, the manifold K and the special group of rotations S0(3) can be identified by the
isomorphism:

di=AD, (i=13) (4)

where A is a rotation belonging to S0(3) and Dj are the directors in the reference placement, which,
without lost a generality, can be taken coincident with the principal directions of inertia.

The velocities and accelerations fields in the present theory are

v=rf it a=v ¥ d| ' dl

where f stands for the time derivative of /- The first two fields are, respectively, the translational
velocity and the translational acceleration. The others describe the velocity and acceleration of the

angular motion and are related to angular velocity w and angular acceleration o of the body by means
of:

&|=wAd|

al =ClAd' +WAd|
where A denotes the ordinary vector product.

Within the same context, a geometric exact nonlinear formulation for rods can be developed. The
both presented models use the same approach for the description of finite rotations (rotational degrees
of freedom). Before introducing the formal modelling a conceptual overview of a rod is discussed.
The rods, in which the independent variables are the arclenght S and the time t, is represented by a
curve in space, with a right-handed orthonormal frame of directors attached at each point along the
curve. The curve describes the location of the centerline of the rod. The triad of directors describes
the orientation of the material cross section of the rod.

The kinematics of the rod is summarized in the following expression:

Fi
X(1)=r(S.t )+Z X; (S.t) (5)

i=1
where r defines he position of the center of the cross section and d; (i = /, 2) are orthonormal vector
fields called directors defining, at each pair (5,), the plane of the cross section. Introducing a third
director, d3, perpendicular to the other two and, consequently, perpendicular to the cross section, the
deformation of the rod, flexure and torsion, is described by the relative orientation of the triad
(Antman and Kenny, 1981). From this perspective, the set of admissible configurations, for a fixed ¢,
of arod is defined by:

O = {¢:= (rdy : [0, L] - R3 x K and ¢ satisfying appropriated boundary conditions}
(6)
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where 0 and L defines the extremities of the rod.

Comparing the definitions contained in (3) and (6) it turns out the correspondence between the
two models.

Variational Principle: Equations of Motion

In the present work, the equations of motion of a rigid body will be obtained by means of the
postulation of a variational principle, which is nothing but the Least Action Principle (see
Meirovitch, 1970; and Borri et al., 1991) in the present context. The extension of the proposed
mathematical formulation for nonlinear rods is presented in Campos (1996).

Based on the general formula of the kinetic energy of a continuum, an expression for the kinetic
energy in the present modelling of rigid body is obtained using (2)

3
r= [Loxkds=4( [pve Xid ) as)=
i=f
J £l 3 3 e
L va.vd.s»f Lpz XP & ddS+ LpZZX;de..deS}
=1 tml fml
where p denotes the mass density of the body.

Using the well known definitions of inertia moments, the expression above is rephrased yielding

—Iy+1y

133 Iy =TI+
T=4imMvv+ly - - ntin

Jdy.dy+f Jdy.dy +

Fysdpridypn s 5.3 - d, ¢
1z .;3 UL ydy dy—21;,d4.dy -2 1;;04.d3 —215;dp.d3

where M is the total mass of the body and Ijj are the inertia moments.
The potential energy associated to the external loads is given by

V=—f.r—'1.d1—f3.dz--f3.d3 (7)
where the fj (i = 1, 3) are implicitly defined by

l'l"l=d1 Af1+dz Afz +d3 Afa (8)

and where m and f are, respectively, the total torque and the resultant force applied in the center of
mass.

So, from the Lagrangian L = T - V' defined over R3 x K, the following variational principle
associated with the Least Action Principle is obtained

2 2 lyy=Iy+1,
L{mlp~f,p}dr + L {{L-g"—J}m.m g

{133-1“”:2

- lag=T33 415 = -
- Jdg.9p +(-2—2 "1 dy gy - 1,,d;. 94

2
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- I)304.93 - 1138394~ 1;301.93 - [5382.d3} - 13;d2.93)
—f1.99-12.92 - f3.93=0

Y(p.gi) € R} xdK ®

where dK is the tangent space to K given by

dK={(p.gi} e RO x[t .t ];gi=UAd;.gi(t;)=g;(t;)=0and p(t;)=p(t;)=0}

where [t;.t2] = [0,T]

Remark: The variational Eq. (9) can be shown to be equivalent to the classical equations of rigid
body dynamics by using standard arguments of calculus of variation and choosing: gj = U A dj.

For numeral purposes, the form of (9) is rephrased by using lagrange multipliers, yielding

2 ) T
'r}'ma.p-f.p}dx+ L {{Léi-—‘?‘?-}d;.gl-!-

Ip—Iy+13 - T =133 +1yy
————J}dy.g3 +{—————}d;3.8;

f 2 2

— 21;3d4.8y - 21;;01.83 - 21;3d3.8y - 21)3d,.83 - 213387.d3 - 21 53d,.83 +

3 3 3
=22 Auldie+dym}- D /i gdi=0

i=l jmi i=/

V(p,g;) € R’ xR’ (10)

where A;; are the lagrange multipliers associated with the orthonormality of the directors and,
consequently, to the rigid body condition.

Numerical Algorithm

The translational part of the variational problem (10) can be approximated by means of any
standard integrator as, for example, the Newmark algorithm, which details will not be included here.
The rotational part is equivalent to a non-linear evolution problem on S0(3), which entails some
difficulties (seec Geradin and Cardona, 1989). So, in the present work it is proposed the following
evolution algorithm in connection with the Newton method:

Let [t £n,s] < [0.T] beatypical interval where: [0,T]=UX,[tn tnsi] -
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Let At=1, , -1, be the time step.

Assume that at 1, the following initial data are known:
(d; ,d; ) e K+R?
The objective is 1o obtain an approximation

fd

LA

A, 1€ K+R?xR?

to the actual solution {di(1, 1 di(1,,; ) 4;(t, +4)). The main steps of the algorithm are
summarised below.

Step 0. Initialization for time slep in [tp.tp+1].

= Define a predictor for direclors and velocities:

Stepl. Compuie the Lagrange multipliers ’1-';:..

!

e

(1=0....,N-1) by solving

14 fﬂ’.}__} B1,,; — 91, -8/

med
+lgtd;  g2,,-9; 82/

e -‘".1'3,“, 83, -dy g,/

/

mel

3
1
—7 A Ziu..{ 1.1 8, +d), 8

ifi=1

+/d, g +3; & M

3
ﬁ_uzf_r*f_a Bl
2 =
i=1
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fag=1y+in _ Ay Iy tiy _ A=ty iy
2 ' I B= 3 v I c= 3 . In the
above expression, the directors are taken coincident with the principal directions of inertia.

for a convenient choice of gj. Where [ =

Step 2. Compute residual R, of the above equation and check convergence
» Computation of R}, by choosing g;=U Ad] .

e Check for convergence: [F ll LA || < tolerance then begin a new time step (n+/ — n; go to
Step 0). ELSE continue

Step 3. Compute the tangent matrix K’ , and solve for the rotation increment g; = UA di e K
 Computation of X!,

L2l G
n+l At B

0 0 Ic

2 Aay  +Asy J —A A
22 3 -3 ; 1 . ”“%
e =5 2(A +A I
5 2, ( ", 33:‘45) 3,
-A —-A i 2(;1 | +A v )
13 P 28 ) i s 2 ;

s Computation of U solving the linear system

atU=Ry,
Step 4. Update the configuration and the velocity for a given increment g

o At =Projsoes)(d] +8i )= A4,

o d*=A(Lond; ~d; )

where ProjSo(3) is a projection into K, adopted here as exponential transform (see Simo and Wong,
1994 or Hughes, 1986) and 4!/ =exp 8, with exp denoting the exponential operator. Indeed 4!
plays the role of a transport between the tangent spaces to the configurations assumed at £, and £, +
(iteration i+/). In the above expressions the subscripts n+/ were omitted.

Step 5. Begin a new iteration; i+/ — §; go to Step2.

Numerical Simulations

In this section, two representative numerical simulations are presented in order to illustrate the
performance of the proposed algorithm. The both situations, which are also examined by Simo and
Wong (1991) and Park and Chiou (1993), are choosen due to the presence of conserved quantities
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during the motion. In fact, the reproduction of this conservation behavior by the numerical algorithm
is considered a demonstration of stability and accuracy. The key idea is to treat problems in which the |
reliability of the proposed numerical modelling can be assessed even in the long time dynamics.

In the first simulation, it is considered the motion of a symmetrical top with total mass M ina |
uniform gravitational field -g 3. The vector e3 belongs to an inertial frame {e;}. The same numerical
values of Simo and Wong (1991) were adopted: Mg =20, /=1, [y) =Ip2 =35, and /33 = 1. The
parameter / denotes the distance between the boti%m of the top and its center of gravity. The
following initial conditions are also adopted:

w(0)=[0 0 50]:  d;(0)=exp([0.3 0 O])e;

Figures 1-4 shows the numerical results obtained for time step At = 0.001. The total energy
remains constant during the observed period as well as the component of the spatial angular
momentum in the direction e3, 43. Both facts demonstrate the stability and accuracy of the proposed
formulation in the present example as this conservation behavior is to be expected. Figure 4 presents
the nutation and precession of the top about its fixed contact point. For the present example (see
Simo and Wong, 1991), one has the following relations for the angular frequencies of nutation wy
and precession wp:

Mgl
7 i
I33(w.d3)

For the choosen numerical parameters these relations lead to value wy, = 10.0 and wp, = 0.4. In the
present numerical simulation wy, = 9.9999 and wp, = 0.4000 were obtained.

!
Wy =}j—3(w.d3) and

1oe Y y il %, - T

aes -
[ — —
——— et Eey —_—

-t : !

- | ;

1388 e e e T i ¥ / \

'n- (] . . . L '-. ; . . ; "

s (swmanda) Thma (smcmnda)
Fig.1 Kinetic and Total Energy Fig.2 Spatial Angular Momentum

The numerical solution obtained with Ar = 0.001 will be considered a good approximation to the
true solution, which is not known, in order to assess the main features of the proposed numerical
scheme. In figures 5, 6 and 7 the numerical solution using Ar = 0.04 (40 times the first one) is
depicted. A constant oscillation is exhibited by the total energy, although it does not represent a
signal of numerical instability as it is minute and constant in the long period of observation. It is also
important to observe the preservation of the component A3 of the Spatial Angular Momentum. The
values obtained for the angular velocities of nutation and precesion are, respectively, w, = 9.5460
and wp, = 0.4150.
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The second numerical experiment deals with the unstable rotational motion about the
intermediate moment of inertia of a rigid body. This simulation is performed according to the three
following load steps: (i) At time £ = 0 a constant torque is applied to the body at rest in the direction
coincident with the intermediate moment of inertia; (ii) At time ¢ = (”, the torque is removed and
another one is applied to the body for a short duration equal to the time step At; (iii) Finally, the rigid
body undergoes a torque free motion. The situation is summarized in the torque history given below:

A;CI OSISI.
m=4A4e, t'<r<t*+a
0 1>t + At

where A and A4 are constants given by: A7 =20 and A ==& . The another parameters used in the
simulations are: t* =2.0 - At, I} =5,122=10and /33 = 1. %\lthough those inertia moments do not
correspond to a real rigid body, as the sum of two of them, namely: I and /33, is not greater than
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B

| the third one, they were taken to make comparisons with the results presented in Simo and Wong
(1991) and Park and Chiou (1993).

The body begins at rest, thus initial velocities are zero. As the result force acting on the body is
zero during the motion, the center of mass stays at rest. Hence, this is a pure rolmonnl situation in
which the angular momentum and the total energy are conserved after the instant 1* + At.

Two distincts time steps were choosen for the numerical experiments, namely: 0.1 and 0.01. The
solution obtained using the second time step will be taken as a reference and it is summarized in Figs.
8-11. The first three, kinetic energy, the norm of angular momentum and the spatial angular
momentum, demonstrate the good conservation capabilities of the proposed algorithm. In the last
~ one, Fig. 11, the convected angular velocity (see Simo and Wong, 1991) is depicted.
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The results obtained using the Ar = 0.1 are presented in figures 12-15. In the present modelling,
although the applied moment introduced above remains constant during the intervals [0,¢] and
[¢*,¢*+A1], for this case the applied load depends on the assumed configuration due to the definition
8. This fact explains the discrepancy observed between the results using the two different time steps.
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Indeed, At = 0.1 implies in rather large values of incremental rotations and leads to inaccurate results.
Nevertheless, the energy and angular momentum are still conserved.

[T T T + s = - —
|
1808 -
LT3
|
| 1200 ~ 1
; |
= | 1
i .
- 14
s
0+ L
“ﬂ.ﬂ 10 l:! I:D l‘ﬂ 180 "l.l 10 +0 l:l o w0
Thwe: (weanda) Voo (owoereie}
Fig. 12 Kinetic Energy Fig. 13 Norm of Angular Momentum
ol x 08 T T —-
-+
-
v
»}
ot - '
(¥ ]
F-23 -
Lol I 2
{u! {1
W : - —:
5 ) 4 g p——™
]
- A i e -0 1 " i
L] 10 40 w (¥ on 20 FT a (7] s "o
i (e o (e
Fig. 14 Spatial Angular Momentum Fig. 15 Convected Angular Velocity

Concluding Remarks

A variational formulation to the rigid's body problem was presented in order to provide a robust
formulation, which not only afford a general unified approach, but also is very convenient from the
numerical standpoint.

The main question in dealing with large rotations is circumvented by the use of lagrange
multipliers, which will imply in the augmentation of the number of degrees of freedom. By the way,
this can be avoid in numerical applications using a similar scheme to that used in Rochinha (1990)

: 39 Le Tallec et al. (1992), where the lagrange multipliers are computed with a little computational
or.
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Finally, a similar approach can be used in the case of flexible links like rods. A first attempt is
presented in Campos (1996). So, the present framework seems to be very convenient to be used in the
modelling of flexible multibody systems.
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Abstract

The problem of designing controls for dynamic systems under input disturbance is considered. We consider rwo
possible characterizations of the input disturbance: (1) it is bounded by a crisp number, or (2} it is bounded by a
fuzzy number The control design is purely deterministic. However. the resulting system performance is
interpreted differently, depending on the bound information. It may be deterministic or fuzzy (ie., with a
spectrum of possible outcome).

Keywords: Uncertain Systems, Fuzzy Set Theory.

Introduction

Since the inception of fuzzy theory (Zadeh, 1965), the progress in this area has been mainly
focusing on the use of fuzzy reasoning for control, estimation, decision making, etc. Fuzzy reasoning
{Dubois and Prade. 1991a.b) is indispensable in the sense that such form of reasoning is more aligned
with human nature. Furthermore, the information it is based upon (i.e., fuzzy propositions) is hardly
of any usc to other reasoning mechanism,

On the other hand, as another potential application, fuzzy theory is also a valid tool for describing
uncertainty. Exploring uncertainty and determining what is known has been one major task in many
scientific disciplines. Once the known portion is clearly identified, human beings may, for example,
develop some (e.g., physical) laws which govern various phenomena.

As the other side of the effort, when the known portion can not be completely isolated from the

unknown, one may take a more "phenomenological” approach to describe what is known among the
whole,

As a very successful endeavor, the probabilistic approach takes the frequency of occurrence point
of view. By this, we mean one may consider an event (such as "head up” in flipping a coin) and then
decides how often it occurs. As a typical example, while one does not know the exact outcome of
each flip (hence an uncertainty), one knows (or at least assumes subjectively) that the frequency of
occurrence of head up, as the number of flip approaches infinity, approaches 0.5 (or in short, the
probability of head up is 0.5).

The fuzzy approach, on the other hand, takes the extent of accurrence point of view. Consider the
full occurrence be indexed by 1, one inquires to which extent (which is indexed from 0 to 1) an event
occurs. As an example, given that any person with age 73 or higher is old (i.e., the full occurrence of
the event "old"), a person with age 67 may be indexed by (.5, as the extent of being "old".

As a side note, despite that many membership functions, which are used to suggest the index, in
fuzzy theory are acquired somehow subjectively (see, c.g., Chapter 10, Klir and Yuan, 1995), one
should distinguish fuzzy theory from subjective probability (see. e.g., Kahneman et al., 1982). While
the later assumes the probability distribution subjectively, its intention of describing the frequency of
occurrence remains. More discussions on the difference (or, as an attack angle, the indifference)
between fuzzy theory and probability theory can be found in, e.g., IEEE, 1994,

In this work, we shall attempt to incorporate the fuzzy description of uncertainty into a robust
control design framework. The objective is to explore further descriptions of system performance
should more information of the uncertainty (in the fuzzy sense) is provided. The basic framework we
present is first illustrated by the use of a scalar system. it is then extended to multi-dimensional case.

Presented at the Ninth Workshop on Dynamics and Control - DYNCO, Rio de Janeiro. RJ - August 11-14, 19896.
Technical Editors. Agenor de Tolede Fleury and Hans Ingo Weber
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Preliminaries

The following is a brief summary of some basic terms in fuzzy set theory (Wang, 1996).

Universe of discourse. The universe of discourse U is a collection of elements which contain
those that are of concern.

Fuzzy set. A fuzzy set D in a universe of discourse U/ is characterized by a membership function
M p(x) that takes value in the interval [0,1] for all x in U.

Crisp set. A special case of fuzzy setas y,(x )=/ forallxin U.

!}l’o;ma; Suzzy set. A fuzzy set D in U is normal if there is at least one element x in U such that
Mpl(x)=1.

Convex fuzzy set. A fuzzy set D in U is convex if

Up(Axp+(1=A)x;) 2 minfun(x; ) pup(x;)] ()

forall x;, x> in U and all A € [0,1].

@ -cut. An a-cut of a fuzzy set D is a crisp set D, where

D,={xeU|up(x) 2 a} (2)

@ + -cut. An a+ -cut of a fuzzy set [ is a crisp sel D+ where

D,.={xeU|up(x) > a} (3)
Support. The support of a fuzzy set D is Dy

Fuzzy number. Let G be a fuzzy set in R, the real number. G is called a fuzzy number if: (i) G is
normal, (ii) G is convex, (iii) the support of G is bounded, (iv) all t-cuts are closed intervals in R.

Throughout, we shall always assume that the universe of discourse of a fuzzy number to be its 0-
cut.

Union. The union of two fuzzy sets Dy and D3 in U is a fuzzy set D « D) with

#p,up, (x)=max[up, (x). up, (%] )

Decomposition theorem, Define a fuzzy set E{, in U/ with the membership function
Hip, =al, (x) where I, (x)=1if x €D, and 1, (x)=0if x €U~ A,. Then the fuzzy
set D is obtained as

—

D= U D, 5
adn.d| g £

where w is the union of the fuzzy sets. The union is taken pair-wisely.

Possibility. Given a fuzzy set D and the proposition "x is in D", the possibility distribution
associated with x = u, denote by my(u), is defined to be numerically equal to the grade of membership
of u in D; that is,
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o (u)=pip(u) )

for all u € U. In other words, given that x is in D, the possibility that x = u is up(u).

There are two kinds of interpretation of "belong to” in this paper. An element may belong to a
fuzzy set to a certain degree (hence such a "belong to" is in a fuzzy sense). However, as an exception,
wlz.-.-en“er we say an element belongs to a (crisp) interval of the real number, it is always meant in the
classical sense.

Scalar Case
Consider the following class of scalar systems

x(t)=ax(t)+bu(t)+v, x(13)=x, (@)
where ¢ € R is the "time" (or more precisely, the independent variable), x() € R is the state, u(7) € R
is the control, v € R is the (constant) input disturbance. Furthermore, a and b are constants. The input

disturbance and initial condition are unknown. However, we consider the following two possible
characterizations,

Assumption 1(a). v is unknown but bounded. There exists a known constant vV (20) such that

lv|s ¥ ®)
Remark. This is often described as the worst case description. Only the maximum possible bound
of v is known.

Assumption 1(b). xg is bounded. There exists a known constant n(z 0) such that

[%|sn 9)

Assumption 2(a). v is a fuzzy disturbance. There exists a known fuzzy number ¥ such that v is in
V with py(v). The universe of discourse of V is its 0-cut.

Assumption 2(b). xg is a fuzzy initial condition. There exists a known fuzzy number X" such that
xg is in X with p y(xp). The universe of discourse of X is its 0-cut.

Remark. Assumption 2 provides more information regarding the possible bound: The bound is
close to a value £ which is such that gp(E) = 1. The degree of closeness is described by the
membership function.

We now consider the control u to be
u(t)=—kx(t) (10)

where k is a constant such that @:=a-bk < 0. Then the solution of the (closed-loop) system is
given by, for all ¢ 21p,

xf(1)= 95(1—:,)30 + Iti—"")\ﬂdr

=0y L eat-0) g, (1)
a
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Note that (e®""/—1)/@ >0 for all t 2 tg since @<0. If v and xp are described by
Assumption 1, then we have, based on (11),

|x(1)| < eir"""llxo|+é(ei""w -1)|v|

< By(t)y+ Byt )V (12)

where
B,(1)=€3(""10), (13)
ﬁ:n)%(e*"‘"“ -1) (14)

Notlge Ihat Bé(t) >0 and f(t) 2 0 forall t 2 c? This enables us to conclude, for any prescribed
d>- any initial condition with 17 > d, there is a finite time T(7,d) with

v
Tm,g)%:n[glf;J (15)
a \n+%

such that |x(f);<d forall 121 + T(n,d). This performance is called the uniform ultimate
boundedness (Chen and Leitmann, 1 87) ¢ summarize the performance as follows.

Lemma 1. Consider the system (7) under the control (10). Subject to Assumption 1, the state x(t}
is uniformly ultimately bounded.

Remark. Since one can choose k to make & to be arbitrarily negative, d, the size of the region
which x() will eventually enter, can be made arbitrarily small. However, for any d, with
|x( 1 )| <d, it does not further indicate which area inside this region x(?) may reside. This is a worst
case analysis only.

We now consider that further information of v and xp are known so that they can be cast into
Assumption 2.

Since V is fuzzy set, for each @ e [0,1], its a-cut corresponds to a (crisp) interval [ Yo Va ]
Similarly, the a-cut of X is a (crisp) interval [x,,,%p, /.

By fuzzy arithmetics (Wang, 1996), for each a € [0,1], we consider, in view of the right hand
side of (11), the (crisp) interval

[Bi(0)x00 + Bt ). Bi(1)%o0 + B2(1)7,]=: Da(t) (16)

That (11) holds for all ¢ 2ty enables us to draw the following two interpretations of the result.
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The result may be interpreted by the use of possibility theory (Zadeh, 1978) as follows. At time t,
for given a € [0,1], there corresponds to a region D, which is closed and bounded. The region Dy
can be considered an a-cut of a membership function pp{x) € [0,1]. This is through the use of the
decomposition theorem. This in turn defines a fuzzy set D, which is in fact also a fuzzy number,
whose universe of discourse is Dy. Given that x(t) € D, the possibility of x = C at time ¢ is then equal
to up(G)-

An alternative interpretation is via the use of confidence index as follows: Consider the fuzzy set
D as mentioned above. For each «, the confidence index is defined to be 1-a. For given a € [0,1],
 the value of x at time ¢ lies in the internal [ B,(t)x,, +B2(t)v,.Bi(t)Zpa+P2(1)9,] (this is

; mterpreted in the classical sense) is assured by the confidence index 1-a. For example, as a = 0, the

J
f

i
\
{

interval is in fact the universe of discourse of the fuzzy set D. The confidence index that x is in this
interval is 1. In other words, that x lying within this interval is assured. In the special case that the
confidence index of x in an interval is equal to 1 for all r 2 #p, the state x is called uniformly bounded
(Chen and Leitmann, 1987).

Our purpose, from the control point of view, is to prescribe a region in which the state will lie.
This prompts the following analysis. We first prescribe an interval [de,d, ], a € [0,1], and a finite
time 7" The problem is to choose the control gain k such that

x(1) €[dy.d, | a7

(this is interpreted in the classical sense) for all « € [0,1] and 21 +T.
We shall proceed as follows. First, based on (17), one intends to have, forall ¢ 2 £+ T

o ] g
ea{l‘ 'U)Eaa*'g(em la)_‘p)Eu > ga (18)

This means that

g i j it »
O x0a+ ) 2y o

j~]

Second, one also intends to have, forall £ 2 ¢, + T,

FLLLE W (eﬁf"‘ﬂ)-f)ﬁﬂ <d, (20)

or

va

S0z, +_)<d iYa 1)
a

We first outline the following two results.
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Theorem 1. Consider the system (7) under the control (10). Subject to Assumption 2, there exists
a k with @ < 0 such that the following four cases hold.

() If xp, +v,/a@20d_ +v, /a<0, then x(t)>2d,_ forall t 2 t;+T where T is any
non-negative constant, @ € [0,!] :

(i) If dy+v,/asxp,+v,/a<0, then x(t)2d, forall t 21, +T where T is any
non-negative constant, & € [0, !] ;

(i If xpa+vy/a<d +v, /a<0, then x(t)2d, forall t 2 15+ T where

] d. 578
T'= sup —in _a—f (22)
aelﬂ.!la an-i-%
a e [0..’]

(iv) For any other cases of x, +v,/a and d,+v, /a, there does not exista 7 2 0 such
that x(1)2d, forall t 2, +T, @€ [0]].

Remark. Cases (i) and (ii) are trivial cases. The result in case (iii) can be used in a constructive
way: By prescribing [d_.d, ], and T, one finds a suitable k, which is in fact non-unique, to
achieve the task. Case (w) shows the limit of the control design.

Theorem 2. Consider the system (7) under the control (10). Subject to Assumption 2, there exists
a kwith @ < 0 such that the following four cases hold.

() If Xpq +74 /@<0,d, +V, /@20, then x(1)<d, forall Zta+f where T is any non-
negative constant, & € [0,]].

(ii)1f d +V, /@SXg +y /@>0, then x(1) < d, forall t 2 ty+T where T is any non-
negative constant, & € [GJ] y

(iii) If X, +¥v, /@>d, +v, /a@>0, then x(t) < d, forall t > t,+T where

. i Ea +Y
T= sup —In —:_'. (23)
ae0.] @ Xpa +Z
a e[0.] |

|
(iv) For any other cases of X,, +V, /@ and d, +¥, /@, there does not exista 7 2 0 such i
that x(1) 2 d, forall 12 t,+T,ae[01].

Similar comments as the last remark can be made on this theorem, Finally, we can summarize the '
results as following. |
I
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Lemma 2. Consider the system (7) under the control (10) with @ < 0 and subject to Assumption
2. Consider the prescribed interval [d G.Ea ] for each a € [0,1] and the resulting membership
function pp(x) for the fuzzy number D. For given a € [0,1], the value of x at any time ¢ 2 ¢, + T,

where

T'=max{I.T} (24)

lies in the interval is assured by the confidence index 1-a..

Remark. The result renders uniform boundedness and uniform ultimate boundedness (Chen and
Leitmann, 1987) a special case (as a = 0).

Remark. An interpretation using the possibility theory can also be drawn.

Multi-dimensional Case

The previous analysis considered two possible ways of characterizing the input disturbance. The
first is that the input disturbance is bounded and the (crisp) bound is known. The second is that the
input disturbance is within a fuzzy set. In practice, it is in fact more desirable to combine these two
characterizations. This will be treated in this section. We also consider the multi-dimensional case.
Consider the following uncertain system

X(1)=Ax(t)+ B(u(t)+v(t)),  x(tg)=x, (25)
where t € R, x(t) € RD is the state, u(t) € RM is the control, v(t) € RM is the (unknown) time-
varying input disturbance, 4, B are constant matrices. The function ¥(:) is Lebesgue measurable. The
following assumption are made,

Assumption 3. The pair (4,8) is stabilizable.

Assumption 4. There is a (not necessarily known) scalar v 2 0 such that

max||v(t)| s v 26
max|v(1)] (26)

The scglar_v is in a fuzzy number N which is prescribed by a membership function

un(v) €0}

Remark. Assumption 4 is, in its essence, a fuzzy description of the knowledge of the possible
bound of v(z). This can be viewed as a combination of Assumptions 1 and 2 but for multi-
dimensional case.

The task is to choose the control u such that the state belongs to a region around x = 0 after a
finite time and remains there thereafter.

First choose a gain matrix K such that A:=A-BK is Hurwitz. This is feasible if (4.8) is
stabilizable. For any n x n matrix O > 0, one solves for the unique solution P > 0, which isan nx n
matrix, from the following Lyapunov equation

ATP4+ PA+Q=0 27N

We propose the control u as follow:
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u(t)=— Kx(t)-yBT Px(1) (28)

where y > 0 is a scalar and is to be specified later,

Theorem 4. Consider the system (25) subject to Assumptions 3 and 4. Suppose that the control
(28) is applied. Consider a prescribed interval [0,d,, ] for each [ €0,/ ]. This is chosen such that
the resulting fuzzy set, which is obtained via the decomposition theorem, can be a fuzzy number,
Then there exists a Y > 0 and a finite time T20 such that the value of [x(t)] at any time
12ty +T lies in the interval [0,d,, ] is assured by the confidence index 1 - o,

Proof. We prove this via the Lyapunov minimax approach (Corless, 1993; Leitmann, 1993).
Consider the Lyapunov function candidate

Vix)=x"Px (29)

For any admissible w(-), its time derivative along the trajectory of the controlled system of (25} is
given by (arguments are sometimes omitted when no confusions are likely to arise)

P=21TP[Ax+B(—Kx—rBTPx)+Bv]

=xT(PA+ATP)x-2r| BT Px|’ +2x7 PBy (30)

By the use of the Lyapunov equation (29) and since

xTPBy <| BT Px||v (31)

Vs —xTQx—2y| BT Px|’ +2v| BT Px| (32)

By the Rayleigh's principle (Franklin, 1968),

e 'a'mfn(Q)le"z .
and hence
~xTOx < = A (O)] x|} =

Furthermore,
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-?’lBTPx|2+v|BTPxIS4LI-=.‘5 (35)
r
With these back into (32), we have

VS~ Amn(Q) x| +6 36)

Hence V' is negative definite for all | x || such that

6 .
I)> y5—5—d @7

ﬂ Bﬁ/ Chen and Leitmann (1987), the system is uniformly ultimately bounded in the sense that with
xllsr

“x(l)ls d forall t 219 +T

with any

3 j’m (P)
d>& ’—1'“"(}’) (38)

and a corresponding finite time

=4 ; 7 | Amin(P)
T=0 ifr<d ’—-jm(” (39)

7 o Amax (P)r? = Amin(P)R?
Amin(Q)R? -8

otherwise, (40)

where

= -’,1 (P)
R=d |—mm 7 41
R (P) (41)

The performance stated in the theorem then follows.

Remark. For simplicity, we do not consider the fuzziness regarding the bound of initial
condition in this theorem. Hence ixﬂ “ < r is stated in the classical sense,
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Remark. The proof in fact also suggests a way to select y: For the prescribed Ea > 0 (this is the
designer's discretion), one chooses any da < dy and the corresponding 8 according to (37). The y is
then selected via (35) for all a € [0,1]. In a sense, the choice of y is similar to some other work (e.g.,
Barmish et al., 1983). However, the interpretation of the performance (via the confidence index)
includes the previous performance (i.c., uniform ultimate boundedness) as a special case. This is
mainly due to that more information of the disturbance bound is used.

Remark. Both the disturbance bound characterization and the performance are described in a
fuzzy sense. This renders some early work, which described them via the worst case scenario, a
special case. :

Remark. The current fuzzy description are very much aligned with practice. The input
disturbance bound is often obtained via experimental data and analyzed by the engineer. One may
Jjudge the bound to be, for instance, "close to" a (crisp) value or "very close to" a (crisp) value. These
are standard fuzzy (linguistic) terms. The performance is also often judged by the engineer depending
on one's need: One may choose a (crisp) set point and intend to have the performance to be "close to"
or "very close to" it, after a finite time. In addition, the engineer may also impose a hard bound on the
performance, which must be met (hence this corresponds to uniform ultimate boundedness). These
can be all addressed by the current framework.

Conclusions

The incorporation of uncertainty, which is described in a fuzzy sense, into a robust control
framework is introduced. This is believed to the first attempt for such a merge. Previously the control
design was only based on the maximum possible bound of uncertainty. The system performance was
described in a worst case scenario. The current extension into fuzzy domain enables one to draw
further information of the systems performance should further information of the uncertainty is
available. As to the prescription of the desirable performance, it is often the designer's discretion.
Since in practice it is in fact more realistic to prescribe the performance in a fuzzy sense (such as
"close", "very close™), the current framework fits in well with both the need (the performance) and
the given (uncertainty).
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Abstract

An efficient and numerically stable method to determine all the Lyapunov characteristic exponents of a
dynamical system is presented. The method is compared with known methods in terms of efficiency, and the
accuracy and stability of the methods are tested by numerical experiments.

Keywords: Nonlinear Dynamical Systems, Lyapunov Exponents, Householder Factorization.

Introduction

The Lyapunov characteristic exponents (LCE's) are important for the understanding of the
dynamics of nonlinear dynamical systems. A solid analytical basis for the computation of the LCE's
was given by Benettin et al. (1980) in their two part paper. Benettin et al. (1978) are the first to
propose a Gram-Schmidt orthogonalization type procedure to compute the LCE's,

Geist et al. (1990) made a through comparison of several methods for computing LCE's and also
presented the main ideas published in the previous decade (Shimada and Nagashima (1979), Benettin
ct al. (1980), Wolf et al. (1985), Eackmann and Ruelle (1985). For additional more recent references
see Barna and Tsuda (1993), and Dieci and Van Vieck (1995).

For discrete systems, the computation of the LCE's involves the factorization of a matrix into the
product of an orthogonal matrix  and an upper triangular matrix R (a QR-factorization). This
factorization can be obtained by using the Gram-Schmidt (GS) orthogonalization, the Modified GS
(MGS} orthogonalization or the Householder orthogonal factorization (HQR). Among these methods,
the GS is known to be numerically unstable, since the orthogonal matrix Q may deviate greatly from
orthogonality due to accumulation of roundoff errors. This is why MGS is preferred, see Parker and
Chua (1989), Dieci and Van Vleck (1995). On the other hand, the HQR method is known to be
backward stable, see Wilkinson (1965).

For an n by n matrix the asymptotic (for large n) cost of MGS (or GS) factorization is 2n3 flops
(a flop is a floating point addition or multiplication, Golub and Van Loan (1993), while the HQR-
factorization requires 4/3n3 flops to compute the upper triangular R, and an additional 2n3 flops if
also the orthogonal Q is required. In computing the LCE's one also needs to multiply each of the 0
matrices (computed by the QR-factorization) by the consecutive matrix representation of the tangent
map. The usual use of the HQR method (see Geist et al. (1990) in the factorization and multiplication
of Q with the tangent map is computationally more expensive than the MGS method. In this paper we
show how to organize computation of the LCE's using HQR-factorization in such a manner that
computational savings are obtained over the MGS based method.

The efficiency of the different methods is addressed in the paper. The accuracy of the methods is
also illustrated by the use of numerical experiments.

Presentad at the Ninth Workshop on Dynamics and Control - DYNCO, Rio de Janeiro, RJ - August 11-14, 1806,
Technical Editors: Agenor de Toledo Fleury and Hans Ingo Weber.
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| Computation of LCE's using the QR-factorization

In smooth dynamical systems, we usually deal with maps of the form x! = T’x (here x often
belongs to a suitable compact connected manifold M, and the map is from a (finite) n-dimensional
space to an n-dimensional space) with 7' =T 7"~/ The parameter ¢ denotes a nonnegative integer
or a real number. The sequence of tangent maps dT' is obtained through iterations by considering
dT‘ dT odTy,” ! We shall consider the matrix representation of these operators in the standard

| bases (in fact, any orthonormal basis set would be sufficient). The LCE's can then be obtained from

the QR-factorization of the product of the matrix representations of these tangent maps which are
determined at the appropriate points x of M. For brevity we shall denote the matrix representation of
the tangent map (evaluated at the appropriate point x of the manifold) corresponding to £ = i by J;. To
determine an approximation to all the LCE's, one then needs the QR-factorization of the matrix
product JypJpy. 1 ... ). This decomposition can be done sequentially as follows. Starting with Qg = I,
we have,

9[-t I )= [Imdmet - I2( 11D = 7 [Tt - I3(S22)|[Ri]
=qr[J,,J,,_,,... L) |[RR ==
=gr [ It Q)| [ RiiRicz - ReRy | ==
= O [R - ReR; ] = O R

(1)

Here we sequentially use the QR-factorization, and gr[.] denotes the QR-factorization process.
Starting with /), at each step I in the above sequence, we perform a premultiplication B; = J;Q;.;
followed by a QR-factorization of B; = J;Qi.; = QjR;, i = 1, 2, ..., m. The matrix R is the product of
the matrices Ry, ... R2R; obtained in this sequential manner. Furthermore, each of the diagonal
elements of R, is simply the product of the corresponding diagonal elements of all the R;'s.

} m
Hence, approximations to the n LCE's are then obtained as: X, b l;,f"l R; (k- ") ‘ k=12 ..,n
The computation can be presented as:

Algorithm for computing all the LCE's of a dynamical system
Initialization

Initialize Q to be the n by n ldentity Matrix

Initialize LCEvector to be a zero n-vector
fori=1tom iterations

B=JQ

Compute the QR factorization of B (OR = B)

LCEvector = LCEvector + log (diag (1R| ))
end

LCEvector = LCEvector/m_iterations.
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The approximate values of the » LCE's after m_iterations are then given by the components of

the n-vector denoted LCEvector. Here the successive maps J; at each iteration are assumed to be
known.

There are several ways of computing the QR-factorization (which is required at each step i)
indicated in the loop above, the commonest ones being the Gram-Schmidt QR (GS), the modified
Gram-Schmidt (MGS), and the Householder QR (HQR). The choice of method must be based upon
factors such as accuracy of the procedure, storage requirements and simplicity of implementations. If
the aim is ease of implementation, one could make use of computing environments which have built-
in QR-factorizations, For example, MATLAB has a reliable and efficient QR-factorization using
Householder reflectors.

The Houscholder QR-factorization is known to be backward stable (Wilkinson, 1965) (with
regard to roundoff errors). Yet its direct application is (asymptotically, for large n) computationally
more expensive than the GS (or the MGS) approach. However, efficiencies in the Householder based
QR-factorization in terms of both computation and storage can be achieved because: (1) we need to
compute and store only the diagonal entries of the matrix R, and (2) the reflector (Householder)
matrices which constitute O can be sequentially assembled resulting in considerable efficiencies in
the computation of the action of Q on the succeeding map Ji4 ;. In what follows we show that by
modifications of the standard Houscholder QR-factorization we obtain a method that while being
more computationally efficient that the GS or the MGS approaches seems also more stable with
regard to roundoff errors.

Householder QR-based (HQRB) Algorithm for the Computation of
LCE's

Consider the QR-factorization of the above mentioned algorithm at the iteration index i. The
Householder QR factorization works along the following lines (for details see Dahlquist and Bjorck
(1997). Given an n by n matrix B, one sequentially determines the matrices

B(""U=H(S)B(“),S'—_)',a?.---.n_’fB(lUEB (2)

The Houscholder reflector matrices H(5/ have the structure

H“"=f,,—w‘"[ul”]r 3)

where the first (s - /) elements of the n-vector w(S) are all zero. The matrix R of the QR factorization
of B is then obtained as

HOD —gfigtp_p
and the matrix (2 is given by

Q= HDH(2)  QH(n=1) 4

We note that this factorization is required to be done at each iteration / described in the
aforementioned algorithm. At the next iteration (with index i + 1) the matrix B is replaced by the
matrix (we suppress the subscript in Jj+ 7 and write J for simplicity)
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JO={JH(VH(2) __H(s)} H(s)__in-1)
=JIs)His+1) [in-1) (5}

We now make two important observations:

1.} The LCE's are obtained only through the determination of the diagonal elements of the R; , i
=1, 2, ..., m in equation (1) and therefore one needs to judiciously compute the elements in each of
these upper triangular matrices; storage of only the diagonal elements is called for. Using equation
(2) with s = 1, we get a matrix of the form:

@ % %
B2=HIBl=|0 ® ... ® (6)
0 @ ... &

Only the first element in the first column of B2 needs to be computed, since the rest of the
elements are zero. Also in the first row, the only element that 1s needed is the first element (this is the
first diagonal element of R). This is because the other elements denoted with * have no influence in
the computation of the rest of the diagonal clements of R. A similar pattern is observed when we
apply the rest of the reflectors, as in equation (2).

2.) The action of the premultiplication of Q by J is given by equation (5) so that one does not
need to compute Q explicitly. The matrix product J/8)#(s%/) can be written as

{x)  pln-5) | 1 0
! vl )= X J x o
JOsIH(3+1) L(”_” .ﬂnw][o H..—.‘] (7

where the matrix x(5/) is s, the matrix y("-5/ is s by (n-s), the matrix z(71-5) is (n-s) by s J("-5) is (n-s)
by (n-s). This simplifies to

Jr'.\;ff(_....;):—x“') yn=s) 1 0 J
_z(nu.!'_,i' Jn=si|| 1!1-.\"'“"“'"”(}9("‘-‘))

= x(%) y{n—.n)_(ym—.s)wfﬂ—-.c)X“(u-s)]T g
= #(n-x) Jt’ﬂ—.‘}_(J{”".‘-}“{n-\jx“,{n__‘))r (8)

L

Thus the first s columns of the matrix remain unchanged after the multiplication, and therefore do
not need to be computed. The pseudo-code using the Householder based method for computing the
LCE's having an n by » tangent map can be expressed as follows!,

Pseudo-Code of the Householder QR Based Method (HQRB) for the Computation of all LCE's

Initalizations.

Initialize J 1o be the first tangent map

I A computer code implementing the pseudo code can be obtained from the authors.
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Initialize Jplus/ to be the next tangent map
Initialize LCEvector to be a zero vector
fori = ] 1o m_iterations
QR-Factorization Part
fork=1ton-1

Computation of the rs

The k-th reflector is stored in the k-th column of J. The diagonal elements of R are stored in the
vector r. The computations are as follows;

n
sigmr.':‘/ Y J(s. k),
s=k

gamma = sigma(sigma + | J (k. k )D
rik)=—sign{J(k k))sigma
J(kk)=J(k.k)-r(k)

Computation of reflectors with J
forj=k+/ton

n
beta= (Zm.k )J(s.j))/ gamma)
s=k
fors=k+1lton
Jisj) = J(sj) - J(s.k) beta
end (s)
end (7)

Computation of action of Iplusl on 0
forj=1lton

n
beta= (zprus!(j‘s).](s.k))/gamma
s=k
fors=kton
Jplusl(.s) = J plusi(j.s) - J(s.k) beta
end (s)
end ()
end (k)
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rin} = J(nn)
Set J = Jplusl
Set Jplus! 10 be the next tangent map
Forg=1ton

LCEvector(q) = LCEvector(g) + log{lr(q)|)
end (¢)
end (i)

LCEvector = LCEvector / m_iterations

Computational Efficiency Comparison

Each iteration in the computation of the LCE's involves one QR-factorization followed by the
action of multiplying the succeeding tangent map by the orthogonal matrix O, thus an operation
count for each of these two steps would give a measure of efficiency of the method used. We follow
the GS and MGS algorithms given by Golub and Van Loan (1993), and the HQR as given by
Dahlquist and Bjorck (1997). The HQR presented computes R and @ explicitly, but in the
computation of O the explicit product of the reflector matrices (as in equation (4)) is avoided, see also
Geist (1990). The HQRB algorithm is the one described in this paper.

The main difference in efficiency of the various methods comes from the way the QR-
factorization part of the method is performed. The operation count for the action of multiplying the
succeeding tangent map by the orthogonal matrix () is roughly the same for all methods. The ratios of
the asymptotic constant (for large n) in the operation count for the QR-factorization and for the action
of multiplying the succeeding tangent map by the orthogonal matrix Q are 6 : 8 : 5 for the GS (and
MGS), HQR, and HQRB, respectively. This means that for large enough values of #, the savings by
using the HQRB versus the MGS (the more efficient of the remaining methods) in the number of
operations are more than 10% (up to about 16% asymptotically). For small values of n, a similar
ordering of the methods based on the operation count is observed. Figure 1 shows the number of
operations versus system size for the various methods for n < 10.

8000

5000

Number of
§

Matrix Size

Fig.1 Number of Operations versus Matrix Size for the GS, MGS, HQR and HQRB
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Accuracy Comparison

The following constant map is used to compare the accuracy of the GS, the MGS and the HQRB
methods.

110+ 11p o b
momm
A=|" =k 10 108 10-6;
- io i Sus h
(110+11uju 0 1
10
| -w? 0 0 0

Map A is a perturbation of the transpose of the companion matrix corresponding to the
characteristic polynomial with roots: 10, 1, g and /0. The g term in the (2,1) entry of the matrix
A was deleted, so that the matrix could be represented with no roundoff error.

The errors X,-m - X;” as a function of the parameter g, in the computation of the four
LCE's at the end of 1000 iterations are shown in Figs. 2a and 2b. The exact LCE's were computed
using 100-digit floating-point arithmetic utilizing MAPLE, and the results were then truncated to 16
digits, all other computations were performed using MATLAB within the [EEE floating point
standard, i.c., with a machine precision of about 2.2 x 10-16. Figure 2a compares HQRB and GS, and
we observe that for small values of p, p < 10°7, the performance of GS deteriorates significantly in
computing the smallest LCE (the LCE's are ordered as Xj > X7 > X3 > Xy). Over the same range of
p the HQRB remains stable. Figure 2b compares HQRB and MGS, here again the largest error occurs
in the computation of the smallest LCE using MGS. However the magnitude of this error is
negligible when compared to the error obtained from using GS.

5 :
‘.. :' .' 2
I.‘: I.
§ b 1 "-.' Error in x, for GS !
& .‘ /
B '
1 9 ll.' .. -
D‘.
0 |\ -
Error in other LCE's for GS and HQRB
-1 - -
10° 107 10
H

Fig.2a Emor X f""’”' ey ,-"”“ versus ;i using HQRB and GS for Map A After 1,000 iterations
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Error in y, for MGS and HQRB

Error in y, for HQRB 4

Ervor in X, for MGS and HQRB

=1 =
10" 107 10*
u

Fig.2b  Error X/*"P" " fxm versus 1 using HQRB and MGS for Map A after 1,000 iterations

As a measure of accuracy of the methods, we can use the absolute value of the determinant of
Om. as a measure of the error in orthogonality in the form ¢, =| }_l Det( Om )l Departure of ¢,
from zero would then be an indication of lack of orthogonality. Other measures of error are treated in
von Bremen et al. (1997). Figure 3 shows ¢, for map A after 1,000 iterations. GS has the largest
error in orthogonality, presenting an abrupt change around 2= 10-7. In Figure 2a we can also see that
the error in the smallest LCE starts to grow significantly for # < 10-7. This may be explained with the
fact that as g gets close to 10-7 we reach the point where fi1+2) = 1, and the accumulation of
roundoff errors becomes large.

08

08

0.4

0.2 4

16* 10 10

Fig. 3 - Error ¢ versus p for GS, MGS and HQRB, for Map A after 1,000 iterations
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Conclusions

In this paper we have provided a computationally efficient and robust algorithm for computing
the LCE's of a dynamical system. We base our approach on the recognition that (1) approximations
to the LCE's can be obtained in a direct manner from the diagonal elements of the R matrix in the QR
factorization of the tangent map, and (2) that such a factorization can be efficiently done through a
modification in the use of the Householder QR algorithm. The approach proposed here for
determining LCE's is shown to be computationally superior to the GS, MGS, and far superior to
standard HQR methods. In addition, the numerical experiments reported here show that the algorithm
is more stable with respect to roundoff errors than both the GS and the MGS algorithms.
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Abstract

In this paper non-linear. unstable, SISO and MIMO mechanical systems are considered Among three case
studies. the first one consists of a lightly damped flexible beam hinged at one end and magnetically levitated at
the other end; the second system consists of a magnetically supported rotor, which acts as a water pump in a
waler tunnel; the third system consisis of a magnetically levitated vehicle prototype. Due to the unstable
characteristic, several aspects related to closed loop experimental identification of each system are discussed
Analytical and/or experimental models are oblained for each system.

Keywords: Mechanical ldentification, Unstable Systems, Unknown Parameiers.

Introduction

Mechanical systems that use magnetic bearings are frequently employed in many siluations
related to rotating machines, robotics and more recently for levitated transport systems (Sinha, 1987).
This paper is concerned with the identification of three unstable mechanical systems which employ
magnetic bearings. The electromagnet systems adopted are inherently unstable, which introduces
additional difficulties for any experiment.

The first system is the simplest one in the sense that it is inherently SISO. It consists of a lightly
damped flexible beam hinged at one end and magnetically levitated at the other end. The second
system consists of a magnetically supported rotor, which acts as a waler pump in a water tunnel for
hydrodynamic tests; the supporting system for the rotor aveids thus the introduction of turbulence in
the water flow. In this case study, resonance frequencies are not relevant, and although it is a MIMO
system, the identification procedure could be carried out as in the previous SISO case; the specific
characteristics of the rotor resulted in a 5 input-5 output model, particularly suitable for the design of
5 independent controllers. Finally, the third sysiem, a magnetically levitated vehicle prototype, 1s
considered as an inherently MIMO system: in this case, resenance frequencies are present, and too
high order models are obtained if some approximations are not taken into account. This system has 4
inputs and 4 outputs.

The paper is outlined as follows: firstly a brief description of cach system is presented. The
identification procedures and experimental results are then presented for each system. The last section
contains general comments and conclusions,

Description of the Systems

Description of the Beam System

The flexible beam considered in this section constitutes a research set up developed for the
investigation of different control design techniques when the resonance frequency of the system
varies. A schematic diagram of this system is shown in Fig. I

Presented at the Ninth Workshop on Dynamics and Control - DYNCO, Rio de Janeiro, RJ - August 11-14, 1996,
Technical Editors: Agenor de Toledo Fleury and Hans Ingo Weber.
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Fig.1 Schematic Diagram of the Magnetically Levitated Flexible Beam

In this figure, m] is a mass of steel through which the magnetic circuit of the electromagnet is
closed. The mass mj represents a varying load in the middle of the beam, i represents the electrical
current, z{ and z represent the gap of the electromagnet and the deflection of the beam, respectively.
The movement of the beam is only in the vertical plane. In order to keep the beam levitated, the gap

z of the electromagnet must be controlled. The dimensions of the flexible beam are shown in Table
I

Table 1 Dimenslons of the Flexible Beam

Length 1.28 m
Width 5.08 cm
Thickness 6.35 mm

It is worth to mention some points on the choice of the steady state gap for the electromagnet.
Figure 2 shows a schematic diagram of the designed electromagnet.

4 E _IF u
1o, 1T 09 4

| . i . I Inductive
A gap
T’L o - H
a
e

Fig.2 Electromagnet Scheme
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For this type of electromagnet, the attraction force is given by:

b
F(t)= kf(%) (1)

where:
i(t): input electrical current,
Z1(1): output air gap,

2
k;= #—oaﬂ— : constant,
2

Loosely speaking, the choice of the steady state gap is directly related to the opposite
requiremenis of energy consumption and levitation system robustness. In terms of energy
consumption, it is interesting to set the gap as small as possible, in order to get smaller current
intensity for levitation. However, for very small gaps, magnetic core saturation may occur, increasing
the coil inductance, and leading thus to slow control action; hence, from the point of view of the
levitation system robustness, higher gaps are more suitable. In this work, the nominal gap was set as
Zp = 5mm. This choice is also function of the total mass of the system and electromagnet
dimensions. In Table 2 some design data for the electromagnet are presented.

Table 2 Data for the Electromagnet

Nominal air gap Zg=5mm

Steady state current Ip=0T7A
Dimensions a=3cm c=6¢cm
Number of turns N=1300

Air permeability 1g = 4p10-7 (H/m)

Description of the Rotor System

This section describes a magnetically supported rotor, which acts as a water pump in a closed
circuit water tunnel. Figure 3 shows a schematic diagram of the rotor and its supporting bearings. The
purpose of such system is to avoid vibrations through the water flow, which degrades the quality of
hydrodynamic tests.

The rotor consists of a 60 cm diameter ring with the propeller in its center; the complete system
mass is 75 Kg. The set up is mounted to operate in the vertical plane. The magnetic supporting
system consists of 6 electromagnets to levitate and stabilize the ring in the radial plane
(electromagnets 7 to 12), and 6 electromagnets to stabilize the rotor in the axial direction
(electromagnets 1 to 6).

The electromagnets operate in pairs: | - 4, 2 - 5, 3 - 6 in the axial axis and 10 - 11 in the
horizontal axis; the only exception is the vertical axis in which the electromagnets 7, 8 and 9 operate
with the electromagnet 12, in order to compensate the gravity action. We have thus 5 points to be
controlled; a position sensor is placed at each point.
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1,2.3,4,5,6: Axial bearings
7,8,9.10,11,12: Radial bearings

Fig.3 Schematic Diagram of the Rotor System

Description of the Vehicle System

The constructed system consists of a magnetically levitated vehicle prototype. The levitation is
achieved by attraction forces developed by four electromagnets which were positioned in each
extremity of the vehicle as shown in Fig. 4. There are also four gap sensors to measure the gaps of
these electromagnets.

Fig. 4 Schematic Diagram of the Vehicle Prototype

Since the magnetic forces in this case are always attraction forces, an elevated way was als_o
constructed. A vehicle frontal view in levitation state is presented in Fig. 5. The vehicle levitation is
achieved through the control of the gaps 7, j = 1, 2, 3, 4.
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Fig. 5§ Vehicle Frontal View

The vehicle has six degrees of freedom which correspond to the three translation motions (X, y, z)
and o the three rotation molions (¢, 8, n). The vehicle will have independent lift, guide and
propulsion systems, but only the levitation system (control of z, ¢ and 8) has been considered in this
paper. [n order to control the guide system (y e m), it would be necessary 1o add Tour lateral
clectromagnets and to control the respective gaps.

The vehicle was constructed with aluminum plates. The guideways, through which the magnetic
flux flows, were constructed with iron bars of small thickness. Laminated guideways would be an
alternative choice in order to reduce eddy currents which produce drag and repulsive forces. Drag
forces causes power loss and repulsive forces reduce the lift forces (Sinha, 1984}, However, iron bars
were employed in order to simulate such problems that will be certainly present in any real system.
Table 3 presents some prototype data.

Table 3 Prototype Data

Length 70 ¢m
Width 60 cm
Height 43 cm

Mass My=97.6 kg
Supply Voltage 35V DC
Levitation power 3I7TW

Electromagnets for Levitation

The prototype studied in this work has independent electromagnets to lift and to guide the
vehicle. This kind of construction provides controllers with simpler structures and improves the
reliability of the system (Sinha, 1984). The levitation electromagnets have an “E" shape as in the
beam system (Fig. 2), and its design data are also those of Table 2, except the steady state current, [g.
which is equal to 1.71A,
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Identification of the Systems

In this section identification procedures and results for each system described before are
presented. The commeon characteristics of the three systems are the fact that they are non-linear and
open loop unstable. On the other hand, they present particular features from the point of view of
contral design. As it will be seen, the flexible beam is an inherently SISO system. in spite of the fact
that the rotor is a MIMO system. its particular mechanical characteristics allow the employment of 5
independent controllers, i.c.. the plant behaves in fact as a set of SISO decoupled systems: finally, the
vehicle prototype will be treated as a MIMO system. Although the unstable characteristic leads to
similar identification experiments, the SISO/MIMO behavior imposes specific data treatment,

In the three cases the system to be identified includes the power circuit, the electromagnet, the
plant and the sensor. Due to open loop instability, experimental models can be obtained only through
closed loop experiments. The first step in the identification procedure was always the adjustment of
simple SISO lead-lag controllers in order to stabilize the system. In the case of the beam. such
preliminary design consists of the design of a single one input - one output controller; for the rotor
and the vehicle 5 and 4 independent S1SO controllers, respectively, have to be designed Some details
on the controller designs are presented in Bittar, Sales, Lucchesi and Lima, 1995.

All the experiments are based on the injection of sinusoidal signals in the closed loop. An “HP
3562A Dynamic Signal Analyzer” was employed to inject the sinusoidal signal, and to compute the
desired frequency responses as it will be described in the sequel. The noise presence was permancntly
monitored and lor all practical considerations it could be disregarded.

Identification of the Beam System
In order to get some insight into the physics of this system, a simple mathematical model. which

can be synthesized in two nonlinear equations relating the involved forces, is presented below - see
Fujita, Matsumura and Shimizu, 1990 for more details:

3

2
- I. ; d .
d‘; =mg—k_,[z—.,) +{I(2‘Z2 —z;)+[3§(2v23—2;)
(2)

5
4

d‘z, d
M ==M,g-2a(2-z,-2;)-2—(2-z; -z
s %4 (2-7,-2)) ﬂd.f( 2-2)

Mb = mb;am

My am

2

+MJ

m= +m,

K¢ - constant proportional to the air permitivity and dependent of the electromagnet
dimensions,

a, [ - constants that represent forces due to the deflection of the beam.

N
i
k 7 ( -} - attraction force produced by the electromagnet,

Z)

1 - electric curremt,
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g - gravity.

The linearization of Eq.(2) produces, in addition to the resonant mode (poles in +80 ) . two real

poles (£70), one stable and one unstable, as shown in Eq.(4). This transfer function includes also

one stable pole in -250, which reflects the power circuit dynamic effects and the inductance of the
electromagnet (Eq.3). It is assumed that:

!(S} =, kb

(3)
V.(s) s+250

where Ve is the input of the power circuit.

This term was estimated experimentally and incorporated in the final transfer function (Eq.4).
Since many of the involved constants in Eq.(2) are not easily computed with precision, the obtained
transfer function must be taken just as a rough approximation, which will be used for the first
controller design.

Z(s) _ 1690(s+76j)(s~76)
V.(s) (s+250)(s+70)(s—70)(s+80))(s—80j)

(4)

The preliminary stabilizing controller allows to go on the experiments. In this case, the block
diagram that represents the stabilized closed loop system for the identification experiments is shown
in Fig. 6.

3
| R hoey E I f'+"\. 1 .
>+ »Controller —»+, ~—» Plant

A

L CA.

q (noise)

Fig. 8 Closed Loop Block Diagram

Sinusoidal signals of suitable frequencies are injected in point 3. The signals in points 1 and 2 are
then measured and their Fourier transforms computed, resulting thus the corresponding frequency
response. The injected frequency signal ranges from 10-! Hz to 102 Hz.

It is assumed that m) may vary in its position and mass; this assumption leads to specific
difficulties since it produces changes in the resonance frequencies. As control specification, it is
considered that only the first resonance frequency should be "controlled"”, in the sense that it will be
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the only onc included in the controller bandwidth; in addition. the controller should stabilize robustly
the plant. These facts have direct implications in the final identified mathematical madel.

After measurements are taken, the magnitude and phase plots of Z(jw)/Ve(jw) may be obtained.
Nine situations are considered accordance 1o the position dpy, and the value of the mass m?, as shown
in Table 4 (the entries of the table represent the model numbers associated to the measurements when
the corresponding dy, and my are considered). Thus, as an example, model number 5 corresponds to
m2=1.50kg and d,=0.71m.

Table 4 Variations of mz and dm,

dm(m)
m2 (kg) 0.565 0.710 0.850
125 [ 2 3
1.50 4 5 6
1.75 7 8 9

Then, for each data set a curve fit was carried out. In order to fit suitably all data set, a transfer
function with 16 zeros and 17 poles was adopted, resulting thus 9 transfer functions. Table 5 presents
the poles and zeros of the model number §.

Table 5 Poles and Zeros of the Model Number 5§

Zeros (Hz) Poles (Hz)

-72.50080 -1.55922

+6.99363 -1.29456

-0.02875+ 538535+ ) +8.47039

+0.02845 £ 34.23650 - | -0.05321+£6.02771-)
+0.55359+57.12440. —0.19195+£34.01600- |
-1.26296+ 65.78970- | -1.41261£65.62790- j
-0.16784 £94.87340 j —0.15000+94.83800- |
+0.13702£99.90610- ) —0.65930+ 5418950 )
—-33.82840%102.46800- ) +0.14164 +99.88560-

Gain = -1.09 -25.22210+117.55200- j

A simple validation procedure for each transfer function can be obtained through the computation
of the controller K, (jw):

Gmm(f W) g Tmm.v(j w)
Tmea.rr); W)Gmcm (jw)

where Gmeas(iw) represents the measured open loop frequency response from point 1 to point 2, and
Timeas(iw) represents the measured closed loop frequency response. The designed controller K(jw),
which is obviously known, should be equal to Kieas(jw) computed from Eq.(5). Figure 7 shows this
comparison for the model number 5. The differences are due to difficulties to measure precisely the
resonance frequencies (SHz, 30Hz and 55 Hz, approximately).

The model number 5 (mp=1.5kg and d=0.710m). for which the values of “dy” and “m3"
correspond to central values for the admissible variations, was adopted as the nominal one.
According to the control specifications, the controller should be robust for variations as in Table 4.
Clearly, the order of the fitted nominal transfer function is too high (16 zeros and 17 poles) for
control purposes. With this fact in mind, a model reduction algorithm was applied to this nominal
transfer function.

Koneas(JW) = 6
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Fig.?7 Comparison Between Kmeas(jw) and K(jw).

Firstly, it can be observed that if it is desired that the model represents 3 resonance frequencies,

then the least necessary degree for the denominator of the transfer function is 9, six of them

representing the resonances. Similarly, if it is desired to model 2 resonance frequencies the least
degree is 7, and to model 1 resonance frequency the least degree is 5. A mathematical model of order
3 is not able to represent any resonance frequency. Although this model of order 3 represents just the

rigid mode of the beam and the electromagnet dynamic, it was chosen for control design. In order to
justify this result, let’s focus our attention on the modeling uncertainties, by computing the

quantities:

GGiw) -Gy (jw)

|4.4¢ jw)

and

Gjwl- Gy ( jw)
Gy(Jjw)

A 4(jw) and A, ( jw) represent additive and multiplicative uncertainties, respectively;

A i)

where

GN (jw) represents the nominal model after order reduction to 3 poles, (Fig.8), and 5 poles,

(Fig.9);

2,3,4,6,7, 8, 9in Table 4) of order 17,

G(jw) represents each one of the models (1,
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Thus, from Table 4 the respective uncertainties are obtained:
* 8 uncertainty curves of the type |A,( jw)| with respect to Gn(jw) of order 3;
* 8 uncertainty curves of the type ]AA(jw)] with respect to GN(jw) of order 5;
* 8 uncertainty curves of the type |AM(jw)| with respect to GN(jw) of order 3;
* 8 uncertainty curves of the type |A,,( jw)| with respect to GN(jw) of order 5.

In Figures (8) and (9) some of these plots are shown.

30

magnitnde (dB)

freq (Hz)

Fig. 8 Multiplicative Uncertainties with Respect to Gy of Order 3.

L B

magnitude (dB)

Fig.9 Multiplicative Uncertaintles with Respect to Gy of Order 5.
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It is interesting to note that the superior contour for the uncertainty curves are very similar in both
figures, above 5 Hz (similar results were obtained from the additive uncertainty plots). This is a
consequence of the resonance frequency vanation when my and dpy, vary. Hence, from the point of
view of uncertainty modeling both transfer functions, of order 5 and 3, are equivalent. For simplicity
the third order model is recommended for future control design. Equations (6) and (7) present below
the transfer functions of order 5 and 3, respectively.

N ~7.19(s — 40856 }(s+ 41290 }(s—0.18+£3383})
(s+97.97 )(s+ 81340 )(s=5322)(s+3.34£3787))

Gy(s) (6)

and

=~ — 4085 ?
Gy(s) = y .IO(.';- 408.56 )(s+412.90) )
(s+ 10777 )(s+8947 )(s~5322)

Identification of the Rotor System

For each pair of electromagnets a simple mathematical model can be derived from the schematic
diagram of Fig. 10, where a pair of electromagnets applies forces F+ and F- to the mass, My, placed

between them,
X+ 5x\ A -Ox

I |
I-al—i ' ; | |+0
: ] »
' : X
4——‘ ' : —-

Fig. 10 A Pair of Electromagnets.
In this case,

1+ 81)°
" (x-&)°F

+

2
_:K”(:-a‘u
(1+81)
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and

‘1 2 e 2
F’='&!"&=F+_‘F_=Km (l+&)2m(! 51)7
(x=dx)" (x+dx)

The state space nonlinear equations result as:

A
x;=dx
i;=x_,
. =K_,,,[u+5n“ _(f-&)’}
M| (x—&F  (x+&)?

and the linearnized corresponding equations present two eigenvalues:

3
M, x
similar to the beam case.

Following this procedure, the complete model was derived by considering each pair of
electromagnet independently. In fact, the mechanical characteristics of the rotor suggested that there
should have weak couplings between distinct pairs of electromagnets; this was experimentally

confirmed as it will be seen in the sequel.
The parameter values for the rotor system are presented in Table 6.

Table 6 Parameter Values for the Rotor System

M, 75 kg

Kj (D, E and | electromagnets constants) 1.5x10-4 Nmv/A2
Ky (X and Y axis electromagnets constants) 1.78x10-4 Nm2/A2
Gap 0,015 mm

The linear dynamic equations, in the case of the horizontal axis, are:

EI] ) [2‘3 ?10’ é] Bf,]* [4?2} *
y=[o.2-;o’ o][;‘;]

where x; = &, x, =&, u=24l, and the output matrix represents the position sensor gain (V/m).
The equilibrium point is around [ =1 A,

(3)

As in the analytical modeling, the experimental measurements were taken independently for each
bearing pair. In this case, the experimental procedure follows exactly that one of the beam system.

From Figure 9 it can be noted that the experimental measurements are close to the analytical
model (Eq.8), confirming so the weak couplings in the system. Note that, differently from the beam
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case, the power circuit and the inductance dynamic effects were neglected in Eq. 8, without
introducing significant errors.

dB +20

-20
-40
-60

v b S, R G e g

+100 —

_1001 b i ,10 % ,100

Fig. 11 Horizontal Axis Bode Plots for the Analytical and Experimental Models

Identification of the Vehicle

Although an analytical model could be developed as in Jayawant, Sinha, Wheeler, Whorlow and
Willsher, 1976, in this section only the experimental identification procédure and the corresponding
results for the vehicle prototype are presented. The point that makes this case different from the
above considered systems is the multivariable characteristic. As it will be seen, this fact may lead to
very high order models, and some special care must be taken.

As in the rotor case, the first step consists in the design of four independent stabilizing controllers
kiGe(s) (i=1. 2, 3, 4), implemented as in Fig. 12.

| d,
S —— "16"@@"7;— — %
o7 N HE 1 X
9, 2 C(-f)_ —'@:)’)T’ G(s) | ;
-+ R g, S kysGe(s) '—‘\'!-:} PA Y L

__ ]|

The second step consists in the measurement of the closed loop frequency response. A sinusoidal
signal, dy, is injected as in Fig. 12 and the 4 system outputs, z|, 22, z3 and z4, are acquired. The
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same procedure is repeated separately for the remaining inputs d3, d3 and dg4, and thus 16 closed loop
frequency responses are obtained.

The same number of inputs and outputs allows some simple operations in order to get an
experimental model, i.e.:

A
2 jw)=(1 +G( jw)K( jw))" G( jw)d( jw) )
or
A
2l JW)=G o (jw)d( jw) (10)
and hence
G jW) = Gy (JWI(1 = K( jW)Gry (jw))”" (1)

for every w such that (I - KGw)Gmf(j w)) is invertible,
In the above equations K(jw) = Go(jw) diag(k] k2 k3 k4), kj (i=1, 2, 3, 4) constant, and

i j;?fw) y 2;?’“’)

) —|d2(iw) o) =| Z200w)
WP = dyjw) 2wl = 10 jw)
dy(jw) z,(jw)

Clearly, the computation of Eq. (11) can be easily performed in the numerical case, i.c., the gain
and the phase of G(jw) can be computed for each w. On the other hand, if a curve fit is performed for
each experimental frequency response in Gpf(jw), then an analytical expression can be obtained for
G(jw). However, in this last case too long expressions may occur. This fact can be illustrated for a
system with the same number of inputs and outputs, as follows. Let:

£ : number of inputs or outputs of the system;
p: degree of the denominator of G¢(s);
o: degree of the common denominator of Gpf(s);
A
G(jw)=Gp(jw): open loop frequency response computed numerically through Eq. (11);
A
G(s) =Gg(s): open loop transfer function matrix computed analytically through Eq. (11).

If there is not any zero-pole cancellation, the common denominator degree, V, of the transfer
function matrix Ggy(s) is given by:

v=(p+o)t

In this case, the minimal state space realization (Kailath, 1980) for Gy(s) is given by the
McMillan degree, v, which in the considered problem results as:

y=tv=(p+o)l’ (12)
Using a controller Ge(s) with p=6, Eq.(12) results as:

y=(6+0)-4=9+16-c (13)
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Equation (13) shows that even for small values of o, the number of open loop states results high,
which leads naturally to the application of order reduction algorithms. On the other hand, mechanical
models with resonances are frequently ill conditioned, and under these conditions convergence of
order reduction algorithms may fail. Fortunately, as a consequence of the geometrical and mechanical
symmetries of the vehicle, the 16 identified closed loop frequency responses are very similar; this
allowed the approximation shown in the sequel.

In this sense, each one of the 16 closed loop frequency responses were approximated by the same
transfer function with degree 4, producing a transfer function matrix G,(s) with common
denominator with degree 4 (c=4). Figure (14) shows a typical frequency response, which relates the
input d, to the output z;, G,q,(s), for the experimental identification and for the adjusted transfer
function with degree 4. The rigid body movement of the vehicle in 12rad/s was the main
characteristic which was taken into account in this approximation. This curve fit produces, thus, an
open loop model, G,(s), with 160 states (see Eq. 13).

m —
//“ oy
ﬁ' . (s e 7, e
5 of = "':-ﬂ,_‘;}‘_“ .
: | \\L\H
— Cagive i .
- - Experimertal
: |
50 y a A i
10° 10’ 10"
w (red/s)
500 -
E S B TIO
! ~——— Degres 4 ‘,
500 Experimental ~ ~ X i
| By
10’ 10' 10 sach

w (rad/s)

Fig. 13 Frequency Responses of G, ,(jw) for the Experimental identification and for the approximated transfer
function with degree 4.

Using Eq. (11), the computation of the numerical model G,(jw) and of the analytical model G,(s)
produced the singular values presented in Fig. 14. In order to validate the model G, (s) with 160
states, step disturbances d,, d,, d, and d, were applied simultaneously to the real and simulated closed
loop system. Fig. 15 shows the corresponding time responses.

Although the results in Figs. 14 and 15 may be satisfactory, the identified model G,(s} with 160
states is considered a high order model for control design, for example. An order reduction algorithm,
based on Schur method, was then applied. It is worth to mention that many algorithms were tested,
and that due to numerical problems, convergence was achieved only when the state space equations
were written using Gilbert's realization (Kailath, 1980). The model of 160 states, G,(s), was, thus,
reduced to a model of 16 states. The singular values for the complete and the reduced order model
resulted very similar, as shown in Fig. 16.
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Fig. 16 Singular Values of the Model G (Jw} With 16 and 160 States.

Equations (14) and (15) present the identified closed loop transfer function matrix, G,,{s), with
common denominator of degree 4 and the controller transfer function matrix, K(s), respectively.

LO00 0308 0395 1259
0218 1665 1004 0285| 0.0256(s+16285)(s+10.2255)(s— 248.5757 )(5+6830728)

G rist=- ;
e 0390 1191 1221 0549 TRiNs :
0916 039/ 0374 1894 (s+ 207181058787 )5+ 220294+ 26509])

(14)

0
0 | (s+084)(s+10327)(s+126.21)(s 700000} s +7834.97)

S(s+368.42)(s+340.30 + 178635/ )(s+7196.12+34733])

(15)

=
=
X
=N
e |
=3

0 0 0.2503 o
0 0 0 02394

Control Design and Implementation Considerations

In this section some brief comments on contrel design and implementation are presented. As
observed in the “Identification of the Systems” section, the first step in the identification procedure
was the adjustment of simple SISO lead-lag controllers to stabilize the plant. For the beam and the
vehicle systems, digital controllers to run a sampling frequency of 3 kHz were employed:; the rotor
controller was analogic.

The final model obtained for the flexible beam was used for H,, H, and H./H, controller design
purposes. The main results are presented in (Bittar, Sales, Lucchesi and Lima, 1995). The final model
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model obtained for the rotor was used for an analogic Hy, controller design. The main results are
presented in (Porsch, 1996). In the case of the vehicle prototype, the final MIMO system has been the
subject of research of Hz and Hy, digital controller designs. Robustness and performance are the
main characteristics to be investigated.

Concluding Remarks

In this paper identification case studies for non-linear unstable SISO and MIMO mechanical
systems were considered. The unstable characteristic imposes that any identification experiment
should be carried out in a closed loop configuration.

In the first case study, a flexible beam, emphasis was given to the modeling uncertainty
characterization, and the final model, potentially for control design, consisted of a third order model.
The system has one input and one output, and the conclusion followed as a direct consequence of the
variation of the resonance frequency of the beam. An interesting point to be noted is that, although
the resonance frequency is not modeled in the suggested model, such model is suitable for control
design even if it is desired that the controller actuates in this frequency range. It secems that some
other approach, e.g., p-synthesis, should be used in order to take into account the effect of the
varying resonance.

In the second case study, a magnetically supported rotor, a simple mathematical model was
analytically derived. The simplicity of the model relies on the fact that couplings among bearings
were neglected. The analytical model was compared with experimental frequency responses and very
good results were obtained, confirming so the low coupling assumed.

In the third case study, a magnetically levitated vehicle prototype, an experimental model was
obtained. Special emphasis was dedicated to the characterization of the multivariable behavior of the
plant. The first experimental model resulted a high order one, and order reduction algorithms had to
be employed. In order to get convergence of these algorithms, Gilbert’s state space realization
developed a decisive role due to ill numerical conditioning of the model. The final 16 states model
was validated through its singular values and time responses.
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Abstract

Linear dynamical systems are considered which are described by ordinary differential equations. We assume
that the matrix of the system is uncertain or subject to disturbances, and only the bounds on each element of the
matrix are known. We obtain outer ellipsoidal estimates on reachable sets of the system and deduce equations
describing the evolution of the approximating ellipsoids. An example is presented The paper extends the
approach af previous papers (Chernousko, 1980, 1982, 1994) where the case of additive disturbances was
considered fo the more complicated case of multiplicative disturbances. The obtained results make it possible to
evaluate disturbances caused by uncertain or perturbed parameters of dynamical systems (e.g., stiffness,
damping factors, feedback coefficients, electrical, parameters, etc.).

Keywords: Dy ical 5) Reachable Set, Uncertain Parameters, State Estimation.

Introduction

Dynamical systems with unknown, uncertain or perturbed parameters arise in many applications,
It is important to obtain bounds on reachable sets of such systems, in other words, bounds on all
possible motions of these systems. In this paper we consider linear systems of ordinary differential
cquations with uncertain matrices whose clements are bounded both from below and above. Such
systems serve as models for various mechanical, electrical, and other systems whose parameters are
not known precisely or can vary in an uncertain way (for example, stiffness and damping factors in
mechanical systems, electrical resistance, capacity, and inductivity, feedback coefficients, etc.). We
shall obtain outer ellipsoidal estimates on reachable sets and use the method of ellipsoids (sce
Schweppe, 1973, Kurzhanski, 1977, Chernousko, 1980, 1982, 1994). Ellipsoidal estimates have a
number of advantages such as rather simple and explicit form of approximation, smooth boundaries,
invariance with respect to linear transformations, etc.

—— Nomenclature

A = matrix of linear L, = Lagrange's functions Xy, = auxiliary designations
transformation L, Xy

a = vector of the center of M = nitial set y = auxiliary vector
an ellipsoid m = number of nonzero b, y, = its components

& = its components n = order of the system o

b = vector of transiation p = root of the algebraic ¥ = bolrdsony,

b, = bounds of uncertainties equation A = small increment of time

C)= matrix of the linear Q, = matrices of approxi- e = radius of the cirt_:ia_
system Q, ting ellipsoids = Lagrange's multipliers

C, = known and unknown Q, Ay A2

C parts of C Q; = elements of matrix Q A4 = eigenvalues

d = auxiliary vector q = auxiliary scalar quantity 1 = auxiliary numbers

¢y = elements of C, R" = n-dimensional space v = number of indices for

D(t, s, M) = reachable set r = semiaxes of an which ;=0

E = ellipsoid ellipsoid o = signsofc

f(t) = given function s = initial instant of time t = intermediate instant of

G = diagonal matrix t = time time

H = auxiliary designation T = {ransposition of a ¢ = auxiliary vector

[ = unit matrix matrix 0 = setof all possible x;

x = vector of state

Presented at tha:_NInlh Workshop on ©-,..amics and Control - DYNCO, Rio de Janeiro, RJ - August 11-14, 1998,
Technical Editors: Agenor de Toledo Fleury and Hans Ingo Weber.
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Throughout, we use the following denotation for an n-dimensional ellipsoid

E(a,Q)={x:(Q"(x—a),(x—a))S I} (N

Here a is an-dimensional center of the ellipsoid, Q is a positive definite n X r-matrix, and the
brackets (, , .) denote the scalar product of vectors. Note that the ellipsoid (1) degenerates into a point
x=aasQ—0.

Statement of the Problem
Consider a linear system of ordinary differential equations
x=C(t)x+f(1) )

Here, x is an n-dimensional vector of state variables, ¢ is time, C is an # X n-matrix, fis a given n-
dimensional vector function of time. We assume that the matrix C(7) consists of two parts: the known
part Cy(t) and unknown part C,(7) which represents uncertainties and disturbances, so that

C(t)=Cy(t)+Cy(1) @)

The elements ¢ (1) of the matrix C;(¥) satisfy the following inequalities

|ex(t)|sbu(t).  jk=1..n )

where b, (1) are given nonnegative functions.

Equations (2) - (4) hold for 7 = s where s is the initial instant of time. The initial state x(5) can
be unknown, and only the set A containing this state is given. Thus, we have the following initial
condition

x(s)eM, McR" (5)

The set endpoints x{?) of all state trajectories x(-) of the system (2) under the imposed conditions
(3) - (5) is called the reachable set of the system and denoted by D¢t, s, M). Thus, we have

x(t) e D(t,s,M) (6)

for all £ 2 5 and all for possible solutions of (2). The reachable set has the following evolutionary
property

D(t,s, M)=D(t,z,D(t,5. M)) (7

where 1 is any instant such that 7 € [s,r] .
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We shall look for outer ellipsoid approximation of reachable set. In other words, we are to find
the n-dimensional vector aff) and n x n-matrix Q1) (as functions of time ¢) such that the following
inclusion

D(t,s,M)c E(a(1).Q(t)). t2s (8)

holds forall t > 5.

Of course, this problem has an infinite number of solutions: any ellipsoid containing the obtained
solution E(aft),Q(t)) is also a solution of our problem. It is natural to minimize some measure of

approximating ellipsoids, e.g., their volume or the sum of squared semiaxes. This approach was
developed in papers (Chernousko, 1980, 1982, 1994) dealing mostly with additive disturbances.
Here, we do not obtain optimal approximating ellipsoids but use some optimal operations with
ellipsoids so that our approximations for multiplicative disturbances can be called suboptimal.

Transformations of Ellipsoids

Suppose we have obtained the approximating ellipsoid Efaft),Q(t)) satisfying the inclusion
(7) for some instant { = s, so that

x(t) € E{aft),Qft)) (9

Let us find the approximating ellipsoid for the instant £+ A4 where A4 = ( is a small increment
of time.

It follows from Egs. (2) and (3) that

x(t+A4) = x;+x,

x;=[1+AC,()]x(t)+ & (1), x,=AC,(t)x(1) (10)

where / is a unit n x n-matrix. According to (10), to obtain the ellipsoid Efa{t+A4).0(t+A4))
containing the vector x(t+ A), it is sufficient to perform the following three operations:

1. Obtain an ellipsoid containing the vector x;;

2. Obtain an ellipsoid containing the vector x,,

3. Obtain an ellipsoid containing the sum x; + X, .

Let us consider these operations separately.
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The first operation is reduced to the affine transformation of an ellipsoid. If some n-dimensional
vector x satisfies the inclusion x £ Efa,Q), then

Ax+b € E(Aa+b, AQA") (11}

Here A is an arbitrary nonsingular n x n-matrix, b is an n-vector, and 7 denotes the transposed
matrix. Applying the relationship (11) to the vector x; from (10), we obtain

x, € E(a;. Q). a;=[I+4Cy(1))a(1)+ 4f (1)

0, =[1+Acﬂ(:)]Q(r)[1+chfr)] (12)

Consider now the second operation, Denote by € the set of all possible vectors x2 given by (10)
where x{1) satisfies the inclusion (9) and the elements of the matrix C (s} obey the constraints (4). It
can be proven that, in general, the set  is not convex, but it is starlike with respect to the origin of
coordinates and symmetrical with respect to all coordinate hyperplanes. To find an ellipsoid
containing the set €, let us first obtain a rectangular parallelepiped containing €. Denote

X, =4y, y=C,(t)x(t), x(t)=alt)+& (13)

Using (4), (9), and (13), we obtain the following estimates

n n J'|
|yj|$| ZC}'&I& < Zcﬂ‘a* + ZC}*;*
k=1 k=1 k=1
] 4 j
< X by|ay |+max max |(c-’,§)| (14)
k=1 ko &

Here, ¢/ is the n-vector with the components ¢jg, k = I, ., n. We omit here the argument ¢ and
denote by subscripts the respective components of vectors. The maxima in (14) should be taken with
respect to ¢;k and & sausfying the constraints (4) and § € E(0, (), respectively. To find the second
maximum in (14), we compose Lagrange's function

L=(c’ &)+ A(Q7'¢E)

and set its gradient with respect to £ equal to zero

ol 42207 =0 (15)

Here, & is Lagrange's multiplier. From (15) we get

E=-(24)"Qc’ (e}
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Substituting (16) into the condition (Q"Ic,‘. &), we obtain the equality (ch.c’)=4,lz and

5%l
determine A=+ (1/2)(Qc’ .CJ)‘/‘? . Inserting this expression for A into (16), we get

£=2(0c) ¢!y 2 Qc! a7

We substitute & from (17) into (¢/, £) and find he second maximum in (14)
o 4
| (e.8)|=(0')-{ £ omest)

Now, according to (14), we are to maximize the expression (18) with respect to ¢;i subject to the
inequalities (4). Since the quadratic form (Q¢/, ¢J) is a convex function of ¢/, the desired maximum is
attained at one of the apices of the parallelepiped defined by the inequalities (4). We have

¢ =b

ij =29

e ekl b jmlen (19)

Taking into account the relationships (14), (18), and (19), we obtain

(20)

J%

- B .
‘y-*'l Sy = E}b)u | ay | + (m;zx pE‘-f Opebinbia® v g

Here the maximum is taken overall ojj=% 1,4, /=1, ., n.

Remark 1. To calculate the maximum in (20), we are to search through 2m-/ variants
corresponding 1o various signs of ajj. Here, m is the number of nonzero elements by, and the
exponent m-/ is conditioned by the fact that the simultaneous change of all signs of oj; does not
change the sum in (20) to be maximized; hence, the sign of one of oy can be chosen arbitrarily. In
the general case, we have m = nZ, but, in many applications, distirbances and uncertaintics are
present only in a limited number of elements of the matrix C in (2), and m is small.

Remark 2. Let bj = 0 for some j and all k= I,..., n. Then, by virtue of (20). we obtain yj=0,

and the set €2 lies in the hyperplane y; = 0. This case occurs, if some rows of the matrix C in (2) do
not contain uncertainties,

Remark 3. Let only one element of the matrix C in (2) is uncertain, i.e., bjg = 0 except b, > 0.
Here, the expression (20) is reduced to explicit formulas

y}:b},(|ap|+gf;,). ¥i=0, iwj @

Let us now find an ellipsoid containing the rectangular parallelepiped (20). Since the axes of the
parallelepiped coincide with the coordinate axes, we take the approximating ellipsoid as follows

n
;Z; riys sl (22)

The lengths r; of the semiaxes are chosen so that the ellipsoid (22) contains the parallelepiped
(20). We have
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) =1 (23)

J=1

We also require that the volume of the ellipsoid (22) (which is proportional to the product of all
rj) should be minimal under the condition (23). Let us compose Lagrange's function corresponding to
linis conditional extremal problem

n

n
2
Lf= I lrj +)1‘t f}-z(}f‘;)
J=1 i

=1

where | is Lagrange's multiplier. Setting the derivatives of L with respect to rj equal to zero, we
get

Substituting this expression for rf into (23), we obtain A2 = n. Thus, we have

Io»
rj=n’4yj, Ji=l..n (24)

If bj = 0 for some j and all X = 1,.._,n, this result can be improved. In this case, according to
Remark 2, we have y; =0 . Let the number of indices j such that bjk=0 forall k= 1,...,n, is equal to
v, 0 £ v n. Then the set Q lies in a (n - v)-dimensional hyperplane, and it is natural to approximate Q
by a (n - v)-dimensional ellipsoid lying in the same hyperplane and having minimal (n - v)-
dimensional volume. Instead of (24) we obtain

(7
rj=(n—v)/1:yj, Jj=1..n 25)

Now we can present the result of the second operation mentioned at the beginning of Section
"Transformation of Ellipsoids", i.e., the estimate on the vector x2 from (13), as follows

x, 6 E(0,Q,), y=4G, G=diag(r}....r}) (26)
Here, the symbol diag{ } denotes the diagonal matrix with the diagonal elements rjz, j=1..n.

Now we are to find an ellipsoid E(a(t+4).Q(t+A4)) containing the sum x(t + 4) = x; + x2
from (10). Here, x; and x belong the ellipsoids given by (12) and (26), respectively. Hence, the
resulting ellipsoid must satisfy the inclusion Efa(t+A4),0(t+4)) o E(a;, 0, )+ E(a;,0;) where
a) = 0. We shall minimize the volume of the resulting ellipsoid. To this end, we use the formulas for

the cllipsoid of the minimal volume containing the sum of two given ellipsoids (Chernousko, 1980,
1982, 1994)

a(t+4)=a,+a, 27)
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O(t+4)=(p™ +1)Q, +(p+1)Q,

Here, p > 0 is a unique positive root of the algebraic equation

e (28)
i=tp+4;  p(p+l)

Here, b1 20, i = [, ..., n, are the roots of the characteristic equation

det (Q; —2Q;)=0 (29)

Each root is counted according to its multiplicity.

Differential Equations for the Evolution of Approximating Ellipsoids
Substituting aj from (12) and a2 = 0 into the first formula (27), we obtain

a(t+A)=[1+A4Cy(1)]a(t)+ 4 (1)
As A — 0, this equation turns into the differential equation for the function a(1)
a=Cy(t)a+ f(t) (30)

Now we substitute Q7 from (12) and @ from (26) into the second formula (27). We get

O(t+4)=(p +1){Q(t)+ A[Co(1)Q(t)+Q(1)Cy (1)

(31
+O(X )} +(p+1)XG )

Let as evaluate the root p of equation (28). Inserting Q7 and @ from the respective formulas (12)
and (26) into Eq. (29), we obtain

der[Q(r )+0(4)- A’AG]=0 (32)
The roots A; of equation (32) for small A can be presented as follows

A= B 4 JTam (33)

where y; are new unknowns. Here and below, dots denote terms of higher orders in A. Substituting
(33) intd (32), we obtain the following equation for 4;

det[Q1(1)-pyl]=0 (34)
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Since the matrix @ is positive definite and the matrix G is nonnegative definite, Eq. (34) has n

nonnegative roots ; (each root is counted according to its multiplicity). Let us seek the unique root p
of Eq. (28) in the form

p=d"q"+‘.. (35)

Substituting expansions (33) and (35) into Eq. (28) and expanding its both sides into series in A,
we obtain

AT ui(l+...) = nfg*(1+...)
1=l

Thus, we have

y(n Vi
g=n /SLZ;”-’) (36)

The sum of all roots of the characteristic equation (34) is equal to the trace of the matrix Q1G.
Hence, we obtain from (36)

g= {n" [Tr(Q" G)]}% 37

Inserting (35) into Eq. (31) and omitung terms of order A2, we obtain after transformations
Q(t+4)=0(1)+ A[Cy(1)O(1)+ Q(1)Cy (1)]
+80(1)+ Aq7'G(1) +...

As A — 0, this equation becomes the differential equation for the matrix Q1)

O=Cy(1)Q+Q(1)Cy (1) +q0+q7'G (38)

The obtained equations (30) and (38) together with the relationships (26) for G, (25) for r;, (20)
for y; . and (37) for ¢ form a system of differential equations for the vector a(?) symmetrical positive

definite matrix Q). To obtain initial conditions, we should find an ellipseid Efag, Op) containing
the initial set M from (5) (Efap. Og) > M) and take

a(s)=ay.  Q(s)=0, (39)

The obtained results are summarized in the following theorem,
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Theorem. The ellipsoid Efaft), Q(t)), whose parameters a(?) and Q1) satisfy the differential
equations (30) and (38) (together with the relationships (26) for G, (25) for rj, (20) for y; , and (37)
for g) under the initial conditions (39), satisfies the inclusions (8) for ¢ 25 and (9) for all admissible
x(1).

Remark 4. The linear system (30) for a(t) can be integrated independently of the nonlinear
system (38) for Q(1), whereas the latter system depends on aft) through the matrix G, see (26), (25),
(20).

Remark 5. The obtained approximating ellipsoids have the evolutionary property similar to the
property (7) of reachable sets. Namely, we have

E(a(1),Q(1)) > D(t,t,E(a(t)),Q(t))), s<t<i

This property directly follows from the procedure described above: the approximating ellipsoid at
each instant of time is obtained directly from the ellipsoid for the preceding instant,

Remark 6. The nonlinear system (38) for the matrix O resembles the similar system for the case
of additive disturbances (Chernousko, 1980, 1982, 1994). The difference lies in the expression for
the matrix G which depends on a and contains the operation of maximization, see (20).

Remark 7. As it was already mentioned in Remarks 1 - 3, the operation of maximization in (20)
can be often considerably simplified.

Example

Let us consider the following two-dimensional system (n = 2)

Xp=x;,  Xy=-xp+e(t)x;,  |e(t)| b (40)

where ¢(t) is an uncertain disturbance and & is a positive constant. [f ef¢) is a periodic lunction, then
the system (40) describes the parametrically excited linear oscillator. In our case, there is only one
nenzero element ¢ of the matrix ¢, and the formulas (21) hold with j = 2, p = 1. On the strength of
(26), (25), (21), we have v =1 and

0 0
_|e 1 - 2
Co ‘[—! o]- G‘[o 52(|a)|+0ff) ] i
In our case, the system (30) becomes

Cll'; =a3. é} =—af (44]

We calculate ¢ from (37) and compose the system (38), taking into account the relationships (41).
Thus we obtain

Q11 =203 +q0y;. 012 =011 - 022 +9012

) 2
Q2 =—20;; +902 +q71b? (Iﬂd"'Qﬁ;] L
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g=2-%b0f} ([“!|+Qﬁ)(QIJQZJ"Q§2)_%

Let the initial set M at £ =0 be a circle with the radius € and the centre at the origin of coordinates
in the x x> plane. Then, we have

a;(0)=a;(0)=0, Q;)(0)=03(0)=52, 0;,(0)=0 (44)

The system (42) under the initial conditions (44) has the trivial solution @ = a2 = 0. Then the
system (43) becomes

O11=2Q), +bOf H-!
012=02- 01y +b0y Q0 H (45)

Osy=- 202 +b0y 02 H! +bH

H =[2(QHQH 5 Q;"z)]%

Note that the right-hand sides of Eqs. (45) are homogeneous functions Qyj, and the equations are
invariant with respect to the transformation Qjj — AQjj with the parameter A_ Hence, without loss of
generality, we can set £ = 1 in (44).

Results of numerical solution of the initial value problem (45), (44) with b = 0.8 are presented in
Fig. 1. Knowing the functions a = 0 and Q;j(r), we can eslimate all possible solutions of the system
(40) under all admissible disturbances c?) on the strength of (9).

8[Qy®
6
4
o, -V
|
; ﬁ{"/oy
— -

0 02 04 06 08 1.0 1.2

Fig. 1 Time History of Q)
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Conclusion

The estimates presented in the paper make it possible to evaluate the influence of parametric
uncertainties and disturbances in linear dynamical systems,
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Abstract

The nonlinear dynamic optimization problem (NDOP) Ix0),{10,T]) on the time interval 19, T] from the initial
state x00 is considered. If the NDOP is multicriterial or game-theoretic, there exists a rich variety of optimality
principles each one consisting from a set of optimal decisions. Denote one such optimality principle in
NMxp.f10.T]) by M(xp.[t9.T]). For a given optimal decision m (x0.[t0.T]) € M (x0.[t0.T]) let X (1} be the
corresponding optimal trajectory. Consider NDOP subproblems along X ()I7X (1),[t. T]). 1€ [10.T]. Let
M(X (1. [1. T]) be the corresponding optimality principle. Denote by m (X (1).{1,T]) the trace of optimal
decision m (x0.[t0.T]) in subproblem [T X (1).{t. T]). The optimality principle is called time-consistent if for
every m (x0,[10.T]) € M (x0.[t0.T]) the trace m (X (), [t T) € M (X (1),[.T]) Most of the classical
optimality principles in NDOP [7x0.[10.T]) (as Shown in (Petrosjan, 1993; Petrosjan and Zenkevich, 1996)) are
time inconsistent. The "agreeable solution” (Kaitala and Pohjola, 1988} as an optimality principle in NDOP is
considered ils time-consistency investigated and the regularization procedure which guarantees the time-
consisiency of the regularized optimality principle proposed.

Keywords: Agreeable Solution, Nash Equilibria, Pareto Optimality, Time-Consistency.

Introduction

Consider a two-person non-zero-sum differential game 77x¢), [t T]). where the duration T - tg of
the game is fixed but in our case may take also infinite value.

The motion equations are

x=f(x;u.u),xeR", y el c R, i=121 e[tﬂ,T]

x(1y) =Xy ()
The payoff of player i is given by:

'Ki(xl‘l[‘rﬂ' TI'“I(')'“?('))= Ie‘ﬂ(l-fq)gj(x[l),uf(f).H}(I)]df, g 20 i=l2 (2)

‘a
where { is the discount rate. We assume that the state trajectory is uniquely defined on ¢ € [rﬂ, T]
by the initial conditions x(#g) = xp and by the strategy pair () = (u (), u2(3)).

If the players agree to cooperate, then they play the open-loop strategy pair
u'(t)=(uj(t).u3(t)) which generates a Pareto-optimal (PO) payoff vector
T
Au(salto 7= K rolto T (03 0)= feortro (o), i=12
L]

(3)

Presented at the Ninth Workshop on Dynamics and Control - DYNCO, Rio de Janeiro, RJ - August 11-14, 1986.
Technical Editors: Agenor de Toledo Fleury and Hans Ingo Weber.
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Denote by x°(1) the corresponding state trajectory generated as the unique solution of the
differential equation:

x(t)=f(x(t)uj(t)us(t)), x*(19)=xg

If the player do not cooperate, then many options are available for the computation of the
disagreement point (DP). Indeed, one can assume that the players implement open-loop maximin
strategies, or one of Nash equilibria (Nash, 1950) in feedback or open-loop strategies, if it exists.
Denote by E(-)=(iff(-),i¢'2(-)), the chosen disagreement pair of strategies. Let X(f) be the
disagreement state trajectory resulting from implementing the disagreement strategy pair

a() =(i?,(-), i}(-)) . Denote by

w,-(xg[l‘g.T])—I ~pf1— fa)g,( ()u ( )"‘2( )}1, i=12 (4)

the payoff of player i, i = /, 2 obtained for the chosen disagreement strategies.

We restrict our analysis only to those Pareto payoffs that satisfy (global) individual rationality
condition, called in the sequel admissible Pareto payoffs, that is

A(xolt0.T]) 2 wi(xot0. T]) i=12

Consider the family of subgames 77x”*(1),{t9.T]) along the cooperative Pareto-optimal trajectory
).t e [tn.T]. As in I'txg (1), [tp. T]) we introduce the cooperative and disagreement solutions in
subgames 77x"(1),/tg,T]). From Bellman's optimality principle it follows that the pair of open-loop
controls u(7) = (uj(7.u2(7). 21, which coincide with u.(r)=(u;(r),u;(r)) on time interval
[t.T], forms a cooperative solution in !Tx'(f}.(’rg 7)) (Bellmann, 1957). Corresponding payoffs are
given by

(=" (0)]r0.7])= j‘enwr—!)g‘.(x'(r).u}(f).u}(r))dr. i=12 )

Denote by wjix *().[1.T]) the noncooperative payoff of player i, i = 1,2 in the subgame
Ix (t) [t.T]). These payoffs are computed with the initial condition x(1) = x r’!) and by inserting the
appropriate pair of strategies (maximin, a feedback or an open-loop Nash) in (4) starting from t.

If the players cooperate from the starting date until the end of the game, then each player will get
his (total) Pareto-optimal payoff given by (3). Recall that we have restricted admissible Pareto
payoffs to those satisfying (global) individual rationality. This restriction does not guarantee that
individual rationality property will be satisfied at any intermediate date. Indeed, it may happen that at
a certain #, f € [tp, T/, one player may find it advantageous to switch to his noncooperative strategy.

The Time Consistency Problem
In this section we construct an allocation mechanism of the Pareto payoffs that insure time
consistency or individual rationality at any 1, ¢ € [tp, 7] of the cooperative solution.
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Definition 1. The function f;(7) is called a Payoff Distribution Procedure (PDP) if it satisfies

T
Ie‘ﬂ(‘"n)ﬂ,(r Jat=2,(x.[t0.T]). i=1.2 ©6)
fo
_ Definition 2. An admissible Parcto-optimal solution is called time consistent if there exist a PDP
pair A1) = (B1(1). f2(1)) such that:

T
jg"ﬂ( Tto) (1 )dr 2 e'P(‘-'o)w;(x‘(r),[r.T]), i=12 (N

!

Proposition 1. An admissible Pareto-optimal solution is time consistent if:
(i) The functions w;(x*(1),[1,T]).i=1.2 are differentiable;

(ii) There exist a nonnegative function 7;(1), ¢ € [tg.T], such that the following conditions are
satisfied:

7
Ao Jto. T])-wi(xo [t0.7))= Ie-p(f-'.)q,(: )dt, i=12 (8)

]

Then Si(1} from (7) can be computed by formula

Bil0)= (=" () [1.T])- o (x°(OMfe. T m (). i=1.2 ©)
Proof. Define the function #;(1) by

T
‘[e—prr-:uﬁ,.(r)drsa,(r). teftg.T) =12 (10)

1

From (6) it is easy to see that ¢1g) = Aj(xp.[tp T}). Further, from (6)-(7) it is apparent that

1;("0-[‘0- TD:ﬂ‘ﬂ) B w,-(xo,[r,,, T])

Inequality (7) can be written equivalently

#1o) 2 e-ptr-to)w(x*(1)[0.T]). i=1.2 (11)

Introduce a nonnegative function ;1) satisfying

M:)—w,—(u=e—m-=aJw,-(x‘(;),[;.T]], i=12 (12)
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Suppose (1) can be constructed such that

r
wilt)= Irp(r—wm(r)dr. n(f)20. i=12 relT] (13)

r

From (12) and (8} we have the following initial condition

vilta)=8ilto) - wi(xo.[to. T =4:(x0.[t0. T]) - wilxo.[te. T]) =12 (9)

Differentiating {12) leads to

Bi(t)=pwi(x"(¢).]¢. r])---w( ([ T+ mle). i=1.2 (15)

which proves the proposition.
We now construct the function n;(t}, that satisfy (8). in the finite and infinite horizon cases.
If T'is finite, then we take

Aj(xp.lfg.?"l)- w,-(xa,[ro. T]

f£)=
n( e

epl(i=1,) (16)

which obviously satisfies (8).

If the game horizon is infinite, then we take

n(t)= {ii(xn-[fn, TD‘ W;(xu-[‘u» T])} an
which obviously satisfies (8).

Although the PDP defined guarantees that each player will get exactly his total Pareto-optimal
outcome carned for the whole game, it does not insure that B is nonnegative at each instant of
time. In some economic applications it may be undesirable, if for instance borrowing money is not
feasible, that f;(#) is negative on some time interval. In the following proposition it is shown that
under some conditions we can construct a PDP insuring that fift) is nonnegative at any ¢,

It follows from (9) that the nonnegativity of fGi(t) is satisfied if

o (x (O fe.]) 2 S (7)) ¢ efto.T). =12

Corollary 1. If the discount factor p = 0, then the condition (9) may be rewritten in a more
simple form

Bi(e)=nile)-wi(x"(e).T-1). i=1.2

Corollary 2. If the discount factor p= 0, the condition of the existence of an agreeable solution
with nonnegative PDP Sy(1) in the case of differentiable w;(x*1). 7 - ¢} has the form
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wi(x"(0).7-1) <0, 1 €[t 7] i=12

Consider now as a cooperative solution such an open-loop strategy pair E(r]=(§,( (i )) and

corresponding trajectory X(¢) . which maximize the sum of players payoffs, then we have

2 2
S K, (xo T*fo-'ﬁx(f)»fz(f))=:?:a"-:Z;K‘-(xﬁ.T—za;u,(r],uz(r))=v(xa,T—r,,)
(18)

in I'fxp, T - tp). and

'_:ix,(f(:].T—.r.-E,(:],iz(:))=ﬂfgfgx,(f(:),T—r,-u, 1) uy (1)) =v(%(), T—1)
(19)

in the subgames F(x(.'), T- {) on the optimal trajectory (), t € [ty.T ] . Suppose that the payoffs
are transferable. then devide the total cooperative payoff v(x,,.T—rﬂ], according to the Nash
bargaining solution (Haurie, 1976 Nash, 1950) we get in the game f‘xp, T- ro}

V(Ia.?‘-:u)_ ij(xgu T—fa)
‘;’ . i=12 (20

2,-(,1‘,,. T— f”)= w‘(“-ﬂ'?‘__’ﬂ)_“
and in the subgames correspondingly
7 "(’?(‘)-T*’)—éwi(i(:),r_;)

Definition 3. Suppose f1) = (B(1). f2(1)) is an PDP in the sense that

i=12 (1)

T
j'e-u”-fu 1Bt )t =A(x0. T=10), i=12 (22)

ty

then PDP St is called time consistent if the following condition is satisfied
r‘
Ai(x0.T-19)= Ie'Pff“n»‘ﬂ,(r)dr+e'ﬁf"fo35.,(f(t).T—r) (23)
"ﬂ
The following proposition is similar to proposition 1.

Proposition 2. If the functions V{E(!), TLI), w,(:?(t), T—!),t': 1,2 are differentiable then the

time-consistent PDP f(1) exists [f S [!,,, T
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Proof. Differentiating (23) with respect to 1 we get

0=e=P(1=to) B;(t)+e=0('~1a) ;(3(t).T—t)- pe-r(t=ta) 2, (x(t).T~t) (24)
Bi(t)=pA,(%(¢). T-1)-2;(x(s). T-1) (25)
Using (21) we get from (25)
ﬁ,(!)=%{;{w,—(f(!].T—r]-l-v(.?(i‘).f-f]— w;_f(f(r).r—;)] =
~[wi(F0) 7= ) v (Fe). T o) i (0. 71

Corollary 4. If the discount factor { = 0, the formula (28) can be rewritten in a simple form

26)

1 = = =
Bit)=-7 [WilE (). 7= ) +v'(%(0). = 1) - wi(%(0). T- r)] @
Definition 4. The PDP 1) is called strictly time-consistent if in (22), (23) we have an additional
condition (1) 20.
Using (27) we get the strictly time-consistency conditions for the case p =0

v(E(e). T 1)+ wi(Z(e). T—1) < wi_(%(e). T1), 1 €[tp, T} i=12 (28)

Regularization

Definition 5. Let the set 4 < R™ be given. The vector @ € A is called weakly Pareto-optimal
(WPO) in A, if there does not exist vector @’ € A, such thata’' > a.

We shall denote in this section by P(x(, T - tg) the set of all WPO controls in /7x0,T - tg), and by
X(x0.T - tg) the set of all corresponding trajectories in [xp, T - tg).

Here we propose a regularization procedure for a weakly Pareto-optimal solution in I7xp.T - fg).
Let
(%0, T~1g)=[A1(%0. T—tg ). A2(%0. T~ 1))

be a weakly Pareto-optimal (WPQ) payoff vector corresponding to some WPQOS E(t)=(i;(t).i;(r])
in dxa,T_fa).

Suppose J?(r] € X(xa, T—ro) . Denote by P(E[r), T—r,,) the set of all WPO controls in the
subgame ITE(J'), T—ta) and by X(E(r), T-ro) the corresponding set of all WPO trajectories in
nx(e). 7-1).

Let ©={6,.0,...6;..}.6;.€[t;,T] be an infinite sequence such that
G, < O, k=1,...1, ... Introduce the following controls
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(#1(1) € P(xy.T=1), 1€[t5.0,),
ul(t) e P(zf(e,) T-0,), ! E[@,.Q}).
e e (29)

if the sequence @ is infinite, or does not converge, and

(Ti(1) € P(xg.T—ty), 1 €[1y,0)
ul(t) e P(x1(©,).T-6,). 1€[6,.6;)

u()=\ik(1) € P(xk~1(0y_|).T-O4_1). 1 €[4 1.0). (30)
u(1) € P(X(6).T-6), te[O.T)

where  @= lim ;. In (29), (0) F/(1) € X(x9.T~10).32(e) € X(z1(,)7-8,)....
i""[:)EX(E'H(Q,E_;].T—9;‘,;)....:?(9)=*11'.:r;i(6k).f 1) eX(x(6).7-0).

Denote by £(f) the trajectory corresponding to a(r) = (;(t). i, (t))

For each fixed sequence @ define the set of all possible control pairs (r) =(i;(t). 4, (t)) .

P5(xp.T—1). of the form (29), (30).

Let P(xg.T—t9)=UP5(xo.T~1p).and X(x,,T~1,) the set of all corresponding trajectories.
o

Thus for each ﬁ[ ) € ﬁ(xﬂ T—lo) there exist a monotone increasing sequence e= 19; } such that
#(t) is WPO in subgame l'(x ).T- 91) for t El@k ,@4,y) and #(f) is WPO in
!'(1(6']‘ T-G) for 1 €[@.7) if© isalimitof {6, }.

Definition 5. The set P(xy.7~1,) is called the set of regularized weak Pareto-optimal controls
(RWPO). Each u(r) €P(xy,T~1,) is called RWPO control. The state trajectory corresponding to
u(r) € F(xa , T-fa) is called RWPO trajectory. The set of all RWPO trajectories in F(xa, T—to)
is denote by X(x,.T-15) .

It is obvious that P(xy.T-19) > P(xy,T~tp) and X(xo.T—19) > X(x9.T~ty), consider
e.g. the case when the sequence ® consists from one point T,

Definition 6. A RWPO control i()=(i,(¢),@,(t)} € P(xy.T—tp) is called an agreeable
solution of I{xp.T~1) if forall ¢ €[ty.7]

T

[emete=g(i{)a(e)ia(e))dr 2 wi(2(0).T- 1) 31

1

fori=1,2.
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Remark. Definition 6 is a special case of Definition 2 if one in Definition 2 instead of a PO

trajectory ¥(t) considers a RWPO trajectory %(r), and g;(r)=e=o("~to)g;(%(t) i ().i;(¢)) (which
is always nonnegative).

Suppose that the disagreement payoffs w(xo,?"-—rn)=(w,(xa.1’-r,]. w;(x,,.T—rg))
correspond to a Nash equilibrium in /{xp,7—t;). Denote the Nash equilibrium by
a()= (@ ().1,())-

Proposition 3. If the disagreement payoffs correspond to some Nash equilibrium if() in
lTxﬂ, T-Io] and functions gj(x.uj.up) <M are uniformly bounded, then there always exists an
agreeable solution of /{x,.T—1,).

Proof. Suppose the ii() generates a pair of WPO payoffs. Then the state trajectory .i(l)
corresponding to %(-) is WPO and the open-loop controls ":I,(}‘(r)):“ﬁ,(r) i=12 will belong to
P(xg.T~1y) and hence to P(xy,T—1y). But along the Nash equilibrium trajectory we have

J‘,—m-ug,(;( r)iiiy(). i) )ar = wi(X(e). T~ 1) A

forall i = 1,2 ¢ €[ty,T]. This means that the WPO open-loop strategy pair u(f)=(g,().%()) is
an agreeable solution of /(x,.T-¢).

Suppose now that E(z)=(§;(r),i§2(r)) is not WPO. Then there exist WPO control pair

E-'(r]:(ﬁ'f(t).ﬁ'}(r)) such that the payoffs when using @' (f) strictly dominate the Nash payoffs,
ie.

T
Ie'P('"u)g,(f‘(!).’if(f),ii(f))dt > w,-(i'g.T— f). i=12 (33)

le
There may exist many WPO controls #'(t) satisfying (33).
Denote by ¥/(¢),i/(¢).&] (r) the WPO trajectory and corresponding controls for which

min Ie'P("'o)g,-(?f(r);f,‘(:),fj’[:))dr— w,(xa.T—:n)} =

fa

n| {e-Ar—to) gil % 1(e): w1 {(0).51 (¢ el s
"'{'Hf]-'ﬂ'!}ﬁ’[x.r-;.]lm [.[ o) gi{/(e): 5] (0). 5 ()}t — wy(xo. T~ }” 0-

If also the following condition is satisfied, 1 €[, 7]
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T

flerste-tedg (1 (2 0 (.74 (e 2 o (51(2).7) =

I
i=1,2,
then ff(r}=(§f’(r),fj(r]) is an agreeable solution,

Suppose on the contrary that (34) does not hgld for all ¢. Since the function on both sides of (34)
are continuous in ¢, there exists an instant &, € |f,, T] which is the first time at which

ferAr=81)g,(F1(2).7 (x). 7 ())ar = wi(5(8:).7-6))

or

T

[eAr-enlg,(R1(e). 7 (2) T (2))ar = wy(F(61) 7-)) 39

Cd

Since WPO solution is time consistent (see [6]) the payoff vector
T
j'ew—sdg,(f:(r}.-f,l(r),f;(f)}dr . =12
8,

is WPO in subgame f{?(@,),?‘—rg) . If in the same time the pair of payoffs in Nash equilibrium in
subgame I‘(§(6 1) T—rg) u{§(6 )T - lo) constitutc a WPO payoff pair, then by the definition the

open-loop control u(t)=(3(r).i,(¢)). defined by

8

i=12,

|

(1), t €[t.0,]

(%(1)=w(e). 1 <[o,.7])

{

B

where @(r) is WPO in I'(x).T~15) and @(-) is Nash equilibrium in 7{X(6).7-) is a RWPO.

For i(t) and the corresponding trajectory ¥(¢) the following conditions are satisfied, ¢ €[1,, 7],

T

JerArro)gi{(e) i () s e 2 wi(5(0).T-1). i=1.2

r

which means that ﬁ(!) is agreeable solution.
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If w{ff(e,).r-a,] is not a WPO payoff pair, then there exist a WPO control in

r{z(e).7- ©,).i?(¢)=(7 (¢). %3 (1)) such that the following inequality holds

T
je-p{r-ef]g;(;‘f(r),-f,?(r),ff(:)}dr 2 w(3(0,)T-0,) i=12 (36)
9,
(here ¥°(@,)=x'(@,)).
There may exist many WPO controls 7 (f) satisfying (36).
Denote by x°(¢). % (¢). 5 (1) the WPO trajectory and corresponding controls for which

min| [e-ri-to)g,(72(0). 72 (0). 52 ()t - wi(71(0,).T- ) | -
o,

T
= max Amin| [eAtlg (22 (0)ap (1)@ () - w (0, T-6,) |} > 0
e-fa()a0e| | g
eP(¥(@,).T-8))

If also the following condition is satisfied for ¢ € [9 I T]

ferrte-tohg (2(e):77 )T (e e 2 w (7200 T~1), 1=1.2 @

then &?(¢) is an agrecable solution in /(X/(@,).7-©,) and

a4 {E:(.-).  €[19.0)]

Ez(l). t E[@,. T].

is an agreeable solution in 7(xy.T~1,), since () € P(xy.T~1,) by construction.

Suppose on the contrary that (37) does not hold for all 1. Since the functions on both sides of (37)

are continuous there exist an instant @, € [19;. T] which is the first time at which

J‘e-p{r-eﬂ 2i(F2(0): 7 (2).58 (2)Jar = w,(72(6,).7-0;).

a,

or

Ie"" O gy (¥2(x):uf (v).u7 () )dr = wa(32(6,).7-6:)

e,
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If now W{?Z(@;).T—Q‘w) is a WPO payoff pair, then by the definition the open-loop controls

i(r) = (i (t). (1)) , defined by

a!(1). t €[to.0]
(1) =45 (r). 1€[©,.0,].

where /() is WPO in /{x).T~1,).a2(1) is WPO in 7{¥/(®,).T~@;).ii() is Nash equilibrium
in !‘(f{@;). T- (92] is a RWPO and the following conditions arc satisfied ¢ € [rﬂ ; T],

T

J'e“""""g,(i(f)-'ﬁr(f)-‘;_‘[f))df2 w,-(_I'(r).Tur), i=12 :E[r,,.?‘].

!

which means that ﬁ(!) is agreeable solution,

It w{;[S':,) T~93) is not a WPO payoff pair then we proceed in the same way as we have done

at moment &, . Continuing this process we may have the following possibilities:

frnlr—emlg,(it-f(r).-i,*—f(r)i,*-f(:)}dr =wy (T4 (04, T-64_;). (38)

;
I"”(r‘s“]&?(f'"'(’)-’5:*-"“)52*4(’))‘1’ - Wz(f""{et-:)'r—at—f)

LT
(39)

the payoff vector in Nash equilibrium in subgame
,‘(X=* "(Sk_;}.T—G*_;)(w;(i*‘f(ﬁl_;), T—G,‘;), Wz(?l_'f(g*_f).r— 9*_})) is WPO.

2) Continuing our construction we never come to the case 1) and in the same time the sequence

O= {@k} has no limit points (which means that if 7" < co the sequence @ will consist only from a
finite number of points).

3) Continuing our construction we never come to the case 1) and in the same time the sequence
6={6,} hasalimit point lim @, =6.
k—+x

It can be easily seen that in the case 1) the pair of controls ﬁ(:)=(ﬁ;(!).ﬁ;(:))
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! (1). t €[t.0,]

i(1)= "Ej;'-"f'(':').” ( €[O4-2.04-1])
a(x(1))=w(r) ¢ €/@4-.T]
i=12

is a needed agreeable RWPO in F(Xg T- ra) . Here
Ef(:)eﬁ(xﬂ.r—:,,).....ii(:)eF(?f-f,T-e,,,,),__J:J.....k, and () is Nash equilibrium in

l'(?*—f(éh ). T- 9&-:}-

In the case 2) the control pair

w!(t). t €[ty 0]
i) E,*(r] IE{Qi_;G* | A
=h2
15 a needed agreeable RWPO in MNxp. T-1y). Here
wl(t) € Plxy. T=ty)...., wk(e) e P51 (04_))) T~ 84y

The case 3) is more complicated. It can be shown in  this case

that w{i(@). ?'—6)=(w,(£(8). T- Q), w;(x’[@), T- @)) is always WPO, And thus the control pair
i (1), t €[t9.0,].
i (1)=4 @+ (1). 1 €[@_;.04)

u(%(e))=ulr) tef0,1)

is a needed RWPO in G(xq, T -ty ). Proposition is proved.
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Abstract

In this article the notion of G -independence of two sequences has been formulated in the terms of their joint
statistical regularity. The example which illustrates the construction of the statistical regularity of the sequence,
taking values from the finite set, has been given.

Keywords: Siatistical Regularity, G j-Independence of Two Sequences, Finitely Additive Measure.

For describing the independence of two sequences which are not necessarily statistically stable
the notion of G j-independence was proposed in the monograph of Ivanenko and Labkovsky, 1990,
This notion uses essentially the loss-function /(.,.), where /(.,. ) is some real bounded function.

For convenience we cite here the definition of G j-independence:

Let X and ¥ be arbitrary non-empty sets, and @ = XN, U = YN - sets of all possible sequences of
their elements.

Definition, We  will say, that the sequences {9,,](9,, e XV, e N] and
{un}(uy €YV, € N) are G)-independencc or they are in the relation G, c Ux@ (ie.
([u"}.[ﬂn})eG; or {6,] EG;({H””) if and only if for any € > 0 we can show the finite
subdivisions

X=X, Y=Y K . IxJ=E4+E)
iel Jed

of the sets X, ¥, and / x J onto non-crossing subsets when the following conditions are satisfied:

Il. sup |I(x;‘y;)-f(-rz-)’2)| <eV(ij) €E
x.56X,
}‘r-)‘;E};

N N
12. ﬁmﬂlr Z! (8, )!":(“ ]-———Z ,,] Z u,,:) =0 Viel, jeJ

n=| ny=l

N—ow | (if)ekp

4 N ] N
13, hmsup[ N ?Ef“"’(g")!"f("”“g
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The notion of Gj-independence is of great importance in the solving the task of minimization the
average losses under condition of indifferent uncertainty.

When we say about the average losses under condition of indifferent uncertainty, we mean the
next situation: the uncertainty is begotten by the fact that the value of some parameter 0, taking
values in the given set 8, isn't known. There are also given the set of possible decisions [/ and the
loss function /(6u) which determines the loss when the decision is u € I/ and we know the value of
parameter 6 € ©. We consider the sequence of independent choices {up}, and it is supposed that the
appropriate sequence of values of the parameter 6 - {0,} does not depend on the decisions being
n;lm:!cA The task consists in the minimization of average losses upon the whole infinite sequence of
choices.

The general mathematical apparatus for describing statistical regularity of, so called, sampling
directedness was elaborated in the work of Ivanenko and Labkovsky, 1990 (for more details see
Ivanenko and Labkovsky, 1990, p. 50). Any usual sequence can be regarded as a particular form of
some sampling directedness. This apparatus was applied to elaborate the general decision theory
which includes as a particular case the theory of stochastic (bayesian) decision and the theory of
minimax decision. But the connection between the property of G -independence of two sequences
and their joint statistical regularity wasn't established.

Let's introduce some notions:

Let PF(X) be the family of all finitely add:mre probability distributions on the set of all subsets of
the set X, i.e.

PF(X)={pe(2x>[0.1]): o(X)=1.
p(AUB)=p(A)+p(B\ 4) ¥ A, Bg X}

Let M(X) be the Banach space of all real bounded functions on X, 7X) - the *-weak topology in
PF(X), generated by the system of vicinities

vt . (p)={p' € PF(X):|pfi-pfi| <&.Vieln) neN, £30.f).fy....fp € M(X).

and pf = [f(x)p(a'x) (in a natural sense of the integral over the finitely additive measure; for
X

more details see Dunford and Schwartz, 1958).

Let's designate by P(X) the union of alknon-empty closed in the sense of topology 7(X) subsets of
the set PF(X).

With every sequence {x f XN we will associate the set P({x,}) of the limit (in the sense of
(X)) points of the sequence { pl"/;n € N} where

P (4)=

3['--

i I(x) vae2* (n

From the compactness of the topological space (PF(X), ©(X)) follows that the set P({xy/) is non-
empty, and besides this fact, it is obviously that P({x,/) is closed; hence P({x,}) € P(X). We will call
the set P({xy}) the statistical regularity of the sequence {x,/}.
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Theorem 1. The sequences {0,) and {u,} are G|-independent if and only if their joint statistical
regularity P({6,,).{un}) (i.c. the statistical regularity of the double sequence {(9,,_;:,,)}3; ;) has the

property: for any € > 0 we can show the finite subdivisions

X=)x;. Y=Y, . IxJ=Es+E
iel iet

of sets X, ¥, and / x ./ onto non-crossing subsets when the following conditions are satisfied:

Cl.  sup |!(I;.,V;)"’(x2'}’2)| <EV (f'j) € £
xpxp X
yi.y2€¥;

C2.For Vp, € P ({3,,},{1{,,}] and for ¥ (i.j) e IxJ
po(X; x¥;) = po(X; x¥)x py (X ¥ )=0

C3. For Vpy € P ({0} {u}): Zpﬂ(x,. x¥,)< e
(i) eEy
Proof. Let's prove "if" assertion of the theorem.

Let the sequences {0,,} and {uy,} be G-independent. Let's show that in this case the conditions
of the theorem are fulfilled.

Let's fix some € > 0 and the corresponding subdivisions {Xifi.f . (Y;}jes . Eg . E]. Then the
condition Cl of the theorem coincides with the condition [1 of the deﬁmnon of (;;-undcpendcnce
Let's fix arbitrary subsets X; and Y; from the subdivisions of sets X'and ¥ respectively. And let pg €
P({ 6} {un}).

We designate the sequence {Cp(X; Yj)/,

(x:.1) —-E: (CATHCRE N:Z’“’( ,,J)xZJ,,}(u,,?) (2)

=] m=1 ny=1

According to (12)
hgs_Tm(?N(x,'rj)w V(i) el xJ (3)

By the definition of the statistical regularity pg is a limit point of the sequence {pp/ in the
topological space (PF(X x ¥), (X' x ¥)).
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N
p~(4x3)=%214(9,,):,(u,). VA € 2X VB €2 @
k=]

Therefore subdirectedness g(g: T PF (X x })) of the sequence (p,,/ exists that
li = 5
im g = po &)

e g —T>pa in the topological space (PF(X x Y), ofX x Y)). According to the definition of
subdirectedness Fh: T — N that g; =phgyand Vg e NJtg e T Vi2tgh(t) 2ny

As follows from (5) for any vicinity Ufpg) of point pg 7 tll{poj e T that for t = tu(po)- gt €
Ulpg).

Let Iy piew be the indicator function of the set Cx D, ie.

_JLif w eCxD;
lew(@) _{0, otherwise. (6)

Let's regard the vicinity Uy, (pﬂ)‘ From (5) follows that for ¥ 6 2 0 315 e T that

LR PR T Ol .\'1}'}

&
/ =
g €U Ijxy, Iy xydexy; {P.y) when 1 2 15,

e (7)

2 (X< ,)-po( X, x| < 8, (8)
|g,(x,xr)—pa(x,xy)|<a. 9)
|2 (X x3,)-po( X x1,)| <5 (10)

where g,(4x B)= I!m(w)dg,.
Xx¥

Let's regard the sequence of vicinities U/’ , | (py), _,* . According to (5), ¥in
ey cnrylany

ENFtyeT: g eUl/m . (pg) Vi2up

Nayy "x‘a vy
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Let H™ ={n|nEN.n=}(1) t2t, te TI . We define the subsequence of natural numbers
Nk,

N;=min n|n eN and n e Hf}.

N, =min nln eN,neH? and n> nf}.

The next assertions are true:

fr 7)),
;'i”:nPN,(Xi x ¥)=py(X;.Y), n

lim py, (X x¥;)=po(X.Y;)

k—vm

And then
llin:opﬂ' (.‘(, x l”j)— PN, (.’(, x Y),x py’(.\’ x l}):pﬂ[.k', * }_’_,-)— oo X, % }').xpu{.lt’ x I,)

As far as {(.‘N.] is a subsequence of {Cy} and because of (3), we have

po(X, % YJ)—pu(Xj x }’),.rpu(X x YJ)=(J . Thus we prove C2.
To prove C3, designate {Dy |,

] N
Dy = EER PR, i
) (r)ekg N E; ’f( ") r,["n) o

Then condition 13 of G j-independence we can express as

limsup Dy < & (14)

N—ox

Just as we do, proving C2, we can use the finiteness of Ep and pick out the subsequence {py/} of
the sequence {pg/ that

lim > e (Xixt)= D po(Xixy;)

(i.j)eE,y (id)ekq

But from the other hand Z PN, (.J(,- x l’J)x Dy, , and therefore
{i.))‘—fa
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limsup Dy, = lim Dy, < & (15)
ko kb
So we proved that pg(X, x }J) €&

fj)eky
To prove "only if‘( assertion of the theorem, assume that the conditions of the theorem are
satisfied. We have to show that the sequences {8} and {u,} are GG ;-independent.
Let's fix arbitrary € > 0 and corresponding subdivisions of X. ¥, and I/ x J.

Condition C1 coincide with I1. Let's show that C2 = [1. We will prove from contrary, Assume
that 7.X; and ¥; that

tim Cy (X;xY;)=0 (16)

N—som

Then 3 a # 0 that for some subsequence of natural numbers {Ny}

lim Cy, =a #0 (17)

Nom

The sequence of measures { Py, ] has some limit point pg (because of compactness of (PF(X),
1(X})). hence pg € P({ 6/, {up}). The measure pq satisfies the condition C2 for ¥X; and Ij

Po(Xi x ?})—pg(.f,- x Y)xpa()(x }}):g

o

Just as in the first part of our proof we can pick out the subsequence {pN* } that
m

m={

ll:.if:npN*u ('x'I o }})'_'Pg(xf x Y’i)r

Jim py,_ (X, x¥)=po(X; xY).

lim py, (X x¥)=po(xxY;)

Then
im {pNh (Xixt)-pw,_ (XixV)xpy, (¥ ]’})}npa()('; <Y, )= pyl(X; x Y)x py (X x¥,)=0  (and
we remember that Cy,_=Pn,, (X,- x Yj)— PN, (X, x¥)x PN, (X x Yj) ) but

lim Cy,

k
e m
So we obtain the contradiction which proves that our assumption is not true. Thus from C2 = [2.

= a # 0 by our assumption,

We can prove that I3 follows from C3 just as we prove C2 = 12,
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The previous theorem makes possible for us to consider the task of making decision under
indifferent uncertainty in the light of general decision theory (see Ivanenko and Labkovsky, 1990). It
is obviously as well that the tool of statistical regularity is very useful for the studying events
which are not necessarily statistically stable.

Unfortunately, generally the structure of the statistical regularity is very complicated. But it turns
out that one can build the statistical regularity of the sequence which takes values from the finite set
(i.e. the set has finite quantity of elements).

Let X be the set which consists of finite quantity of elements, i.e. X = {x}, x2, ..., xp). Let {0,}.

Theorem 2. A finitely-additive measure p € PF(X) belongs to P({8,}) if and only if the sequence

N
of measures {p”[pﬂA):%z;lA(a,) Jor VAGJX] contains the subseqnmce{pﬂk} that

lim py, (4)=p(A)V 4€2”.

Proof. To prove the "if" assertion of our theorem we should consider the subsequence of the
vicinities {V,(p)].Vdp):{p' € PR(X)|pf-pf|<t Vf € {;A(m)_-,q ezx}}, Just as
in the first part of the proof of the Theorem 1 it can be shown that exists py, €Vx(p) V ke N .

Therefore ihm Py (A)=p(4) for v 42X

Let's proof ‘"only if* assertion of the theorem. Suppose that for some
pE PF'(X) ¥ *Hm Py, (A)=p(A) for ¥ A€2” . It is obvious that any bounded function
—m

/- X = R can be represented in the following form

flo)=4,1, y (w)+4 21,‘,(m]+ S A,,,!’,_{aa), where A, = f(x,)
0, otherwise.

I (m)={!,{'fw=x;

pl= If dP= J‘(’II{\', +"12‘I1, +-'-+’1m!.r~)dp=iii x P(xl') (18)
X X

i=1

Just as in (18) pN,f=ZZ,- x py, (%)
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According to the conditions of the theorem ﬁ:’; P, (x,]= p(x,—) Vx eX, therefore
Py S = pf when k=, ie. pis alimit point of the subsequence [pﬂk } . This means that p is
a limit point of {pN}, ie. p € P({G,,})

The proved theorem allows us to build the statistical regularity of {x N} when the set X consists
of not many clements. In this case we can pick out from {pN } all subsequences that for any of them
and for any A€2¥ the limit Jim % PNy (A) do exists. It follows from the theorem that the set

P({é‘,, }) coincide with the set of measures which are the limits of these subsequences.
Example

Let's regard the following sequence which takes values from the set X' = {0,7}:

0101001100001111000000001111111100000000000000001111
111111111 11100000...... and so on;

the rule of construction of this sequence:

the sequence consists of the series of zeros and ones; series of ones follows series of zeros; the length
of series of ones is equal to the length of the previous series of zeros; every next series of zeros has
the length that is equal to common length of all previous series of zeros; the first series is a series of
zeros which consists from one element,

It is easy to see that the frequency of "0" (p,,([ﬂ}) - frequency of {0}) when n — o is in the
next limits:

'—«-lN

2<p({0)) s

and for the frequency of "1" we have p,,({ !])= 1-p,(0).

The sequence of the frequency of "0" ({p,, (0)}} has such limit points:

Pn({ ) z

22" - P (101)= 3*2"'+k
m=0123 ... ke[02m AZ

and for the {p,, ({f})] we have:

Pra ((1)=1-phs (10)) and p, ({1})=1- P24 ({0})

respectively, where Z is a set of integer numbers,
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Hence the statistical regularity of our sequence is:

P({x"})z{P":'v*(']}me{o.r.z.s,_.}.kqa.zw]nz:U{pz'-*(')]me{u,f.z.s...}.ke{a.zn}nz;
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full non parallel to simplified parallel processing versions of algorithms, together with an adaptive approach
intended to give to these algorithms the features of good numerical behavior and of distributing the extraction of
learning information to all training data.

Keywords: Neural Nets Supervised Training, Neural Nets and Systems Modeling , Stochastic Optimal
Estimation Training Algorithms, Kalman Filtering Training Algorithms.

Mook, D. T, and Luton, J. A., 1997, “Numerical Simulations of Interactions Among
Aerodynamics, Structural Dynamics, and Control System", RBCM - J. of the Braz.
Soc. Mechanical Sciences, Vol. 19, No. 2, pp. 147-153.

A numerical simulation of the interactions among the structure of an aircraft wing, the flow around it, and the
devices that control the deflections of the ailerons is described. In the present simulation, the structure, flowing
air, and controls are considered to be the elements of a single dynamic system. All of the governing equations are
numerically integrated simultaneously and iteractively. The procedure is illustrated by an example of a very
high-aspect-ratio, very flexible wing. Instead of a simple formula for the aerodynamic forces, there is s rather
involved computer code. The input to this code, needed to impose the boundary conditions on the flowfield, is
the velocity and position of all the points on the wing. As the airspeed increases and the angle of attack decreases
in such a way that the lift force remains constant, the uncontrotled wing eventually begins to flutier. When the
controls are turned on, the flutter can be suppressed up to approximately twice the critical airspeed.

Keywords: Flow Structure Interaction, Flight Control System.
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Espindola, J. J., and Bavastri, C. A., 1997, "Viscoelastic Neutralizers in Vibrations
Abatement: A Nonlinear Optimization Approach"”, RBCM - J. of the Braz. Soc.
Mechanical Sciences, Vol. 19, No. 2, pp. 154-163.

A general procedure for the optimization of the parameters of dynamic neutralizers is presented. It can be applied
to the minimization of the vibration response and sound radiation of linear structures subjected to excitations in a
specified frequency range. Modal theory and generalized equivalent quantity concept for the neutralizers,
introduced by Espindola and Silva (1992), arc applied to a non-linear optimization scheme. The proposed
procedure can be applied to relaxed and time invariant structures. It is not dependent on the structure complexity
and the degree of discretization adopted. In such conditions, a significant reduction in computing work is
achieved, if compared with the more traditional methods.

Keywords: Vibration Isolation, Viscoelastic Neutralizers, Multidegree of Freedom Vibration.

Bachschmid,N., and Dellupi, R., 1997, " Malfunction Identification in Rotor Systems
from Bearing Measurements Using Partial Models of the System”, RBCM - J. of the
Braz. Soc. Mechanical Sciences, Vol. 18, No. 2, pp. 164-175.

A method for the identification of different malfunctions which cause only or mainly Ix rev. vibration
components is presented. The methodology is based on the model of the shaft alone, therefore avoiding the need
of a linearized model of the oil film and of a reliable model of the casings and foundation, and uses the vibration
readings in the bearings during coast-down transients. The resuits show that the method seems to be appropriate
to distinguish between different causes such as concentrated unbalances, coupling misalignments and
concentrated or distributed bows which could be produced by a partial rub (in a seal e.g.) or by a non uniform
heating or cooling transient (in a generator or a steam turbine during load variations), and to determine the
location along the rotor, the angular phase and the amount of unbalance or bow, in other words to identify the
position and the severity of the malfunction.

Keywords: Identification, Model Based Diagnosis, Rotordynamics.

Corless, M., and Tu, J., 1997, " A Simple State/Uncertainty Estimator for a Class of
Uncertain Systems", RBCM - J. of the Braz. Soc. Mechanical Sciences, Vol. 19, No. 2,
pp. 176-191,

We consider here a class of uncertain systems consisting of a nominally linear part and an
uncertain/nonlinear/time-varying part which can be regarded as a state-dependent/time-varying "disturbance
input", Using only a measured output, we present simple estimators which can asymptotically estimate to any
desired accuracy the system state and the disturbance input.

Keywords: Mechanical Uncertain Systems, Nonlinear State Estimation, Nonlinear Filters.

Rill, G., 1997, "Vehicle Modeling for Real Time Applications"”, RBCM - J. of the Braz.
Soc. Mechanical Sciences, Vol. 19, No. 2, pp. 192-206.

In the automotive industry enhanced conirol systems arc more and more developed by using hardware or
software in the loop techniques. For such applications an enhanced nonlinear vehicle model withreal time
capacity is necessary. The paper presents a multi-purpose vehicle model where real time application was made
possible not by simplifying the model but by using a special model technique, by adopting the generation of the
equations of motion to the specific problems in vehicle dynamics, and by using a modified implicit Euler
formalism for the numerical solution.

Keywords: Vehicle Dynamics, Real-Time Simulation.

Soize, C., and Le Fur, 0., 1997, "Weakly Nonlinear Second-order Dynamical Systems
Identification Using a Random Parameters Linear Model", RBCM - J. of the Braz. Soc.
Mechanical Sciences, Vol. 18, No. 2, pp. 207-216.

The objective of this paper is to present an identification procedure which is based on the use of a stochastic
linearization method with random coefficients. The model is then defined as a multidimensional linear second-
order dynamical system with random coefficients. An optimization procedure is developed to identify the
parameters of the probability law of the random coefficients. The identification procedure is described step by
step. Finally, an example is presented and shows the interest of the method proposed.

Keywords: System Identification, Stochastic Linearization, Identification Algorithm.



315

Flashner, H., and Efrati. T., 1997 " Tracking of Mechanical Systems Using Artificial
Neural Networks", RBCM - J. of the Braz. Soc. Mechanical Sciences, Vol. 19, No. 2,
pp. 217-227.

A method for tracking control of mechanical systems using artificial neural networks is proposed. The proposed
control law consists of a proportional and derivative control action, and a two-layer feedforward neural network
used for on-line approximation of the nonlinear part of the system dynamics. Tuning of the neural network’s
weights is formulated in terms of a constrained optimization problem and solved on-line using a projection
method. It is shown that the proposed control law yields closed-loop tracking error that tends asymptotically to
zero while the control effort is minimized. The resulting algorithm has a simple structure and requires a very
modest computation effort. The problem of tracking control for a two-degree of freedom planar manipulator is
used to demonstrate the proposed method.

Keywords: Control, Mechanical Systems, Neural Networks.

Rochinha, F. A., and Sampaio, R., 1997, "A Consistent Approach to Treat the
Dynamics of Flexible Systems", RBCM - J. of the Braz. Soc. Mechanical Sciences,
Vol. 19, No. 2, pp. 228-241.

The dynamics of flexible systems, such as robot manipulators, mechanical chains or cables, is becoming
increasingly important in engineering. The main question arising from the numerical modeling of large
displacements of multibody systems is an appropriate treatment for the large rotations, In the present work an
alternative approach is proposed leading to a time-stepping numerical algorithm which achieve stable solutions
combined with high precision. In particular, in order to check the performance of the proposed approach, two
examples having preserved constants of the motion are presented.

Keywords: Flexible Mechanical Systems, Multibody System Dynamics.

Chen, Y.H., 1997, "Control Design for Uncertain Systems Under Fuzzy Disturbance",
RBCM - J. of the Braz. Soc. Mechanical Sciences, Vol. 19, No. 2, pp. 242-252.

The problem of designing controls for dynamic systems under input disturbance is considered. We consider two
possible characterizations of the input disturbance: (1) it is bounded by a crisp number, or (2) it is bounded by a
fuzzy number. The control design is purely deterministic. However, the resulting system performance is
interpreted differently, depending on the bound information. It may be deterministic or fuzzy (i.e., with a
spectrum of possible outcome),

Keywords: Uncertain Systems, Fuzzy Set Theory.

von Bremen, H. F., Udwadia, F. E., and Proskurowski, W., 1997, "Computation of
Lyapunov Exponents using Householder Factorization”, RBCM - J. of the Braz. Soc.
Mechanical Sciences, Vol. 19, No. 2, pp. 253-261.

An efficient and numerically stable method to determine all the Lyapunov characteristic exponents of a
dynamical system is presented. The method is compared with known methods in terms of efficiency, and the
accuracy and stability of the methods are tested by numerical experiments.

Keywords: Nonlinear Dynamical Systems, Lyapunov Exponents, Householders Factorization.

Sales, R. M., Bittar, A., Porsch, M., and Lucchesi, L., 1997 "Ildentification of Unstable
Mechanical Systems", RBCM - J. of the Braz. Soc. Mechanical Sciences, Vol. 19, No.
2, pp- 262-279.

In this paper non-linear, unstable, SISO and MIMO mechanical systems are considered. Among three case
studies, the first one consists of a lightly damped flexible beam hinged at one end and magnetically levitated at
the other end; the second system consists of a magnetically supported rotor, which acts as a water pump in a
water tunnel; the third system consists of a magnetically levitated vehicle prototype. Due to the unstable
characteristic, several aspects related to closed loop experimental identification of each sys'em are discussed.
Analytical and/or experimental models are obtained for each system.

Keywords: Mechanical System Identification, Unstable Systems, Unknown Parameters.
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Chernousko, F., 1997, "Bounds on Reachable Sets of Dynamical Systems With
Uncertain Matrices"”, RBCM - J. of the Braz. Soc. Mechanical Sciences, Vol. 19, No. 2,
pp. 280-290.

Linear dynamical systems are considered which are described by ordinary differential equations. We assume that
the matrix of the system is uncertain or subject to disturbances, and enly the bounds on each element of the
matrix are known. We obtain outer ellipsoidal estimates on reachable sets of the system and deduce equations
describing the evolution of the approximating ellipsoids. An example is presented. The paper extends the
approach of previous papers (Chernousko, 1980, 1982, 1994) where the case of additive disturbances was
considered to the more complicated case of multiplicative disturbances. The obtained results make it possible 1o
evaluate disturbances caused by uncertain or perturbed parameters of dynamical systems (e.g., stiffness, damping
factors, feedback coefficients, electrical parameters, etc.).

Keywords: Dynamical System, Reachable Set, Uncertain Parameters, State Estimation.

Petrosjan. L. A., 1997, “The Time-consistency Problem in Nonlinear Dynamics" ,
RBCM - J. of the Braz. Soc. Mechanical Sciences, Vol. 19, No. 2, pp. 291-303.

The nonlinear dynamic optimization problem (NDOP) I'(x0,[t0,T]) on the time interval [t, T] from the initial
state x0 is considered. If the NDOP is multicriterial or game-theoretic, there exists a rich variety of optimality
principles each one consisting from a set of optimal decisions. Denote one such optimality principle in
(%[t T by MiXo[te.T]). For a given optimal decision m (%[t T]) € M (%[t T]) let X (1} be the
corresponding optimal trajectory. Consider NDOP subproblems along X (O)I'( X (1),[t, T]), te.[t, T]. Let
M( X (1), [t. T]) be the corresponding optimality principle. Denote by m ( x (1),[t.T]) the trace of optimal
decision M (Xo,[ty, T]) in subproblem I'( X (1),[t, T]). The optimality principle is called time-consistent if for
every m (X, [, T]) € M (X[t T]) the trace m (X (1), [t, T]) € M ( x (t),[t,T]) Most of the classical optimality
principles in NDOP I'(x0,[t0,T]) (as Shown in (Petrosjan, 1993; Petrosjan and Zenkevich, 1996)) are time
inconsistent. The "agreeable solution" (Kaitala and Pohjola, 1988) as an optimality principle in NDOP is
considered its time-consistency investigated and the regularization procedurc which guarantees the time-
consistency of the regularized optimality principle proposed.

Keywords: Agreecable Solution, Nash Equilibria, Pareto Optimality, Time-Consistency.

Ivanovych, I. V., and Volodymyrovych, Z. I., 1997, "About Some Properties of the
Statistical Regularities”, RBCM - J. of the Braz. Soc. Mechanical Sciences, Vol. 19,
No. 2, pp. 304-312.

In this article the notion of G-independence of two sequences has been formulated in the terms of their joint
statistical regularity. The example which illustrates the construction of the statistical regularity of the sequence,
taking values from the finite set, has been given.

Keywords: Statistical Regularity, G -Independence of Two Sequences, Finitely Additive Measure.
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Sixth Pan American Congress cf Applied Mechanics
PACAM VI

to be held jointly with

8th International Conference on Dynamic Problems in Mechanics
DINAME 99

in
Rio de Janeiro
Brazil
4 - 8 January, 1999

PACAM 1 was held in 1989 in Rio de Janeiro. After ten years of successful meetings (Rio de
Janeiro - BRAZIL, 1989; Valparaiso - CHILE, 1991; Sao Paulo - BRAZIL, 1993; Buenos Aires -

ARGENTINA, 1995; San Juan - PUERTO RICO, 1997), we are pleased to announce that PACAM
will return to Rio de Janeiro.

PACAM aims to bring together researchers, practicing engineers and students from South,
Central, and North America. However, participants from all other continents have taken part in
previous meetings and are welcome to PACAM VI, An unusual opportunity is provided for personal

interaction between workers from different geographical areas and from different branches of
mechanics.

Papers on all the usual, as well as unusual, topics of mechanics are welcome. We wish to
highlight the social development: "Women in Mechanics" and the technical development:

"Biomechanics”.
Sponsors:

The American Academy of Mechanics
The Brazilian Academy of Engineering
The Brazilian Society of Mechanical Sciences

Technical Sessions:

Pontificia Universidade Cat6lica
Rua Marques de S3o Vicente 225 Géavea
Rio de Janeiro, RJ Brasil

Accommodations:
Copacabana Beach or Ipanema Beach
Deadlines:

April 1, 1998 - Submission of 4-page abstract for the Congress,

April 1, 1998 - Application for travel grant for participants from the U.S. (Funding pending)
August 1, 1998 - Notification of acceptance of paper.

More information: pacam99@civ.puc.rio.br
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Areas de Aplicacio

Exemplo: um especialista em Mecénica dos Fluidos (familia 6000) atuando na drea de Turbuléncia
(6520), deverd escolher a Area de Aplicaglio 350, se estiver trabalhando em Propulsfo.
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